Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = adsorption phenomena

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1725 KB  
Article
Wetting Behavior of Cationic and Anionic Surfactants on Hydrophobic Surfaces: Surface Tension and Contact Angle Measurements
by Sujit Kumar Shah, Rojina Bhattarai, Sujata Gautam, Pawan Shah and Ajaya Bhattarai
Colloids Interfaces 2026, 10(1), 8; https://doi.org/10.3390/colloids10010008 - 8 Jan 2026
Viewed by 184
Abstract
In this study, cationic surfactant cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) are employed to systematically investigate surface and wetting properties on hydrophobic surfaces, specifically in mixed solvents composed of ethylene glycol (EG) and water at 298.15 K. By varying [...] Read more.
In this study, cationic surfactant cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) are employed to systematically investigate surface and wetting properties on hydrophobic surfaces, specifically in mixed solvents composed of ethylene glycol (EG) and water at 298.15 K. By varying the concentration of each surfactant within the EG–water mixture, both surface tension and contact angle measurements are performed to elucidate how surfactant type and solvent composition influence interfacial behavior and wettability. PTFE and wax surfaces were chosen as model hydrophobic surfaces. Surface tension measurements obtained in pure water and in water–EG mixtures containing 5, 10, and 20 volume percentage EG reveal a consistent decrease in the premicellar slope (dγdlogC) with increasing EG content. This reduction reflects weakened hydrophobic interactions and less effective surfactant adsorption at the air–solution interface. The corresponding decline in maximum surface excess (Γmax) and increase in minimum area per molecule (Amin) confirm looser interfacial packing due to EG participation in the solvation layer. Plots of adhesion tension (AT) versus surface tension (γ) exhibit negative slopes, consistent with reduced solid–liquid interfacial tension (ΓLG) and greater redistribution of surfactant molecules toward the solid–liquid interface. AOT shows stronger sensitivity to EG compared to CTAB, reflecting structural headgroup-specific adsorption behavior. Work of adhesion (WA) measurements demonstrate enhanced wettability at higher EG concentrations, highlighting the cooperative impact of co-solvent environment and surfactant type on wetting phenomena. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Graphical abstract

14 pages, 2437 KB  
Article
Advanced Machine Learning Models for High-Temperature Magnetoresistivity Predictions of Ni81Fe19 Monolayers
by Tarik Akan, Perihan Aksu, Recep Sahingoz, Feliks S. Zaseev, Vladislav B. Zaalishvili and Tamerlan T. Magkoev
Nanomaterials 2026, 16(1), 51; https://doi.org/10.3390/nano16010051 - 30 Dec 2025
Viewed by 242
Abstract
A 5 nm thick polycrystalline Ni81Fe19 film was sputter-deposited onto a circular 3-inch diameter, 390 μm thick single-crystal wafer with SiO2 surface layers. The magnetoresistance (MR) of the sample was analyzed [...] Read more.
A 5 nm thick polycrystalline Ni81Fe19 film was sputter-deposited onto a circular 3-inch diameter, 390 μm thick single-crystal wafer with SiO2 surface layers. The magnetoresistance (MR) of the sample was analyzed as a function of applied DC magnetic field and temperature using the Van der Pauw technique. Magnetic measurements were carried out over a temperature range of 25 °C to 350 °C using a Lake Shore Hall Effect Measurement System (HEMS). An external magnetic field ranging from +14 kG to 14 kG was applied at each temperature value to observe changes in resistance. Hall coefficients and resistance were obtained by applying current in both directions with different contact configurations. Machine learning techniques, including Random Forest Regression, were employed to predict magnetoresistivity beyond 350 °C; the best-performing model achieved R2 values up to 0.9449 with MSE as low as 0.0071, and enabled Curie temperature estimation with TC590.97 °C . This study highlights the potential of machine learning in accurately forecasting material properties beyond experimental limits, providing enhanced predictive models for the magnetoresistive behavior and critical temperature transitions of Ni81Fe19 . Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

