Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics of Patients and Clinical Isolates
2.2. Antimicrobial Susceptibility
2.3. Virulence Factors
2.4. MLST
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Bacterial Identification and Antimicrobial Susceptibility
4.3. Bacterial DNA Extraction
4.4. Molecular Confirmation of Species and Glycopeptide Resistance Genotype
4.5. Molecular Detection of Virulence Factors
4.6. Multilocus Sequence Typing (MLST)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. N. Am. 2020, 34, 751. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Antimicrobial Resistance Surveillance in Europe, 2022–2020 Data. Available online: https://atlas.ecdc.europa.eu/ (accessed on 14 August 2024).
- Brinkwirth, S.; Ayobami, O.; Eckmanns, T.; Markwart, R. Hospital-acquired infections caused by enterococci: A systematic review and meta-analysis, who european region, 1 January 2010 to 4 February 2020. Eurosurveillance 2021, 26, 2001628. [Google Scholar] [CrossRef] [PubMed]
- García, J.L.A.; Flores, A.M.E.; Barbosa, P.A.; Cortina, J.H.M. Susceptibilidad antimicrobiana de Enterococcus faecalis y faecium en un hospital de tercer nivel. Infectol. Pediátr. 2018, 31, 56–61. [Google Scholar]
- Weaver, K.E. Enterococcal Genetics. 2019. Available online: https://journals.asm.org/journal/spectrum (accessed on 14 August 2024).
- García-Solache, M.; Rice, L.B. The enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Garza-González, E.; Morfín-Otero, R.; Mendoza-Olazarán, S.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Rodríguez-Noriega, E.; Ponce-De-León, A.; Sanchez-Francia, D.; Franco-Cendejas, R.; Arroyo-Escalante, S.; et al. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS ONE 2019, 14, e0209865. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; He, Z.; Wang, Y.; Wang, J.; Jin, D. A molecular study regarding the spread of vanA vancomycin-resistant Enterococcus faecium in a tertiary hospital in China. J. Glob. Antimicrob. Resist. 2022, 31, 270–278. [Google Scholar] [CrossRef]
- O’Toole, R.F.; Leong, K.W.C.; Cumming, V.; Van Hal, S.J. Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Res. Microbiol. 2023, 174, 104046. [Google Scholar] [CrossRef]
- Rios, R.; Reyes, J.; Carvajal, L.P.; Rincon, S.; Panesso, D.; Echeverri, A.M.; Dinh, A.; Kolokotronis, S.-O.; Narechania, A.; Tran, T.T.; et al. Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREfm) in Latin America: Revisiting the Global VRE Population Structure. Sci. Rep. 2020, 10, 5636. [Google Scholar] [CrossRef]
- Sun, L.; Xu, J.; Wang, W.; He, F. Emergence of vanA-Type Vancomycin-Resistant Enterococcus faecium ST 78 Strain with a rep2-Type Plasmid Carrying a Tn1546-Like Element Isolated from a Urinary Tract Infection in China. Infect. Drug Resist. 2020, 13, 949–955. [Google Scholar] [CrossRef]
- Werner, G.; Neumann, B.; Weber, R.E.; Kresken, M.; Wendt, C.; Bender, J.K.; Becker, K.; Borgmann, S.; Diefenbach, A.; Hamprecht, A.; et al. Thirty years of VRE in Germany—“expect the unexpected”: The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist. Updates 2020, 53, 100732. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.; Dhawan, B.; Vishnubhatla, S.; Kapil, A.; Das, B.; Sood, S. Emergence of high-risk multidrug-resistant Enterococcus faecalis CC2 (ST181) and CC87 (ST28) causing healthcare-associated infections in India. Infect. Genet. Evol. 2020, 85, 104519. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kudo, K.; Tsukamoto, N.; Ito, M.; Kobayashi, N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. Faecalis Antibiot. 2023, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.O.; Fedi, A.C.; Reiter, K.C.; Caierão, J.; D’Azevedo, P.A. Correlation between biofilm formation and gelE, esp, and agg genes in Enterococcus spp. clinical isolates. Virulence 2014, 5, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, G.P.M.; Ravikumar, K.L.; Umapathy, B.L. Review of virulence factors of enterococcus: An emerging nosocomial pathogen. Indian J. Med. Microbiol. 2009, 27, 301–305. [Google Scholar] [CrossRef]
