Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,275)

Search Parameters:
Keywords = adhesive damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 16823 KiB  
Article
Simulation Analysis and Research on the Separation and Screening of Adherent Foreign Substances in Raisins Based on Discrete Elements
by Rui Zhang, Meng Ning, Hongrui Ma and Ziheng Zhan
Appl. Sci. 2025, 15(15), 8695; https://doi.org/10.3390/app15158695 (registering DOI) - 6 Aug 2025
Abstract
To address the issue that existing raisin foreign object removal equipment cannot eliminate surface contaminants adhered to raisins through non-washing methods, this paper proposes an adhesive foreign object removal method based on “rapid freezing–rolling extrusion separation-airflow screening”. A raisin adhesive foreign object removal [...] Read more.
To address the issue that existing raisin foreign object removal equipment cannot eliminate surface contaminants adhered to raisins through non-washing methods, this paper proposes an adhesive foreign object removal method based on “rapid freezing–rolling extrusion separation-airflow screening”. A raisin adhesive foreign object removal device was designed based on this method. The separation and removal processes of adhesive foreign objects were analyzed and optimized through simulation, followed by device fabrication and performance testing. Starting from the separation process of raisins and adhesive foreign objects, we conducted experimental studies on quick-freezing separation, determined the most suitable separation method based on experimental results, and performed structural design of the equipment accordingly. To conduct simulation analysis and optimization, material parameters were calibrated. The working process of foreign object separation was simulated and optimized using discrete element method (DEM) simulation, verifying the equipment’s separation capability for different adhesive foreign objects while determining the optimal rotational speed of 600 r/min. Through EDEM-Fluent coupled simulation, the working process of foreign object removal was analyzed and optimized, validating the influence of flow field on foreign object removal and determining the optimal air velocity of 11 m/s. The equipment was ultimately fabricated, with further parameter optimization and comprehensive performance testing conducted. The final optimal rotational speed and air velocity were determined as 650 r/min and 11 m/s, respectively. In terms of comprehensive performance, the equipment achieved a separation rate of 93.76%, damage rate of 3.05%, residue rate of 4.28%, removal rate of 94.52%, carry-over ratio of 71:1, and processing capacity of 120 kg/h. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Vitamin E Enhances Immune Function and the Intestinal Histological Structure by Regulating the Nodal-Mediated Signaling Pathway: A Case Study on the Sea Cucumber Apostichopus japonicus
by Zitong Wang, Yan Wang, Xianyu Wang, Guangyao Zhao, Haiqing Zeng, Haoran Xiao, Lingshu Han, Jun Ding, Yaqing Chang and Rantao Zuo
Biology 2025, 14(8), 1008; https://doi.org/10.3390/biology14081008 (registering DOI) - 6 Aug 2025
Abstract
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections [...] Read more.
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections between adjacent cells but also serves as an anchoring platform for cell adhesion and regeneration processes. Therefore, a 21-day feeding trial was conducted using RNA interference to investigate the role of the Nodal gene in regulating intestinal collagen synthesis and histological structure integrity in juvenile A. japonicus fed diets containing graded levels of vitamin E (VE) (0, 200, and 400 mg/kg). The results showed that the addition of 200 mg/kg VE significantly improved the growth rate, immune enzyme activities and related gene expression, as well as intestinal villus morphology. Additionally, the addition of 200 mg/kg VE upregulated the expression of Nodal, which activated the expression of collagen synthesis-related genes and promoted collagen deposition in the intestines of A. japonicus. After Nodal gene knockdown, A. japonicus presented a decreased growth rate, damage to the intestinal histological structure, and impaired collagen synthesis, with the most notable findings observed in A. japonicus fed diets without VE addition. However, these detrimental effects were eliminated to some extent by the addition of 200 mg/kg VE. These findings indicate that VE improves immune function and intestinal histological structure in A. japonicus through a Nodal-dependent pathway. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research (2nd Edition))
Show Figures

