Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor
Abstract
1. Introduction
2. Theory
3. Materials and Methods
3.1. Sensor Fabrication
3.2. Measurement System
3.3. Measurement Procedure
3.4. Analysis
3.5. Fragrances
4. Results and Discussions
4.1. Sensor Responsiveness
4.2. Measurement Reproducibility
4.3. Relationship Between Sensor Response and Vapor Pressure
4.4. Cross-Validation
4.5. Comparison with Existing Vapor Pressure Measurement Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, A.E.; Nogueira, I.; Faria, R.P.V. Perfume and Flavor Engineering: A Chemical Engineering Perspective. Molecules 2021, 26, 3095. [Google Scholar] [CrossRef]
- Kasting, G.B.; Saiyasombati, P. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin. Int. J. Cosmet. Sci. 2001, 23, 49–58. [Google Scholar] [CrossRef]
- Schwarzenbach, R.; Bertschi, L. Models to assess perfume diffusion from skin. Int. J. Cosmet. Sci. 2001, 23, 85–98. [Google Scholar] [CrossRef]
- Almeida, R.N.; Hartz, J.G.M.; Costa, P.F.; Rodrigues, A.E.; Vargas, R.M.F.; Cassel, E. Permeability coefficients and vapour pressure determination for fragrance materials. Int. J. Cosmet. Sci. 2021, 43, 225–234. [Google Scholar] [CrossRef]
- Smith, A.; Menzies, A.W.C. Studies in vapor pressure: III. A static method for determining the vapor pressures of solids and liquids. J. Am. Chem. Soc. 1910, 32, 1412–1434. [Google Scholar] [CrossRef]
- Barton, J.L.; Bloom, H. A Boiling Point Method for Determination of Vapor Pressures of Molten Salts. J. Phys. Chem. 1956, 60, 1413–1416. [Google Scholar] [CrossRef]
- ASTM D2879-23; Standard Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isoteniscope. ASTM International: West Conshohocken, PA, USA, 2023.
- U.S. Government Publishing Office. Vapor Pressure; U.S. Government Publishing Office: Washington, DC, USA, 2024. [Google Scholar]
- TA Instruments. Boiling Point and Vapor Pressure Measurement by Pressure DSC: TA Instruments. Available online: https://www.tainstruments.com/pdf/literature/TA201.pdf (accessed on 16 June 2025).
- ASTM D6378-22; Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products, Hydrocarbons, and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Method). ASTM International: West Conshohocken, PA, USA, 2022.
- Rianjanu, A.; Hasanah, S.A.; Nugroho, D.B.; Kusumaatmaja, A.; Roto, R.; Triyana, K. Polyvinyl Acetate Film-Based Quartz Crystal Microbalance for the Detection of Benzene, Toluene, and Xylene Vapors in Air. Chemosensors 2019, 7, 20. [Google Scholar] [CrossRef]
- Gao, N.B.; Li, H.Y.; Zhang, W.H.; Zhang, Y.Z.; Zeng, Y.; Hu, Z.X.; Liu, J.Y.; Jiang, J.J.; Miao, L.; Yi, F.; et al. QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sens. Actuators B-Chem. 2019, 293, 129–135. [Google Scholar] [CrossRef]
- Ayad, M.M.; Torad, N.L.; Minisy, I.M.; Izriq, R.; Ebeid, E.M. A wide range sensor of a 3D mesoporous silica coated QCM electrodes for the detection of volatile organic compounds. J. Porous Mat. 2019, 26, 1731–1741. [Google Scholar] [CrossRef]
- Rianjanu, A.; Triyana, K.; Nugroho, D.B.; Kusumaatmaja, A.; Roto, R. Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor. Sens. Actuator A-Phys. 2020, 301, 111742. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, J.; Zhu, Z.Q. Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci. 2006, 252, 2404–2411. [Google Scholar] [CrossRef]