- Van Tyne, D.; Gilmore, M.S. Friend Turned Foe: Evolution of Enterococcal Virulence and Antibiotic Resistance. Annu. Rev. Microbiol. 2014, 68, 337. [Google Scholar] [CrossRef]
- Strateva, T.; Atanasova, D.; Savov, E.; Petrova, G.; Mitov, I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Braz. J. Infect. Dis. 2016, 20, 127–133. [Google Scholar] [CrossRef]
- Hirt, H.; Greenwood-Quaintance, K.E.; Karau, M.J.; Till, L.M.; Kashyap, P.C.; Patel, R.; Dunny, G.M. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo. Am. Soc. Microbiol. 2018, 9, e00037-18. [Google Scholar] [CrossRef]
- Shokoohizadeh, L.; Ekrami, A.; Labibzadeh, M.; Ali, L.; Alavi, S.M. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC Res. Notes 2018, 11, 5–9. [Google Scholar] [CrossRef]
- Zou, J.; Tang, Z.; Yan, J.; Liu, H.; Chen, Y.; Zhang, D.; Zhao, J.; Tang, Y.; Zhang, J.; Xia, Y. Dissemination of Linezolid Resistance Through Sex Pheromone Plasmid Transfer in Enterococcus faecalis. Front. Microbiol. 2020, 11, 1185. [Google Scholar] [CrossRef]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Çopur, Ş.S.; Şahın, F.; Göçmen, J.S. Determination of virulence and multidrug resistance genes with polymerase chain reaction method in vancomycin-sensitive and-resistant enterococci isolated from clinical samples. Turk. J. Med. Sci. 2016, 46, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Ghaziasgar, F.S.; Poursina, F.; Hassanzadeh, A. Virulence factors, biofilm formation and antibiotic resistance pattern in Enterococcus faecalis and Enterococcus faecium isolated from clinical and commensal human samples in Isfahan, Iran. Ann. Ig. 2019, 31, 156–164. [Google Scholar]
- Arshadi, M.; Mahmoudi, M.; Motahar, M.S.; Soltani, S.; Pourmand, M.R. Virulence Determinants and Antimicrobial Resistance Patterns of Vancomycin-resistant Enterococcus faecium Isolated from Different Sources in Southwest Iran. Iran. J. Public Health 2018, 47, 264–272. [Google Scholar]
- Guzman Prieto, A.M.; van Schaik, W.; Rogers, M.R.C.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 7, 788. [Google Scholar] [CrossRef]
- Hashem, Y.A.; Amin, H.M.; Essam, T.M.; Yassin, A.S.; Aziz, R.K. Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin. Sci. Rep. 2017, 7, 5733. [Google Scholar] [CrossRef]
- Bocanegra-Ibarias, P.; Flores-Treviño, S.; Camacho-Ortiz, A.; Morfin-Otero, R.; Villarreal-Treviño, L.; Llaca-Díaz, J.; Martínez-Landeros, E.A.; Rodríguez-Noriega, E.; Calzada-Güereca, A.; Maldonado-Garza, H.J.; et al. Phenotypic and genotypic characterization of vancomycin-resistant Enterococcus faecium clinical isolates from two hospitals in Mexico: First detection of VanB phenotype-vanA genotype. Enferm. Infecc. Microbiol. Clin. 2016, 34, 415–421. [Google Scholar] [CrossRef]
- Faron, M.L.; Ledeboer, N.A.; Buchan, B.W. Resistance Mechanisms, Epidemiology, and Approaches to Screening for Vancomycin-Resistant Enterococcus in the Health Care Setting. J. Clin. Microbiol. 2016, 54, 2436. [Google Scholar] [CrossRef]
- Heidari, H.; Hasanpour, S.; Ebrahim-Saraie, H.S.; Motamedifar, M. High Incidence of Virulence Factors Among Clinical Enterococcus faecalis Isolates in Southwestern Iran. Infect. Chemother. 2017, 49, 51–56. [Google Scholar] [CrossRef]
