Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,605)

Search Parameters:
Keywords = adhesive bonding strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2138 KiB  
Article
Comparison Between Bond Strengths of a Resin Cement on Traditional Prosthetic Substrates and a 3D-Printed Resin for Permanent Restorations
by Alessandro Vichi, Hanan Al-Johani, Dario Balestra and Chris Louca
Coatings 2025, 15(8), 896; https://doi.org/10.3390/coatings15080896 (registering DOI) - 1 Aug 2025
Viewed by 293
Abstract
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, [...] Read more.
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, VM), a polymer-infiltrated ceramic network (VITA Enamic, VE), a nanohybrid resin composite (Grandio Bloc, GB), and one 3D-printed resin (Crown Permanent, CP). VM and VE were etched and silanized, GB was sandblasted, and CP was glass bead blasted; for one further experimental group, this was followed by sandblasting (CPs). A resin cement (RelyX Unicem) was then used for bonding, and then a notched shear bond strength test (nSBS) was performed. Failure modes were observed and classified as adhesive, cohesive, or mixed, and SEM representative images were taken. Data were statistically analyzed with one-way ANOVA, Tukey, and Chi-square tests. Significant differences were detected in nSBS among materials (p < 0.001). The highest nSBS was found in VM (30.3 ± 1.8 MPa) a, followed by CPb, GBbc, CPbc, and VEc. Failure modes were significantly different (p < 0.001), and with different prevalent failure modes. The bond strength for 3D-printed permanent resin materials was shown to be lower than that of the felspathic ceramic but comparable to that of the resin block and PICN substrates. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Figure 1

18 pages, 1290 KiB  
Article
The Impact of Substituting Chalk with Fly Ash in Formulating a Two-Component Polyurethane Adhesive on Its Physicochemical and Mechanical Properties
by Edyta Pęczek, Renata Pamuła, Żaneta Ciastowicz, Paweł Telega, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(15), 3591; https://doi.org/10.3390/ma18153591 - 30 Jul 2025
Viewed by 317
Abstract
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a [...] Read more.
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a chalk-to-fly ash ratio as a filler. The study evaluated rheological, mechanical, thermal, and environmental parameters. Mechanical tests confirmed cohesive failure within the bonded material, indicating that the bond strength at the adhesive–substrate interface exceeded the internal strength of the substrate. The highest contaminant elution levels recorded were 0.62 mg/kg for molybdenum and 0.20 mg/kg for selenium, which represent only 6.2% and 40% of the regulatory limits, respectively. Dissolved organic carbon (DOC) and total dissolved solids (TDS) did not exceed 340 mg/kg and 4260 mg/kg, respectively. GC-MS analysis did not reveal the presence of prominent volatile organic compound emissions. Initial screening suggests possible compatibility with low-emission certification schemes (e.g., A+, AgBB, EMICODE®), though confirmation requires further quantitative testing. The results demonstrate that fly ash can be an effective substitute for chalk in polyurethane adhesives, ensuring environmental compliance and maintaining functional performance while supporting the principles of the circular economy. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 387
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

20 pages, 9479 KiB  
Article
Clinch-Bonding Process for Ultra-High-Strength Steel and A5052 Aluminum Alloy Sheets
by Yohei Abe, Yu Tatara, Takahiro Hosokawa and Ryoto Yamauchi
Materials 2025, 18(15), 3556; https://doi.org/10.3390/ma18153556 - 29 Jul 2025
Viewed by 165
Abstract
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of [...] Read more.
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of an adhesive on the amounts of the interlock and the minimum thickness in the upper sheet was not large, whereas the effect of the sheet combination was observed. Subsequently, for joining the upper 980 MPa ultra-high-strength steel and lower aluminum alloy sheets in the clinch-bonding process, the effects of the die shape, punch velocity, and sheet holding force on the joinability were investigated. As a result, defect-free conditions were narrowly constrained. Finally, a method that involved controlling material flow using an adhesive with fine particles to increase friction between the sheets was introduced. The upper 980 MPa steel and lower aluminum alloy sheets were successfully joined using this approach. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