- Quang, V.V.; Hung, V.N.; Tuan, L.A.; Phan, V.N.; Huy, T.Q.; Quy, N.V. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature. Thin Solid Films 2014, 568, 6–12. [Google Scholar] [CrossRef]
- Shiba, K.; Tamura, R.; Imamura, G.; Yoshikawa, G. Data-driven nanomechanical sensing: Specific information extraction from a complex system. Sci. Rep. 2017, 7, 3661. [Google Scholar] [CrossRef]
- Kano, S.; Mekaru, H. Liquid-dependent impedance induced by vapor condensation and percolation in nanoparticle film. Nanotechnology 2022, 33, 105702. [Google Scholar] [CrossRef]
- Röck, F.; Barsan, N.; Weimar, U. Electronic nose:: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Z. Für Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Bhagwat, R.; Sanadhya, S.; Gulotty, E.; Tucker, Z.; Ashfeld, B.; Moghaddam, S. High-precision vapor pressure measurement apparatus with facile and inexpensive construction. Meas. Sci. Technol. 2022, 33, 067002. [Google Scholar] [CrossRef]
- Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Ochoa, J.C.S. The Ebulliometric Method of Vapor-Pressure Measurement—Vapor-Pressures of Benzene, Hexafluorobenzene, and Naphthalene. J. Chem. Thermodyn. 1990, 22, 589–605. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Product Properties Test Guidelines OPPTS 830.7950: Vapor Pressure; Contract No.: EPA 712–C–96–043; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- deBarros, T.M.V.R.; Santos, R.C.; Fernandes, A.C.; daPiedade, M.E.M. Accuracy and precision of heat capacity measurements using a heat flux differential scanning calorimeter. Thermochim. Acta 1995, 269, 51–60. [Google Scholar] [CrossRef]
- Grabner Instruments. Absolute Vapor Pressure of Paints, Varnishes, Solvents; Application Note; Grabner Instruments: Vienna, Austria; Available online: https://www.grabner-instruments.com (accessed on 29 October 2025).
- Berg, R.F. Correcting “Static” Measurements of Vapor Pressure for Time Dependence Due to Diffusion and Decomposition. J. Chem. Eng. Data 2015, 60, 3496–3505. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals, Test No. 104: Vapour Pressure; Contract No.: OECD TG 104; Organisation for Economic Co-operation and Development: Paris, France, 2006. [Google Scholar]
- Widegren, J.A.; Harvey, A.H.; McLinden, M.O.; Bruno, T.J. Vapor Pressure Measurements by the Gas Saturation Method: The Influence of the Carrier Gas. J. Chem. Eng. Data 2015, 60, 1173–1180. [Google Scholar] [CrossRef]
- Casserino, M.; Blevins, D.R.; Sanders, R.N. An improved method for measuring vapor pressure by DSC with automated pressure control. Thermochim. Acta 1996, 284, 145–152. [Google Scholar] [CrossRef]
- Toray Research Center. Vapor Pressure: Toray Research Center. Available online: https://www.toray-research.co.jp/en/technical-info/analysis/Vapor_Pressure_measurement.html (accessed on 30 May 2025).
- ASTM E1719-05; Standard Test Method for Vapor Pressure of Liquids by Ebulliometry. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D2879-97; Standard Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isoteniscope. ASTM International: West Conshohocken, PA, USA, 1997.