- Jahansepas, A.; Aghazadeh, M.; Rezaee, M.A.; Hasani, A.; Sharifi, Y.; Aghazadeh, T.; Mardaneh, J. Occurrence of Enterococcus faecalis and Enterococcus faecium in Various Clinical Infections: Detection of Their Drug Resistance and Virulence Determinants. Microb. Drug Resist. 2018, 24, 76–82. [Google Scholar] [CrossRef]
- Farsi, S.; Salama, I.; Escalante-Alderete, E.; Cervantes, J. Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know. Microorganisms 2023, 11, 238. [Google Scholar] [CrossRef] [PubMed]
- Pochhammer, J.; Kramer, A.; Orth, M.; Schäffer, M.; Beckmann, J.H. Treatment with Ceftriaxone in Complicated Diverticulitis Increases the Incidence of Intra-Abdominal Enterococcus faecium Detection. Surg. Infect. 2021, 22, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Barros, A.J.; Sifri, C.D. Comparison of risk factors and outcomes of daptomycin-susceptible and -nonsusceptible vancomycin-resistant Enterococcus faecium infections in liver transplant recipients. Transpl. Infect. Dis. 2018, 20, e12856. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Phoon, H.Y.P.; Hussin, H.; Hussain, B.M.; Lim, S.Y.; Woon, J.J.; Er, Y.X.; Thong, K.L. Distribution, genetic diversity and antimicrobial resistance of clinically important bacteria from the environment of a tertiary hospital in Malaysia. J. Glob. Antimicrob. Resist. 2018, 14, 132–140. [Google Scholar] [CrossRef]
- Farman, M.; Yasir, M.; Al-Hindi, R.R.; Farraj, S.A.; Jiman-Fatani, A.A.; Alawi, M.; Azhar, E.I. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob. Resist. Infect. Control 2019, 8, 55. [Google Scholar] [CrossRef]
- Mohanty, S.; Behera, B. Antibiogram Pattern and Virulence Trait Characterization of Enterococcus Species Clinical Isolates in Eastern India: A Recent Analysis. J. Lab. Physicians 2022, 14, 237–246. [Google Scholar] [CrossRef]
- Gutiérrez-Muñoz, J.; Ramírez-Corona, A.; Martínez-Bustamante, M.E.; Coria-Lorenzo, J.J.; Armenta-Gallegos, L.; Ayala-Franco, J.R.; Granillo, S.M.B.; Zaleta, F.J.F.; Pérez, F.E.G.; Rochín, J.A.M.; et al. Estudio multicéntrico de resistencias bacterianas nosocomiales en México. Rev. Latin. Infect. Pediatr. 2017, 30, 68–75. [Google Scholar]
- Panesso, D.; Reyes, J.; Rincón, S.; Díaz, L.; Galloway-Peña, J.; Zurita, J.; Carrillo, C.; Merentes, A.; Guzma, M.; Adachi, J.A.; et al. Molecular epidemiology of vancomycin-resistant Enterococcus faecium: A prospective, multicenter study in South American hospitals. J. Clin. Microbiol. 2010, 48, 1562–1569. [Google Scholar] [CrossRef]
- Rodríguez-Noriega, E.; Hernández-Morfin, N.; Garza-Gonzalez, E.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Esparza-Ahumada, S.; González-Díaz, E.; Pérez-Gómez, H.R.; Mendoza-Mujica, C.; León-Garnica, G.; et al. Risk factors and outcome associated with the acquisition of linezolid-resistant Enterococcus faecalis. J. Glob. Antimicrob. Resist. 2020, 21, 405–409. [Google Scholar] [CrossRef]
- Georges, M.; Odoyo, E.; Matano, D.; Tiria, F.; Kyany’a, C.; Mbwika, D.; Mutai, W.C.; Musila, L. Determination of Enterococcus faecalis and Enterococcus faecium Antimicrobial Resistance and Virulence Factors and Their Association with Clinical and Demographic Factors in Kenya. J. Pathog. 2022, 2022, 3129439. [Google Scholar] [CrossRef] [PubMed]
- Jahansepas, A.; Ahangarzadeh Rezaee, M.; Hasani, A.; Sharifi, Y.; Rahnamaye Farzami, M.; Dolatyar, A.; Aghazadeh, M. Molecular Epidemiology of Vancomycin–Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens in the Northwest of Iran. Microb. Drug Resist. 2018, 24, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health & Human Services. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health & Human Services: Atlanta, GA, USA, 2019. Available online: https://stacks.cdc.gov/view/cdc/82532 (accessed on 14 August 2024).