38 pages, 1428 KB  
Review
Germanium in Carbon Fullerenes: Quantum-Chemical Insights into Substitution, Adsorption, and Encapsulation Phenomena
by Monika Zielińska-Pisklak, Adrianna Jakubiec, Łukasz Szeleszczuk and Marcin Gackowski
Int. J. Mol. Sci. 2025, 26(24), 12067; https://doi.org/10.3390/ijms262412067 - 15 Dec 2025
Viewed by 329
Abstract
Germanium (Ge) incorporation profoundly modifies the structural and electronic characteristics of carbon fullerenes, giving rise to a diverse landscape of substitutional, exohedral, and endohedral Ge–fullerene architectures. Although experimental studies demonstrate that Ge can be introduced into fullerene matrices through nuclear recoil implantation and [...] Read more.
Germanium (Ge) incorporation profoundly modifies the structural and electronic characteristics of carbon fullerenes, giving rise to a diverse landscape of substitutional, exohedral, and endohedral Ge–fullerene architectures. Although experimental studies demonstrate that Ge can be introduced into fullerene matrices through nuclear recoil implantation and arc-discharge synthesis, only exohedral germylated derivatives have been structurally confirmed to date. Substitutional germanium-doped fullerene (Ge-C60) species remain experimentally elusive, with available evidence relying largely on radiochemical signatures and indirect spectroscopic data. In contrast, computational investigations provide a detailed and coherent picture of germanium doping across fullerene sizes, showing that Ge induces significant cage distortion, breaks local symmetry, narrows the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap, and enhances charge localization at the dopant site. These electronic perturbations strongly increase the affinity of Ge-doped fullerenes for external guest molecules, leading to enhanced adsorption energies and distinct optical and transport responses in exohedral complexes. Theoretical studies of endohedral systems further indicate that Ge atoms or small clusters could form stable encapsulated species with unique electronic properties. Collectively, current evidence positions germanium-doped fullerenes as electronically versatile nanostructures with potential applications in sensing, optoelectronics, catalysis, and nanomedicine, while highlighting the need for definitive experimental synthesis and structural validation of substitutional Ge-fullerene derivatives. Full article
(This article belongs to the Special Issue Structure, Properties, and Applications of Carbon Materials)
Show Figures

Figure 1

37 pages, 1543 KB  
Review
Fouling Control of Ion-Selective Electrodes (ISEs) in Aquatic and Aquacultural Environments: A Comprehensive Review
by Patrick Rinn, Fabian Boruta, Peter Czermak and Mehrdad Ebrahimi
Sensors 2025, 25(24), 7515; https://doi.org/10.3390/s25247515 - 10 Dec 2025
Viewed by 829
Abstract
Real-time monitoring is essential for maintaining water quality and optimizing aquaculture productivity. Ion-selective electrodes (ISEs) are widely used to measure key parameters such as pH, nitrate, and dissolved oxygen in aquatic environments. However, these sensors are prone to fouling, the non-specific adsorption of [...] Read more.
Real-time monitoring is essential for maintaining water quality and optimizing aquaculture productivity. Ion-selective electrodes (ISEs) are widely used to measure key parameters such as pH, nitrate, and dissolved oxygen in aquatic environments. However, these sensors are prone to fouling, the non-specific adsorption of organic, inorganic, and biological matter, which leads to potential drift (e.g., 1–10 mV/h), loss of sensitivity (e.g., ~40% in 20 days), and reduced lifespan (e.g., 3 months), depending on membrane formulation and environmental conditions. This review summarizes current research from mostly the last two decades with around 150 scientific studies on fouling phenomena affecting ISEs, as well as recent advances in fouling detection, cleaning, and antifouling strategies. Detection methods range from electrochemical approaches such as potentiometry and impedance spectroscopy to biochemical, chemical, and spectroscopic techniques. Regeneration and antifouling strategies combine mechanical, chemical, and material-based approaches to mitigate fouling and extend sensor longevity. Special emphasis is placed on environmentally safe antifouling coatings and material innovations applicable to long-term monitoring in aquaculture systems. The combination of complementary antifouling measures is key to achieving accurate, stable, and sustainable ISE performance in complex water matrices. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