- PerkinElmer. Determining Vapor Pressure by Pressure DSC; Contract No.: Application Note 010056_01; PerkinElmer: Norwalk, CT, USA, 2004. [Google Scholar]








| Name | Scent | Molecular Formula | Molecular Weight | Molar Enthalpy of Vaporization [kJ/mol] | Boiling Point at Standard Pressure [K] | Reference Vapor Pressure at the Temperature During Measurement Pvap [Pa] |
|---|---|---|---|---|---|---|
| α-Terpinene | Wood | C10H16 | 136.23 | 39.4 | 447.2 | 490.34 at 24.37 °C |
| Isobutyl Isobutyrate | Tropical fruit | C8H16O2 | 144.21 | 48.5 | 421 | 320.21 at 24.27 °C |
| Isoamyl Butyrate | Fruity | C9H18O2 | 158.24 | 47.4 | 451 | 137.43 at 23.1 °C |
| Ethyl Hexanoate | Fruity | C8H16O2 | 144.21 | 50.6 | 441.2 | 131.25 at 24.55 °C |
| Limonene | Citrus | C10H16 | 136.23 | 49.2 | 450 | 128.18 at 25.37 °C |
| p-Cymene | Fresh citrus | C10H14 | 134.22 | 49.2 | 450 | 114.81 at 23.72 °C |
| Benzaldehyde | Bitter almond | C7H6O | 106.12 | 48.0 | 452 | 111.28 at 21.6 °C |
| Hexyl Acetate | Sweet fruity | C8H16O2 | 144.21 | 51.9 | 443 | 100.70 at 24.03 °C |
| Hexyl Alcohol | Leaves | C6H14O | 102.17 | 61.0 | 430 | 47.06 at 23.44 °C |
| Benzyl Acetate | Jasmine | C9H10O2 | 150.17 | 55.5 | 479.2 | 20.34 at 24.27 °C |
| Linalyl Acetate | Bergamot | C12H20O2 | 196.29 | 57.8 | 493.2 | 9.09 at 23.76 °C |
| Ethyl Benzoate | Fruity | C9H10O2 | 150.17 | 61.1 | 485 | 6.55 at 23.18 °C |
| Phenethyl Alcohol | Rose | C8H10O | 122.16 | 69.0 | 491.4 | 1.44 at 22.72 °C |
| Undecanal | Citrus | C11H22O | 170.3 | 64.6 | 545.15 | 0.64 at 23.19 °C |
| Symbol | Combination of Features | Regression Equation Used for Prediction | Mean RMSE |
|---|---|---|---|
| (a) | log10|Δ| | 4 | 0.403 ± 0.243 |
| (b) | log10t90 | 5 | 0.321 ± 0.201 |
| (c) | log10t10 | 6 | 0.593 ± 0.237 |
| (d) | log10|Δ|, log10t90 | 7 | 0.303 ± 0.178 |
| (e) | log10|Δ|, log10t10 | 8 | 0.379 ± 0.192 |
| (f) | log10t90, log10t10 | 9 | 0.317 ± 0.178 |
| (g) | log10|Δ|, log10t90, log10t10 | 10 | 0.297 ± 0.175 |
| Test Data | MAPE |
|---|---|
| Undecanal | 220 |
| Phenethyl Alcohol | 19.3 |
| Ethyl Benzoate | 279 |
| Linalyl Acetate | 51.6 |
| Benzyl Acetate | 46.5 |
| Hexyl Alcohol | 51.4 |
| Hexyl Acetate | 29.1 |
| Benzaldehyde | 95.5 |
| p-Cymene | 30.8 |
| Limonene | 49.6 |
| Ethyl Hexanoate | 22.0 |
| Isoamyl Butyrate | 60.8 |
| Isobutyl Isobutyrate | 41.8 |
| α-Terpinene | 69.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirama, H.; Matsuo, Y.; Kano, S.; Hayase, M. Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor. Appl. Sci. 2025, 15, 11648. https://doi.org/10.3390/app152111648
Hirama H, Matsuo Y, Kano S, Hayase M. Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor. Applied Sciences. 2025; 15(21):11648. https://doi.org/10.3390/app152111648
Chicago/Turabian StyleHirama, Hirotada, Yuki Matsuo, Shinya Kano, and Masanori Hayase. 2025. "Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor" Applied Sciences 15, no. 21: 11648. https://doi.org/10.3390/app152111648
APA StyleHirama, H., Matsuo, Y., Kano, S., & Hayase, M. (2025). Rapid Estimation of Fragrance Vapor Pressure Using a Nanostructured Surface–Modified Quartz Crystal Microbalance Sensor. Applied Sciences, 15(21), 11648. https://doi.org/10.3390/app152111648