- Peng, Z.; Yan, L.; Yang, S.; Yang, D. Antimicrobial-Resistant Evolution and Global Spread of Enterococcus faecium Clonal Complex (CC) 17: Progressive Change from Gut Colonization to Hospital-Adapted Pathogen. China CDC Wkly. 2022, 4, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Pang, S.; Abraham, S.; Coombs, G.W. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. J. Glob. Antimicrob. Resist. 2019, 16, 36–47. [Google Scholar] [CrossRef]
- Valenza, G.; Eisenberger, D.; Voigtländer, S.; Alsalameh, R.; Gerlach, R.; Koch, S.; Kunz, B.; Held, J.; Bogdan, C. Emergence of novel ST1299 vanA lineages as possible cause for the striking rise of vancomycin resistance among invasive strains of Enterococcus faecium at a German university hospital. Microbiol. Spectr. 2023, 11, e0296223. [Google Scholar] [CrossRef]
- Yang, J.-X.; Li, T.; Ning, Y.-Z.; Shao, D.-H.; Liu, J.; Wang, S.-Q.; Liang, G.-W. Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China. Infect. Genet. Evol. 2015, 33, 253–260. [Google Scholar] [CrossRef]
- Simner, P.J.; Adam, H.; Baxter, M.; McCracken, M.; Golding, G.; Karlowsky, J.A.; Nichol, K.; Lagacé-Wiens, P.; Gilmour, M.W.; Canadian Antimicrobial Resistance Alliance (CARA); et al. Epidemiology of vancomycin-resistant enterococci in Canadian hospitals (CANWARD study, 2007 to 2013). Antimicrob. Agents Chemother. 2015, 59, 4315–4317. [Google Scholar] [CrossRef]
- Britt, N.S.; Potter, E.M. Clinical epidemiology of vancomycin-resistant Enterococcus gallinarum and Enterococcus casseliflavus bloodstream infections. J. Glob. Antimicrob. Resist. 2016, 5, 57. [Google Scholar] [CrossRef]
- Coccitto, S.N.; Cinthi, M.; Fioriti, S.; Morroni, G.; Simoni, S.; Vignaroli, C.; Garofalo, C.; Mingoia, M.; Brenciani, A.; Giovanetti, E.; et al. Linezolid-resistant Enterococcus gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes. J. Antimicrob. Chemother. 2022, 77, 331–337. [Google Scholar] [CrossRef]
- Batistão, D.W.d.F.; Gontijo-Filho, P.P.; Conceição, N.; de Oliveira, A.G.; Ribas, R.M. Risk factors for vancomycin-resistant enterococci colonisation in critically ill patients. Mem. Inst. Oswaldo Cruz 2012, 107, 57–63. [Google Scholar] [CrossRef]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di, S. Clinical management of non- faecium non- faecalis vancomycin- resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt De Marques, E.B.; Suzart, S. Occurrence of virulence-associated genes in clinical Enterococcus faecalis strains isolated in Londrina, Brazil. J. Med. Microbiol. 2004, 53 Pt 11, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Comerlato, C.B.; de Resende, M.C.C.; Caierão, J.; d’Azevedo, P.A. Presence of virulence factors in Enterococcus faecalis and Enterococcus faecium susceptible and resistant to vancomycin. Mem. Inst. Oswaldo Cruz 2013, 108, 590. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.P.; Dey, S.; Sen, A.; Adhikari, L. Molecular Characterization of Virulence Genes in Vancomycin-Resistant and Vancomycin-Sensitive Enterococci. J. Glob. Infect. Dis. 2016, 8, 16. [Google Scholar] [CrossRef]
- Karimi, A.; Ghalavand, Z.; Fallah, F.; Eslami, P.; Parvin, M.; Alebouyeh, M.; Rashidan, M. Prevalence of virulence determinants and antibiotic resistance patterns of Enterococcus faecalis strains in patients with community-acquired urinary tract infections in Iran. Int. J. Environ. Health Res. 2018, 28, 599–608. [Google Scholar] [CrossRef]