Figure 1

33 pages, 2639 KiB  
Article
Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
by Barbara Giordani, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2025, 17(8), 1011; https://doi.org/10.3390/pharmaceutics17081011 - 1 Aug 2025
Viewed by 242
Abstract
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics [...] Read more.
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics (i.e., cell-free supernatant and heat-killed cells), with the purpose of developing oral formulations to support intestinal health. Methods: The safety, effects on the adhesion of bifidobacteria and enteropathogens to intestinal cells, and anti-inflammatory properties of L. vaginalis BC17 viable cells and postbiotics were evaluated. Fast-disintegrating tablets were formulated by freeze-drying cell-free supernatant in combination with heat-killed or viable cells alongside maltodextrins. Results: The formulations were shown to be non-genotoxic and compatible with intestinal cell lines (Caco-2 and HT-29). BC17 viable cells survived in co-culture with intestinal cells up to 48 h and exhibited moderate adhesion to the cell lines. Notably, both BC17 viable cells and postbiotics enhanced the adhesion of beneficial bifidobacteria to Caco-2 cells by up to 250%, while reducing enteropathogens adhesion by 40–70%. Moreover, they exerted significant anti-inflammatory effects, reducing nitric oxide production in macrophages by 40–50% and protecting intestinal cells from SDS-induced damage. The formulations allowed administration of at least 109 BC17 cells in infants and adults through easy and rapid dispersion in milk or water, or directly in the oral cavity without chewing, and preserved their functional properties for up to 3 months of storage. Conclusions: L. vaginalis BC17 viable cells and postbiotics, as well as fast-disintegrating tablets, showed promising functional and safety profiles. Although further in vivo validation is needed, this approach represents a compelling strategy for promoting gut health. Full article
Show Figures

Graphical abstract

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 374
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

26 pages, 10667 KiB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Viewed by 328
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

37 pages, 14524 KiB  
Review
Recent Developments in Layered Double Hydroxides as Anticorrosion Coatings
by Alessandra Varone, Riccardo Narducci, Alessandra Palombi, Subhan Rasulzade, Roberto Montanari and Maria Richetta
Materials 2025, 18(15), 3488; https://doi.org/10.3390/ma18153488 - 25 Jul 2025
Viewed by 415
Abstract
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly [...] Read more.
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly important. Among these coatings, Layered Double Hydroxides (LDHs) have shown unique properties, such as ion exchange, high adhesion, and hydrophobicity, particularly useful for biomedical applications. In this review, after a detailed exposition of the LDHs’ synthesis processes, the most recent corrosion protection methods are illustrated. Intercalation of corrosion inhibitors and release kinetics of intercalates are presented. Although this work is mainly focused on laboratory-scale investigations and fundamental research, the problems inherent to large-scale industrial manufacturing and application are outlined and briefly discussed. Full article
(This article belongs to the Special Issue Advanced Coating Research for Metal Surface Protection)
Show Figures

Figure 1

25 pages, 9119 KiB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Viewed by 274
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 271
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

16 pages, 10306 KiB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 419
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 392
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