30 pages, 1509 KB  
Review
A Review on Theoretical and Computational Fluid Dynamics Modeling of Coupled Heat and Mass Transfer in Fixed Beds of Adsorbing Porous Media
by Mohamad Najib Nadamani, Mostafa Safdari Shadloo and Talib Dbouk
Energies 2025, 18(24), 6418; https://doi.org/10.3390/en18246418 - 8 Dec 2025
Viewed by 458
Abstract
Heat exchangers–adsorbers (HEX-As) are emerging as innovative technologies in many applications (CO2 capture, gas purification and separation, thermal energy storage, etc). This review addresses the theoretical challenges within computational fluid dynamics (CFD) in modeling and simulating coupled heat and mass transfer within [...] Read more.
Heat exchangers–adsorbers (HEX-As) are emerging as innovative technologies in many applications (CO2 capture, gas purification and separation, thermal energy storage, etc). This review addresses the theoretical challenges within computational fluid dynamics (CFD) in modeling and simulating coupled heat and mass transfer within gas separation by using adsorbing porous media in fixed beds. Conservation equations of mass, momentum, and energy from different studies (1D, 2D-CFD, and 3D-CFD models) are presented and discussed with an emphasis on their ability to predict the complex multi-physics multi-scale heat and mass transfer phenomena involved, such as the adsorption kinematics, the thermal front propagation, and the multi-component fluid flow dynamics inside the beds. For the fist time, we show that mathematical theoretical modeling in CFD has been differently developed and applied by many authors in the literature in order to model the same physical phenomena. This sheds light on the present challenges and bottlenecks in theoretical and computational fluid dynamics when it comes to complex coupled heat and mass transfer in multi-component gas dynamics in porous media. This review make it easier for readers to understand the different models that exist in the literature for modeling and simulating HEX-As. It also opens questions on how accurately one can model multi-functional heat exchangers–adsorbers using CFD, e.g., physics multi-scale extrapolation from nano- to meso- and then to macro-scale behavior. Full article
Show Figures

Figure 1

13 pages, 4516 KB  
Article
Onset of Tectomeric Self-Assemblies in Aqueous Solutions of Three-Antennary Oligoglycines
by Anna Y. Gyurova, Ljubomir Nikolov and Elena Mileva
Colloids Interfaces 2025, 9(6), 83; https://doi.org/10.3390/colloids9060083 - 4 Dec 2025
Viewed by 289
Abstract
A detailed investigation of the structure–property relationships of three-antennary oligoglycines in aqueous solutions is performed. Two representatives of these substances are investigated: CH3C(-CH2-NH-Gly5)3 and CH3C(-CH2-NH-Gly7)3. The aim is [...] Read more.
A detailed investigation of the structure–property relationships of three-antennary oligoglycines in aqueous solutions is performed. Two representatives of these substances are investigated: CH3C(-CH2-NH-Gly5)3 and CH3C(-CH2-NH-Gly7)3. The aim is to clarify the effect of molecular peculiarities and the concentration of the oligoglycines on bulk-solution performance and on adsorption-layer properties at the solution–air interface. This study is focused on the clarification of the conditions for the onset of bulk and interfacial supramolecular species in the aqueous environment. The presence of oligoglycine antennae attached to a common carbon-atom center allows the formation of highly coordinated intra- and intermolecular ‘click-clack’ interactions and presumes the possibility for the development of extended H-bonded networks, e.g., in the form of Polyglycine II motifs. A combined study protocol, including dynamic light scattering, profile analysis tensiometry, and microscopic thin-liquid-film techniques, is applied. The results allow the drawing of essential conclusions about the possible coupling mechanism of bulk and interfacial phenomena. The outcomes give grounds to advance the following hypothesis: due to the synchronized action of noncovalent interactions, three types of tectomeric structures may appear—dimers, gel-like elements, and disk-like supramolecular entities. Options for fine-tuning of the tectomer formation in aqueous solutions are presented, and possible application routes are outlined. Full article
(This article belongs to the Special Issue Advances in Soft Matter Interfaces and Structures)
Show Figures