- Doss Susai backiam, A.; Duraisamy, S.; Karuppaiya, P.; Balakrishnan, S.; Chandrasekaran, B.; Kumarasamy, A.; Raju, A. Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics 2023, 12, 981. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation of Enterococcus Species from Ready-to-Eat Seafood. Front. Microbiol. 2019, 10, 728. [Google Scholar] [CrossRef]
- Sharifi, Y.; Hasani, A.; Ghotaslou, R.; Varshochi, M.; Hasani, A.; Aghazadeh, M.; Milani, M. Survey of Virulence Determinants among Vancomycin Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens of Hospitalized Patients of North west of Iran. Open Microbiol. J. 2012, 6, 34–39. [Google Scholar] [CrossRef]
- Shahraki, S.; Mousavi, M.R.N. Determination of virulence factors in clinical multidrug resistance enterococci isolates at Southeast of Iran. Jundishapur J. Microbiol. 2017, 10, e45514. [Google Scholar] [CrossRef]
- Banerjee, T.; Anupurba, S. Prevalence of Virulence Factors and Drug Resistance in Clinical Isolates of Enterococci: A Study from North India. J. Pathog. 2015, 2015, 692612. [Google Scholar] [CrossRef]
- Sinel, C.; Cacaci, M.; Meignen, P.; Guérin, F.; Davies, B.W.; Sanguinetti, M.; Giard, J.C.; Cattoir, V. Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium. Antimicrob. Agents Chemother. 2017, 61, e02763-16. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, C.; Tavares, L.; Gil, S.; Oliveira, M. Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics 2022, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, X.; Fu, X.; Yang, P.; Lin, X.; Wang, F.; Shen, Z.; Wang, J.; Sun, F.; Qiu, Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front. Microbiol. 2024, 15, 1408701. [Google Scholar] [CrossRef]
- Eaton, T.J.; Gasson, M.J. Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical Isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef]
- Enayati, M.; Sadeghi, J.; Nahaei, M.R.; Aghazadeh, M.; Pourshafie, M.R.; Talebi, M. Virulence and antimicrobial resistance of Enterococcus faecium isolated from water samples. Lett. Appl. Microbiol. 2015, 61, 339–345. [Google Scholar] [CrossRef]
- Homan, W.L.; Tribe, D.; Poznanski, S.; Li, M.; Hogg, G.; Spalburg, E.; Van Embden, J.D.; Willems, R.J. Multilocus sequence typing scheme for Enterococcus faecium. J. Clin. Microbiol. 2002, 40, 1963–1971. [Google Scholar] [CrossRef]
Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Demographic Data | E. faecalis 119 (74.8%) | E. faecium 22 (13.8%) | E. gallinarum 6 (3.8%) | E. casseliflavus 3 (1.9%) | Others 9 (5.7%) | Total 159 (100%) | ||||||
Sex | ||||||||||||
Female | 62 | (52.1) | 9 | (40.9) | 1 | (16.7) | 1 | (33.3) | 6 | (66.7) | 79 | (49.7) |
Male | 57 | (47.9) | 13 | (59.1) | 5 | (83.3) | 2 | (66.7) | 3 | (33.3) | 80 | (50.3) |
Age range | ||||||||||||
Newly born | 12 | (10.1) | 3 | (13.6) | 0 | (0.0) | 0 | (0.0) | 1 | (11.1) | 16 | (10.1) |
Infants | 9 | (7.6) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 9 | (5.7) |
Children | 0 | (0.0) | 1 | (4.5) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 1 | (0.6) |
Adolescents | 4 | (3.4) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 4 | (2.5) |
Young adult | 7 | (5.9) | 2 | (9.1) | 1 | (16.7) | 2 | (66.7) | 0 | (0.0) | 12 | (7.5) |