19 pages, 3514 KiB  
Review
Indirect Myocardial Injury in Polytrauma: Mechanistic Pathways and the Clinical Utility of Immunological Markers
by Makhabbat Bekbossynova, Timur Saliev, Murat Mukarov, Madina Sugralimova, Arman Batpen, Anar Kozhakhmetova and Aknur Zhanbolat
J. Cardiovasc. Dev. Dis. 2025, 12(7), 268; https://doi.org/10.3390/jcdd12070268 - 14 Jul 2025
Viewed by 398
Abstract
Myocardial injury following polytrauma is a significant yet often underdiagnosed condition that contributes to acute cardiac dysfunction and long-term cardiovascular complications. This review examines the role of systemic inflammation, oxidative stress, neuro-hormonal activation, and immune dysregulation in trauma-induced myocardial damage. Key immunological markers, [...] Read more.
Myocardial injury following polytrauma is a significant yet often underdiagnosed condition that contributes to acute cardiac dysfunction and long-term cardiovascular complications. This review examines the role of systemic inflammation, oxidative stress, neuro-hormonal activation, and immune dysregulation in trauma-induced myocardial damage. Key immunological markers, including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and adhesion molecules (ICAM-1, VCAM-1), are implicated in endothelial dysfunction, myocardial apoptosis, and ventricular remodeling. The interplay between these factors potentially exacerbates cardiac injury, increasing the risk of heart failure. Biomarker-guided approaches for early detection, combined with advanced imaging techniques such as speckle-tracking echocardiography and cardiac MRI, offer promising avenues for risk stratification and targeted interventions. Anti-inflammatory and oxidative stress-modulating therapies may mitigate myocardial damage and improve outcomes. This article highlights the clinical relevance of integrating immunological markers into diagnostic and therapeutic strategies to enhance the management of trauma-related cardiac dysfunction and reduce long-term morbidity. Full article
(This article belongs to the Special Issue Heart Failure: Clinical Diagnostics and Treatment, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2238 KiB  
Article
The Phosphodiesterase 4 Inhibitor Roflumilast Protects Microvascular Endothelial Cells from Irradiation-Induced Dysfunctions
by Nathalie Guitard, Florent Raffin and François-Xavier Boittin
Cells 2025, 14(13), 1017; https://doi.org/10.3390/cells14131017 - 3 Jul 2025
Viewed by 378
Abstract
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of [...] Read more.
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of tissue inflammation through increased endothelial permeability, and ultimately organ damage. As intracellular cyclic AMP (cAMP) levels are known to control intercellular junctions or apoptosis in the endothelium, we investigated here the effect of the Phosphodiesterase 4 inhibitor Roflumilast, a drug increasing cAMP levels, on irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). Using continuous impedance measurements in confluent endothelial cell monolayers, Roflumilast was found to rapidly reinforce the endothelial barrier and to prevent irradiation-induced barrier disruption. In accordance, irradiation-induced alteration in membrane VE-Cadherin-composed adherens junctions was prevented by Roflumilast treatment after irradiation, which was correlated with its protective effect of the actin cytoskeleton. Post-irradiation treatment with Roflumilast also protected HPMECs from irradiation-induced late apoptosis, but was without effect on irradiation-induced ICAM-1 overexpression. Overall, our results indicate that the beneficial effects of Roflumilast after irradiation are linked to the strengthening/protection of the endothelial barrier and reduced apoptosis, suggesting that this medicine may be useful for the treatment of endothelial damages after exposure to a high dose of radiation. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

18 pages, 2909 KiB  
Article
Recycling Particleboard by Acid Hydrolysis: Effects on the Physical, Thermal, and Chemical Characteristics of Recycled Wood Particles
by Gustavo E. Rodríguez, Rosilei Garcia and Alain Cloutier
Fibers 2025, 13(7), 90; https://doi.org/10.3390/fib13070090 - 2 Jul 2025
Viewed by 371
Abstract
Acid hydrolysis can be more efficient than water hydrolysis, particularly in breaking down cured adhesives found in waste panels within a shorter reaction time, which could benefit large-scale industrial processes. This study evaluates the effects of various acid hydrolysis conditions on the thermal, [...] Read more.
Acid hydrolysis can be more efficient than water hydrolysis, particularly in breaking down cured adhesives found in waste panels within a shorter reaction time, which could benefit large-scale industrial processes. This study evaluates the effects of various acid hydrolysis conditions on the thermal, physical, and chemical properties of recycled particles intended for particleboard production. Particleboards were recycled using oxalic acid and ammonium chloride at different concentrations and reaction times at 122 °C. The thermal stability of the particles was determined by thermogravimetric analysis. Particle size distribution, particle morphology, nitrogen content, pH and acid/base buffer capacity were analyzed. The effect of the recycled particles on the urea-formaldehyde (UF) curing was assessed using differential scanning calorimetry and the gel time method. The recycled particles exhibited a higher thermal degradation beyond 200 °C, indicating their thermal stability for manufacturing new panels. The acid treatments did not damage the anatomical structure of the particles, preserving the prosenchymatous elements. The nitrogen content of recycled particles decreased by up to 90% when oxalic acid was used, compared to raw board particles. Recycled particles exhibited a lower pH, with a maximum reduction of 44%. They also showed a decreased acid buffer capacity and an increased base buffer capacity compared to raw board particles. This effect was particularly pronounced in treatments that included ammonium chloride. The recycled particles did not significantly affect the peak polymerization temperature of the UF adhesive. However, some treatments affected the gel time of the adhesive, particularly those using 30% ammonium chloride. The results indicate that particleboards can be effectively recycled through acid hydrolysis, mainly with oxalic acid, which provides better results than hydrolysis using water alone. Oxalic acid showed increased selectivity in eliminating the cured UF adhesive, resulting in recycled particles suitable for manufacturing new panels. Full article
Show Figures