Figure 1

24 pages, 7677 KB  
Article
Transport of Carbon Dioxide, Methane, Oxygen and Nitrogen in a Glassy Polyimide Membrane
by Marek Tańczyk, Aleksandra Janusz-Cygan, Anna Pawlaczyk-Kurek, Łukasz Hamryszak and Jolanta Jaschik
Molecules 2025, 30(23), 4524; https://doi.org/10.3390/molecules30234524 - 23 Nov 2025
Viewed by 599
Abstract
Biomethane is one of the controllable Renewable Energy Sources. It may be derived from biogas, a multicomponent gas mixture, using, among others, membrane processes. The proper optimization of such a process requires the knowledge of the phenomena accompanying each specific biogas–membrane separation system. [...] Read more.
Biomethane is one of the controllable Renewable Energy Sources. It may be derived from biogas, a multicomponent gas mixture, using, among others, membrane processes. The proper optimization of such a process requires the knowledge of the phenomena accompanying each specific biogas–membrane separation system. Therefore, the solubility, permeance and diffusion of CO2, CH4, O2 and N2 in a polyimide-based sample were described and analyzed using the Dual Mode Sorption and partial immobilization models. The parameters of the models were determined based on pure gas sorption isotherms measured gravimetrically and experimental permeances of the four gases. The membrane swelling caused by CO2 was observed at temperatures of 293 and 303 K and for pressures higher than 3 bar. The adsorption of CH4, O2 and N2 in the fractional free volume (FFV) has a dominant (>50%) share in their total solubility in the entire pressure range. This makes them sensitive to the presence of CO2, whose affinity is the strongest towards the tested polyimide-based sample. The diffusion of O2 is the fastest which makes it competitive with CO2 in permeation through the membrane, despite its low solubility. The ideal CO2/O2 selectivity is thus relatively low (2.3–5.1). Methane, which is competitive in solubility compared to CO2, was found to diffuse the slowest and as a result, it is also the slowest permeating gas. This translates into the very high CO2/CH4 ideal selectivity (33–95.7), which is, however, strongly dependent on temperature and pressure. Full article
Show Figures

Graphical abstract

61 pages, 3374 KB  
Review
A Comprehensive Review on Atrazine Adsorption: From Environmental Contamination to Efficient Removal Technologies
by Yamil L. Salomón, Jordana Georgin, Daniel Gustavo Piccilli Allasia, Matias Schadeck Netto, Chukwunonso O. Aniagor, Joshua O. Ighalo and Dison S. P. Franco
Sustainability 2025, 17(23), 10455; https://doi.org/10.3390/su172310455 - 21 Nov 2025
Cited by 1 | Viewed by 999
Abstract
The expansion of global agriculture has intensified the use of herbicides such as atrazine (ATZ), resulting in widespread environmental contamination. Given its documented harmful effects, the development of effective treatment strategies is crucial. This review synthesizes the fundamental mechanisms behind ATZ adsorption, identifying [...] Read more.
The expansion of global agriculture has intensified the use of herbicides such as atrazine (ATZ), resulting in widespread environmental contamination. Given its documented harmful effects, the development of effective treatment strategies is crucial. This review synthesizes the fundamental mechanisms behind ATZ adsorption, identifying it as a spontaneous and energetically favorable process, predominantly governed by specific physicochemical interactions. The analysis reveals that adsorption efficiency is critically influenced by the pH of the medium, since this parameter determines the charge state of the adsorbent surface and the ATZ molecule itself, thus modulating the attractive forces. The high adsorption capacity observed in various materials is intrinsically linked to their porous architecture and surface area, which facilitate the capture and retention of molecules. The desorption process, in turn, demonstrates the reversible nature of certain interactions, allowing for the regeneration and reuse of materials. The unique contribution of this analysis lies in its mechanistic approach, which transcends the mere presentation of data to offer guiding principles for the design of adsorbents. By connecting operational parameters to molecular phenomena, the review establishes a critical basis for translating promising laboratory results into real-world applications, providing a roadmap for developing practical and sustainable solutions against ATZ contamination. Full article
Show Figures