Adult | 59 | (49.6) | 14 | (63.6) | 4 | (66.7) | 1 | (33.3) | 6 | (66.7) | 84 | (52.8) |
Seniors | 28 | (23.5) | 2 | (9.1) | 1 | (16.7) | 0 | (0.0) | 2 | (22.2) | 33 | (20.8) |
Ward | ||||||||||||
Surgery | 37 | (31.1) | 11 | (50.0) * | 0 | (0.0) | 0 | (0.0) | 1 | (11.1) | 49 | (30.8) |
Urgency | 21 | (17.6) | 3 | (13.6) | 1 | (16.7) | 1 | (33.3) | 4 | (44.4) | 30 | (18.9) |
Medicine | 15 | (12.6) | 2 | (9.1) | 0 | (0.0) | 0 | (0.0) | 1 | (11.1) | 18 | (11.3) |
External | 16 | (13.4) | 0 | (0.0) | 1 | (16.7) | 0 | (0.0) | 1 | (11.1) | 18 | (11.3) |
Orthopedics | 10 | (8.4) | 2 | (9.1) | 1 | (16.7) | 1 | (33.3) | 0 | (0.0) | 14 | (8.8) |
Gynecology | 6 | (5.0) | 1 | (4.5) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 7 | (4.4) |
Infant | 6 | (5.0) | 1 | (4.5) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 7 | (4.4) |
Burned | 2 | (1.7) | 1 | (4.5) | 0 | (0.0) | 1 | (33.3) | 0 | (0.0) | 4 | (2.5) |
ICU | 6 | (5.0) | 1 | (4.5) | 3 | (50.0) | 0 | (0.0) | 2 | (22.2) | 12 | (7.5) |
Specimen | ||||||||||||
Body fluids | 63 | (52.9) | 14 | (63.6) | 1 | (16.7) | 3 | (100.0) | 7 | (77.8) | 88 | (55.3) |
Urine | 38 | (31.9) | 5 | (22.7) | 1 | (16.7) | 0 | (0.0) | 0 | (0.0) | 44 | (27.7) |
Biopsy | 13 | (10.9) | 0 | (0.0) | 1 | (16.7) | 0 | (0.0) | 2 | (22.2) | 16 | (10.1) |
Blood | 3 | (2.5) | 2 | (9.1) | 1 | (16.7) | 0 | (0.0) | 0 | (0.0) | 6 | (3.8) |
Catheter | 1 | (0.8) | 1 | (4.5) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 2 | (1.3) |
Others | 1 | (0.8) | 0 | (0.0) | 2 | (33.3) | 0 | (0.0) | 0 | (0.0) | 3 | (1.9) |
E. faecalis 119 (74.8%) | E. faecium a 22 (13.8%) | E. gallinarum 6 (3.8%) | E. casseliflavus 3 (1.9%) | Others 9 (5.7%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic / Interpretive Criteria | Total 159 (%) | S | I | R | S | I | R | S | I | R | S | I | R | S | I | R |
VAN | 17 (10.7) | 118 (99.2) | 0 (0) | 1 (0.8) | 15 (68.2) | 0 (0) | 7 (31.8) * | 0 (0) | 0 (0) | 6 (100) | 0 (0) | 0 (0) | 3 (100) | 9 (100) | 0 (0) | 0 (0) |
AMP | 22 (13.8) | 112 (94.1) | 0 (0) | 7 (5.9) | 7 (31.8) | 0 (0) | 15 (68.2) * | 6 (100) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
PG | 34 (21.4) | 101 (84.9) | 0 (0) | 18 (15.1) | 9 (40.9) | 0 (0) | 13 (59.1) * | 6 (100) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 6 (66.7) | 0 (0) | 3 (33.3) |
CIP | 56 (35.2) | 78 (65.6) | 1 (0.8) | 40 (33.6) | 4 (18.2) | 3 (13.6) | 15 (68.2) * | 4 (66.6) | 1 (16.7) | 1 (16.7) | 3 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
LVX | 55 (34.6) | 79 (66.4) | 0 (0) | 40 (33.6) | 6 (27.3) | 2 (9.1) | 14 (63.6) * | 5 (83.3) | 0 (0) | 1 (16.7) | 3 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
HLS | 23 (14.5) | 103 (86.5) | 0 (0) | 13 (11.0) | 15 (68.2) | 0 (0) | 7 (31.8) * | 4 (66.7) | 0 (0) | 2 (33.3) | 2 (66.6) | 0 (0) | 1 (33.3) | 9 (100) | 0 (0) | 0 (0) |
HLG | 58 (36.5) | 74 (62.2) | 0 (0) | 45 (37.8) | 12 (54.5) | 0 (0) | 10 (45.5) | 5 (66.7) | 0 (0) | 3 (33.3) | 3 (100) | 0 (0) | 0 (0) | 8 (88.9) | 0 (0) | 1 (1.1) |
ERY | 91 (57.2) | 13 (10.9) | 40 (33.6) | 66 (55.4) * | 1 (4.5) | 1 (4.5) | 20 (90.9) | 6 (66.7) | 0 (0) | 4 (33.3) | 0 (0) | 3 (100) | 0 (0) | 6 (66.7) | 0 (0) | 3 (33.3) |
TC | 119 (74.8) | 25 (21) | 0 (0) | 94 (79) | 6 (27.3) | 2 (9.1) | 14 (63.6) | 1 (16.7) | 0 (0) | 5 (83.3) | 2 (66.6) | 0 (0) | 1 (33.3) | 4 (44.4) | 0 (0) | 5 (55.6) |