Graphical abstract

16 pages, 301 KiB  
Article
Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico
by Raúl Alejandro Atriano Briano, Nallely S. Badillo-Larios, Perla Niño-Moreno, Luis Fernando Pérez-González and Edgar A. Turrubiartes-Martínez
Antibiotics 2025, 14(7), 663; https://doi.org/10.3390/antibiotics14070663 - 30 Jun 2025
Viewed by 459
Abstract
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, [...] Read more.
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, has shown reduced efficacy in Enterococcus spp. strains. However, the relationship between bacterial resistance and virulence factors remains unclear. This study intends to evaluate the prevalence of glycopeptide-resistant genotypes and virulence factors in Enterococcus spp. strains. Methods: Over six months, 159 Enterococcus spp. strains causing nosocomial infections were analyzed. Multiplex PCR was performed to identify species, glycopeptide-resistant genotypes, and 12 virulence factors. Results: The most abundant species identified were Enterococcus faecalis and E. faecium. Vancomycin resistance was observed in 10.7% of the isolates, and the vanA genotype was present in 47% of resistant samples. The main virulence factors detected were acm (54%), which is related to cell adhesion; gel E (66%), a metalloproteinase linked to tissue damage; and the sex pheromones cpd (64%) and ccf (84%), which are involved in horizontal gene transfer. A significant association was found between the prevalence of acm, ccf, and cpd in VRE isolates, indicating the potential dissemination of genes to emerging strains via horizontal gene transfer. In addition, a new E. faecium, which displayed five virulence factors and harbored the vanA sequence type, was identified and registered as ST2700. Conclusions:Enterococcus faecalis and E. faecium are clinically critical due to multidrug resistance and virulence factors like acm, which aids host colonization. Genes ccf and cpd promote resistance spread via horizontal transfer, while the emerging ST2700 strain requires urgent monitoring to curb its virulent, drug-resistant spread. Full article
17 pages, 17488 KiB  
Article
Effect of Diamond-like Carbon Thin-Film Deposition on the Hardness of Pure Titanium Surfaces
by Hideaki Sato, Yutaka Kameyama, Ryota Yoshikawa, Kaito Tabuchi, Chizuko Ogata and Satoshi Komasa
Materials 2025, 18(13), 2992; https://doi.org/10.3390/ma18132992 - 24 Jun 2025
Viewed by 319
Abstract
The purpose of this study was to clarify the physical durability of a diamond-like carbon (DLC) thin film coated on pure titanium. The titanium surface of the abutment does not have sufficient toughness to prevent an increase in surface roughness or damage when [...] Read more.
The purpose of this study was to clarify the physical durability of a diamond-like carbon (DLC) thin film coated on pure titanium. The titanium surface of the abutment does not have sufficient toughness to prevent an increase in surface roughness or damage when the implant is scaled using a professional mechanical implement. The scaling process used for the removal of the dental plaque adhered to the abutment surface could increase the potential for the deposition of oral microorganisms and the accumulation of plaque, which increase the risk of peri-implantitis. A DLC thin film is biocompatible material that is known for its toughness, including extreme hardness, high abrasion resistance, chemical inertness, and high corrosion resistance. Protecting the abutment surface with the application of a DLC might prevent plaque adhesion due to its non-stick property. There was little change in the surface roughness of titanium samples to which DLC surface protection had been applied when the surface of the sample was scratched with a stainless steel scalar more than a thousand times. When cleaning the surface of pure titanium samples, the surface roughness significantly increased. DLC thin films are effective for the prevention the surface roughness of pure titanium implants from being increased when the conventional cleaning of the surface of the implant is performed. Full article
(This article belongs to the Special Issue Materials for Prosthodontics, Implantology, and Digital Dentistry)
Show Figures

Figure 1

Back to TopTop