Figure 1

27 pages, 2553 KB  
Article
Sustainable Dye Removal Using Date Stones and Adsorption Process Optimization: Factorial Design, Kinetics, and Isotherm Analysis
by Lassaad Mechi, Souad Rezma, Malak Kahloul, Jalila Chékir, Hajer Chemingui, Hanen Azaza, Abdulmohsen K. D. AlSukaibi and Neila Saidi
Water 2025, 17(22), 3229; https://doi.org/10.3390/w17223229 - 12 Nov 2025
Viewed by 919
Abstract
This study aims to present the preparation of date stone activated carbon (DSAC) through physical activation with carbon dioxide. The Brunauer–Emmett–Teller (BET) technique, Boehm titrations, elemental analysis, Raman and Fourier-transform infrared (FTIR) spectroscopy have been used to characterize the raw material (date stone), [...] Read more.
This study aims to present the preparation of date stone activated carbon (DSAC) through physical activation with carbon dioxide. The Brunauer–Emmett–Teller (BET) technique, Boehm titrations, elemental analysis, Raman and Fourier-transform infrared (FTIR) spectroscopy have been used to characterize the raw material (date stone), date stone activated carbon (DSAC) produced, Congo Red (CR) and to investigate the adsorption phenomena. The study of the DSAC porous material revealed the dominance of micropores with a specific surface area greater than 535.9 m2 g−1 and an approximate volume value equal to 0.208 cm3 g−1. The Langmuir model predicted an adsorption capacity of approximately 27.77 mg g−1, while a 90% removal efficiency for CR dye was achieved under neutral pH conditions. Thermodynamic analysis confirmed that the adsorption of CR on DSAC has a spontaneous (ΔG° < 0) and exothermic (ΔH° < 0) character. The adsorption mechanism of CR on DSAC was proposed and discussed, based on the determination of electrostatic interactions being identified as a critical factor that controls the adsorption phenomenon of CR on DSAC. A 23 full factorial design was implemented to systematically investigate the effects of three critical parameters (temperature, adsorbent dosage, and pH) on the adsorption performance. Statistical analysis indicated that all three primary factors significantly influenced the results. The square correlation coefficient of the model (R2-sq of 97.26%) was in good agreement with the statistical model. The variable is considered statistically significant when the p-value is lower than 0.05. These findings, supported by experimental data, strongly indicate that DSAC possesses remarkable potential as a sustainable and effective bio-adsorbent for wastewater remediation applications capable of removing diverse contaminants with high efficiency. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment (2nd Edition))
Show Figures

Figure 1

16 pages, 2214 KB  
Article
Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor
by Hirotada Hirama, Yuki Matsuo, Shinya Kano and Masanori Hayase
Appl. Sci. 2025, 15(21), 11648; https://doi.org/10.3390/app152111648 - 31 Oct 2025
Viewed by 646
Abstract
Nanostructured oxide coatings play a critical role in determining molecular adsorption and desorption behavior on solid surfaces. In this study, we propose a rapid and simple method to estimate the apparent vapor pressure of fragrance compounds using a quartz crystal microbalance (QCM) sensor [...] Read more.
Nanostructured oxide coatings play a critical role in determining molecular adsorption and desorption behavior on solid surfaces. In this study, we propose a rapid and simple method to estimate the apparent vapor pressure of fragrance compounds using a quartz crystal microbalance (QCM) sensor modified with a nanostructured silica surface. Here, the term “apparent vapor pressure” refers to the vapor pressure values predicted from the QCM response characteristics, which correlate quantitatively with reference data obtained from conventional thermodynamic calculations. The QCM responses of various fragrances were analyzed in relation to the adsorption–desorption dynamics occurring at the nanostructured interface. We found a quantitative relationship between the sensor responses and the reference vapor pressure values, with a mean absolute percentage error (MAPE) ranging from 19.3% to 220% depending on the compound. This correlation enables rapid evaluation of vapor pressure-related behavior without relying on conventional vapor pressure measurement methods. The results suggest that the surface nanostructure influences the adsorption–desorption balance governed by vapor pressure. This approach provides a practical and efficient means of evaluating the apparent vapor pressure of volatile compounds on nanostructured materials, offering insights into interfacial phenomena relevant to materials science and applied nanosciences. Full article
Show Figures

Figure 1

20 pages, 3814 KB  
Article
Humidity-Driven Interfacial Restructuring of Lubricating Films in Phosphate Ester Ionic Liquids: Aromatic vs. Aliphatic Cation Effects
by Zhaowen Ba, Dan Qiao, Dapeng Feng and Jian Zhang
Lubricants 2025, 13(11), 475; https://doi.org/10.3390/lubricants13110475 - 27 Oct 2025
Cited by 1 | Viewed by 830
Abstract
This study investigates the interfacial behavior of four phosphate ester ionic liquids (ILs) with contrasting cation hydrophobicity under humid environments. Through tribological tests, surface analysis, and molecular dynamics simulations, we reveal how moisture absorption governs lubricant film organization at metal interfaces. Aromatic ILs [...] Read more.
This study investigates the interfacial behavior of four phosphate ester ionic liquids (ILs) with contrasting cation hydrophobicity under humid environments. Through tribological tests, surface analysis, and molecular dynamics simulations, we reveal how moisture absorption governs lubricant film organization at metal interfaces. Aromatic ILs (imidazolium/pyridinium cations) exhibit significant degradation in lubrication after moisture exposure, with friction coefficients increasing by 0.03–0.05 and wear volumes scaling with humidity. This deterioration arises from competitive water–cation adsorption, where hydrogen bonding disrupts Fe-cation coordination bonds and destabilizes the protective film. In contrast, aliphatic ILs (tetraalkylammonium/phosphonium cations) maintain robust tribological performance. Their alkyl chains spatially confine water to outer adsorption layers (>17 Å from the surface), preserving a stable core lubricating film (~14 Å thick). Molecular dynamics simulations confirm that water co-adsorbs with aromatic cations (RDF peak: 2.5 Å), weakening interfacial interactions, while aliphatic ILs minimize cation–water affinity (RDF peak: 4 Å). These findings establish cation hydrophobicity as a critical design parameter for humidity-resistant lubricants, providing fundamental insights into water-mediated interfacial phenomena in complex fluid systems. Full article
Show Figures