LNZ | 4 (2.5) | 115 (96.6) | 1 (0.8) | 3 (2.6) | 22 (100) | 0 (0) | 0 (0) | 5 (83.3) | 0 (0) | 1 (16.7) | 3 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
Qui/Dal | 108 (67.9) | 2 (1.6) | 0 (0) | 117 (98.4) | 22 (100) | 0 (0) | 0 (0) | 1 (16.7) | 0 (0) | 5 (83.3) | 0 (0) | 0 (0) | 3 (100) | 9 (100) | 0 (0) | 0 (0) |
TGC | 0 (0.0) | 119 (100) | 0 (0) | 0 (0) | 22 (100) | 0 (0) | 0 (0) | 6 (100) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
Vancomycin-Resistant Enterococci Phenotype | Genotypes | |||||
---|---|---|---|---|---|---|
Species | MIC VAN (µg/mL) | ddl | vanA | vanB | vanC1 | vanC2/C3 |
E. faecalis | 32 | + | + | − | − | − |
E. casseliflavus (n = 3) | 4 | + | − | − | − | + |
E. gallinarum (n = 5) | 4 | + | − | − | + | − |
E. gallinarum (n = 1) | ≥32 | + | − | − | + | − |
E. faecium (n = 6) | ≥32 | + | + | − | − | − |
E. faecium (n = 1) | 32 | + | + | − | − | − |
acm | asa | esp | cylA | gel E | agg | cylM | cylB | ccf | cpd | cob | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Specimen (n) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | |
Body fluids | 88 | 23 | (26.1) | 44 | (50.0) | 35 | (39.8) | 9 | (10.2) | 55 | (62.5) | 4 | (4.5) | 8 | (9.1) | 8 | (9.1) | 72 | (81.8) | 51 | (58.0) | 12 | (13.6) |
Urine | 44 | 7 | (15.9) | 24 | (54.5) | 19 | (43.2) | 8 | (18.2) | 33 | (75.0) | 1 | (2.3) | 4 | (9.1) | 4 | (9.1) | 40 | (90.9) | 35 | (79.5) | 8 | (18.2) |
Biopsy | 16 | 2 | (12.5) | 12 | (75.0) | 6 | (37.5) | 2 | (12.5) | 9 | (56.3) | 1 | (6.3) | 2 | (12.5) | 1 | (6.3) | 15 | (93.8) | 12 | (75.0) | 3 | (18.8) |
Blood | 6 | 2 | (33.3) | 4 | (66.7) | 1 | (16.7) | 0 | (0.0) | 5 | (83.3) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 4 | (66.7) | 3 | (50.0) | 1 | (16.7) |
Catheter | 2 | 1 | (50.0) | 1 | (50.0) | 0 | (0.0) | 0 | (0.0) | 1 | (50.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 1 | (50.0) | 1 | (50.0) | 0 | (0.0) |
Other | 3 | 1 | (33.3) | 1 | (33.3) | 1 | (33.3) | 0 | (0.0) | 2 | (66.7) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 3 | (100.0) | 1 | (33.3) | 0 | (0.0) |
TOTAL | 159 | 36 | (22.6) | 86 | (54.1) | 62 | (39.0) | 19 | (11.9) | 105 | (66.0) | 6 | (3.8) | 14 | (8.8) | 13 | (8.2) | 135 | (84.9) | 103 | (64.8) | 24 | (15.1) |
acm | asa | esp | cylA | gel E | agg | cylB | cylM | ccf | cob | cpd | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | n | (%) | |
159 | 36 | (22.6) | 86 | (54.1) | 62 | (39.0) | 19 | (11.9) | 105 | (66.0) | 6 | (3.8) | 14 | (8.8) | 13 | (8.2) | 135 | (84.9) | 24 | (15.1) | 103 | (64.8) | |
E. faecalis | 119 | 7 | (5.9) a | 70 | (58.8) a | 50 | (42.0) | 6 | (5.0) | 87 | (73.1) a | 19 | (16.0) | 14 | (11.8) | 13 | (10.9) | 108 | (90.8) a | 21 | (17.6) | 94 | (79.0) a |
E. faecium | 22 | 20 | (90.9) a | 4 | (18.2) a | 8 | (36.4) | 0 | (0.0) | 5 | (22.7) a | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 15 | (68.2) a | 2 | (9.1) | 4 | (18.2) a |
E. gallinarum | 6 | 2 | (33.3) | 3 | (50.0) | 2 | (33.3) | 0 | (0.0) | 4 | (66.7) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 3 | (50.0) | 1 | (16.7) | 2 | (33.3) |
E. casseliflavus | 3 | 2 | (66.7) | 2 | (66.7) | 1 | (33.3) | 0 | (0.0) | 2 | (66.7) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 2 | (66.7) | 0 | (0.0) | 1 | (33.3) |