Figure 1

27 pages, 5495 KB  
Article
Mesoporous Silicas of Well-Organized Structure: Synthesis, Characterization, and Investigation of Physical Processes Occurring in Confined Pore Spaces
by Magdalena Blachnio, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Int. J. Mol. Sci. 2025, 26(18), 9255; https://doi.org/10.3390/ijms26189255 - 22 Sep 2025
Cited by 2 | Viewed by 1380
Abstract
Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, [...] Read more.
Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, aging temperature, and silica precursor—on the structural, textural, and functional properties of the resulting mesocellular foam materials. Characterization by Nitrogen Adsorption/Desorption, Transmission Electron Microscopy, X-ray Diffraction, and Small-angle X-ray Scattering revealed that structural ordering and pore morphology are significantly influenced by the EO/PO ratio of the copolymers and the use of the expander. Materials synthesized with PE9400 and PE10500 in the presence of a swelling agent exhibited highly uniform bottle-shaped mesopores with increased surface area and pore volume. Thermal behavior studied via Differential Scanning Calorimetry indicated a correlation between pore size and melting point depression of confined water, consistent with the Gibbs–Thomson effect. Adsorption capacity and kinetics for methylene blue varied significantly with pore structure, with materials possessing narrow mesopores showing superior dye uptake, and materials with larger mesopores and open-pore architecture exhibiting faster adsorption rates. This work demonstrates the tunability of mesoporous silica structure through precise control of synthesis conditions and highlights its potential in applications involving adsorption and phase phenomena in confined pore systems. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

44 pages, 4769 KB  
Review
Porosity and Permeability in Construction Materials as Key Parameters for Their Durability and Performance: A Review
by Almudena Ortiz-Marqués, Pablo Caldevilla, Eryk Goldmann, Małgorzata Safuta, María Fernández-Raga and Marcin Górski
Buildings 2025, 15(18), 3422; https://doi.org/10.3390/buildings15183422 - 22 Sep 2025
Cited by 7 | Viewed by 4161
Abstract
This review provides a comprehensive examination of porosity and permeability as key parameters governing the durability and performance of construction materials, including natural stone, mortar, concrete, and other cementitious composites. It highlights the pivotal role of pore structure in transport phenomena and degradation [...] Read more.
This review provides a comprehensive examination of porosity and permeability as key parameters governing the durability and performance of construction materials, including natural stone, mortar, concrete, and other cementitious composites. It highlights the pivotal role of pore structure in transport phenomena and degradation mechanisms, examining how the variations in pore architecture, encompassing total vs. effective porosity, pore size distribution, and pore connectivity, dictate a material’s response to environmental stressors. A comparative evaluation of advanced pore characterization techniques is presented, including helium pycnometry, mercury intrusion porosimetry (MIP), nitrogen adsorption (BET/BJH), nuclear magnetic resonance (NMR) relaxometry, and imaging methods such as optical microscopy, scanning electron microscopy (SEM), and X-ray micro-computed tomography (micro-CT). Furthermore, it assesses how these porosity and permeability characteristics influence durability-related processes like freeze–thaw cycling, chloride ingress, sulphate attack, and carbonation. Case studies are discussed in which various additives have been employed to refine the pore structure of cement-based materials, and pervious concrete is highlighted as an example where deliberately high porosity and permeability confer functional benefits (e.g., enhanced drainage). Overall, these insights underscore the importance of tailoring porosity and permeability in material design to enhance durability and sustainability in construction engineering. Full article
Show Figures