Others | 9 | 5 | (55.6) | 7 | (77.8) | 1 | (11.1) | 0 | (0.0) | 7 | (77.8) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 7 | (77.8) | 0 | (0.0) | 2 | (22.2) |
Virulence Factors | MDR | No-MDR | Total | OR | CI 95% | p | |||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||||
85 | (53.5%) | 74 | (46.5%) | 159 | (100%) | ||||
Adhesion | 70 | (82.3) | 52 | (70.2) | 122 | (76.7) | 0.07 | ||
acm | 27 | (31.8) | 9 | (12.2) | 36 | (22.6) | 3.3 | 1.4–7.7 | 0.00 * |
Secretion | 48 | (56.4) | 59 | (79.7) | 107 | (67.3) | 0.3 | 0.1–0.6 | 0.00 * |
gel E | 47 | (55.3) | 58 | (78.4) | 105 | (66.0) | 0.34 | 0.16–0.68 | 0.00 * |
Aggregation | 70 | (82.3) | 67 | (90.5) | 137 | (86.1) | 0.13 | ||
Virulence factors | VRE | VSE | Total | OR | CI 95% | p | |||
n | % | n | % | n | % | ||||
17 | (10.3%) | 142 | (89.7%) | 159 | (100%) | ||||
Adhesion | 15 | (88.2) | 107 | (75.3) | 122 | (76.7) | 0.36 | ||
acm | 11 | (64.7) | 25 | (17.6) | 36 | (22.6) | 8.5 | 2.9–25.3 | 0.00 * |
Secretion | 8 | (47.0) | 99 | (69.7) | 107 | (67.3) | 0.09 | ||
Sex pheromone | 11 | (64.7) | 126 | (88.7) | 137 | (86.1) | 0.23 | 0.08–0.7 | 0.01 * |
ccf | 10 | (58.8) | 125 | (88.0) | 135 | (84.9) | 0.19 | 0.06–0.58 | 0.00 * |
cpd | 4 | (23.5) | 99 | (69.7) | 103 | (64.7) | 0.13 | 0.04–0.43 | 0.00 * |
Virulence Factors | vanA | No-vanA | Total | OR | CI 95% | p | |||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||||
8 | (5.1%) | 151 | (94.9%) | 159 | (100%) | ||||
Adhesion | 8 | (100) | 114 | (75.5) | 122 | (76.7) | 0.2 | ||
acm | 7 | (87.5) | 29 | (19.2) | 36 | (22.6) | 29.4 | 3.5–248.9 | 0.00 * |
Secretion | 2 | (25.0) | 105 | (69.5) | 107 | (67.3) | 0.14 | 0.02–0.75 | 0.01 * |
gel E | 2 | (25.0) | 103 | (68.2) | 105 | (66.0) | 0.15 | 0.03–0.79 | 0.02 * |
Sex pheromone | 5 | (62.5) | 132 | (87.4) | 137 | (86.1) | 0.08 | ||
cpd | 1 | (12.5) | 102 | (67.5) | 103 | (64.7) | 0.06 | 0.00–0.57 | 0.00 * |
Virulence factors | vanC | No-vanC | Total | OR | CI 95% | p | |||
n | % | n | % | n | % | ||||
9 | (38.4%) | 150 | (61.6%) | 159 | (100%) | ||||
Adhesion | 7 | (77.7) | 115 | (76.6) | 122 | (76.7) | 1 | ||
Secretion | 6 | (66.6) | 101 | (67.3) | 107 | (67.3) | 0.28 | ||
Sex pheromone | 6 | (66.6) | 131 | (87.3) | 137 | (86.1) | 0.23 | ||
ccf | 5 | (55.5) | 130 | (90.0) | 130 | (86.6) | 0.19 | 0.04–0.77 | 0.03 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atriano Briano, R.A.; Badillo-Larios, N.S.; Niño-Moreno, P.; Pérez-González, L.F.; Turrubiartes-Martínez, E.A. Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico. Antibiotics 2025, 14, 663. https://doi.org/10.3390/antibiotics14070663
Atriano Briano RA, Badillo-Larios NS, Niño-Moreno P, Pérez-González LF, Turrubiartes-Martínez EA. Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico. Antibiotics. 2025; 14(7):663. https://doi.org/10.3390/antibiotics14070663
Chicago/Turabian StyleAtriano Briano, Raúl Alejandro, Nallely S. Badillo-Larios, Perla Niño-Moreno, Luis Fernando Pérez-González, and Edgar A. Turrubiartes-Martínez. 2025. "Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico" Antibiotics 14, no. 7: 663. https://doi.org/10.3390/antibiotics14070663
APA StyleAtriano Briano, R. A., Badillo-Larios, N. S., Niño-Moreno, P., Pérez-González, L. F., & Turrubiartes-Martínez, E. A. (2025). Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico. Antibiotics, 14(7), 663. https://doi.org/10.3390/antibiotics14070663