Figure 1

28 pages, 11099 KB  
Article
Bone Meal as a Sustainable Amendment for Zinc Retention in Polluted Soils: Adsorption Mechanisms, Characterization, and Germination Response
by Mirela Cișmașu (Enache), Cristina Modrogan, Oanamari Daniela Orbuleț, Magdalena Bosomoiu, Madălina Răileanu and Annette Madelene Dăncilă
Sustainability 2025, 17(17), 8027; https://doi.org/10.3390/su17178027 - 5 Sep 2025
Cited by 1 | Viewed by 1653
Abstract
Soil contamination with heavy metals often resulting from industrial activities and wastewater discharge is a major ecological problem. Bone meal, a by-product of the agri-food industry, is a promising material for remediating soils affected by heavy metal pollution. Bone meal, rich in phosphorus, [...] Read more.
Soil contamination with heavy metals often resulting from industrial activities and wastewater discharge is a major ecological problem. Bone meal, a by-product of the agri-food industry, is a promising material for remediating soils affected by heavy metal pollution. Bone meal, rich in phosphorus, calcium, and other essential minerals, provides advantages both in immobilizing inorganic pollutants and in improving soil fertility. This study explores the potential of bone meal as an ecological and sustainable solution for the retention of zinc from soils polluted with wastewater. This study analyzes the physicochemical properties of bone meal, the mechanisms of its interaction with metal ions through adsorption processes as revealed by equilibrium and kinetic studies, and its effects on plant germination. The results indicate a maximum adsorption capacity of 2375.33 mg/kg at pH = 6, according to the Langmuir model, while the pseudo-second-order kinetic model showed a coefficient of R2 > 0.99, confirming the chemical nature of the adsorption. At pH 12, the retention capacity increased to 2937.53 mg/kg; however, parameter instability suggests interference from precipitation phenomena. At pH 12, zinc retention is dominated by precipitation (Zn(OH)2 and Zn–phosphates), which invalidates the Langmuir assumptions; accordingly, the Freundlich isotherm provides a more adequate description. Germination tests revealed species-specific responses to Zn contamination and bone meal amendment. In untreated contaminated soil, germination rates were 84% for cress, 42% for wheat, and 50% for mustard. Relative to the soil + bone meal treatment (100% performance), the extent of inhibition reached 19–21% in cress, 24–29% in wheat, and 12% in mustard. Bone meal mitigated Zn-induced inhibition most effectively in wheat (+31% vs. soil; +40% vs. control), followed by cress (+23–27%) and mustard (+14%), highlighting its species-dependent ameliorative potential. Thus, the experimental results confirm bone meal’s capacity to reduce the mobility of zinc ions and improve the quality of the agricultural substrate. By transforming an animal waste product into a material with agronomic value, this study supports the integration of bone meal into modern soil remediation strategies, aligned with the principles of bioeconomy and sustainable development. Full article
Show Figures

Figure 1

24 pages, 1117 KB  
Article
Adsorption of Ternary Mixtures in the Presence of Multisite Occupancy: Theory and Monte Carlo Simulations
by Pablo Jesús Longone and Antonio José Ramirez-Pastor
Entropy 2025, 27(8), 849; https://doi.org/10.3390/e27080849 - 10 Aug 2025
Viewed by 1304
Abstract
Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules [...] Read more.
Adsorption of multicomponent mixtures on solid substrates is essential to numerous technological processes and provides key insights into surface phenomena. Despite advancements in theoretical modeling, many approaches still assume that each adsorbate occupies a single site, thereby neglecting important effects arising from molecules that span multiple adsorption sites. In this work, we broaden the theoretical description of such systems by considering the adsorption of j distinct polyatomic species on triangular lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on one-dimensional lattices, extended here to account for substrates with higher coordination numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of rigid rods. As a case study, we explore the behavior of a three-component system consisting of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This model captures the interplay between structural simplicity, multisite occupancy, configurational diversity, and competition for space, key factors in many practical scenarios involving size-asymmetric molecules. We characterize the system using total and partial isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations, which show excellent agreement with the analytical approaches. Our findings demonstrate that even complex adsorption systems can be efficiently described using this generalized framework, offering new insights into multicomponent surface adsorption. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

Back to TopTop