16 pages, 2558 KiB  
Article
Bonding Orthodontic Attachments to 3D-Printed Photosensitive Definitive Resin: An In Vitro Study
by Omaika Victoria Criollo-Barrios, Carlos Roberto Luna-Domínguez, Carlos Alberto Luna-Lara, Ricardo de Jesus Figueroa-López, Ronaldo Câmara Cozza and Jorge Humberto Luna-Domínguez
Dent. J. 2025, 13(8), 341; https://doi.org/10.3390/dj13080341 - 24 Jul 2025
Viewed by 252
Abstract
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This [...] Read more.
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This study aimed to characterize a 3D-printed definitive resin, evaluate the effects of surface treatments on its surface topography, and compare the shear bond strength (SBS) of the bonded attachments using different adhesive systems, both before and after thermocycling. Methods: A total of 120 rectangular specimens were fabricated from a 3D printed dental resin (Crowntec®, SAREMCO Dental AG—Mexico City, Mexico). For physicochemical characterization, six samples underwent scanning electron microscopy/energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. To evaluate surface topography, 42 polished specimens were assigned to three groups: untreated (control), etched with 4% hydrofluoric acid (HFA), or sandblasted with 50 µm Al2O3 (AA). Each group was subdivided for SEM observation and surface roughness (Ra) measurement. For SBS testing, 72 additional samples received the same surface treatments and were further subdivided according to the adhesive system: Transbond™ XT Primer (TXT) or Single Bond Universal (SBU). Results: The AA group showed the highest Ra (2.21 ± 0.30 µm), followed by HFA (0.81 ± 0.20 µm) and control (0.07 ± 0.30 µm) (p < 0.001). The highest SBS was observed in the AA + SBU group, followed by AA + TXT. Conclusions: Sandblasting with Al2O3 particles, combined with a universal adhesive, significantly improved bond strength, suggesting a viable protocol for 3D printed definitive composites in aligner attachment applications. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

17 pages, 8715 KiB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 - 24 Jul 2025
Viewed by 305
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

18 pages, 2695 KiB  
Article
Environmentally Sustainable Functionalized WS2 Nanoparticles as Curing Promoters and Interface Modifiers in Epoxy Nanocomposites
by Lyazzat Tastanova, Amirbek Bekeshev, Sultan Nurlybay, Andrey Shcherbakov and Anton Mostovoy
Nanomaterials 2025, 15(15), 1145; https://doi.org/10.3390/nano15151145 - 24 Jul 2025
Viewed by 366
Abstract
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to [...] Read more.
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to producing more efficient nanofillers. Functionalization, as confirmed by FTIR, EDS, and XRD analyses, led to elevated surface polarity and greater chemical affinity between WS2 and the epoxy matrix, thereby promoting uniform nanoparticle dispersion. The strengthened interfacial bonding resulted in a notable decrease in the curing onset temperature—from 51 °C (for pristine WS2) to 43 °C—accompanied by an increase in polymerization enthalpy from 566 J/g to 639 J/g, which reflects more extensive crosslinking. The SEM examination of fracture surfaces revealed tortuous crack paths and localized plastic deformation zones, indicating superior fracture resistance. Mechanical testing showed marked improvements in flexural and tensile strength, modulus, and impact toughness at the optimal WS2 loading of 0.5 phr and a 7.5 wt% aminoacetic acid concentration. The surface-modified WS2 nanoparticles, which perform dual functions, not only reinforce interfacial adhesion and structural uniformity but also accelerate the curing process through chemical interaction with epoxy groups. These findings support the development of high-performance, environmentally sustainable epoxy nanocomposites utilizing amino acid-modified 2D nanofillers. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

15 pages, 1307 KiB  
Article
Shear Bond Strength and Finite Element Stress Analysis of Composite Repair Using Various Adhesive Strategies With and Without Silane Application
by Elif Ercan Devrimci, Hande Kemaloglu, Cem Peskersoy, Tijen Pamir and Murat Turkun
Appl. Sci. 2025, 15(15), 8159; https://doi.org/10.3390/app15158159 - 22 Jul 2025
Viewed by 220
Abstract
This study evaluated the effect of various adhesive systems, particularly silane application, on the repair bond strength of a nanofill resin composite and associated stress distribution using finite element analysis (FEA). A total of 105 composite specimens (4 × 6 mm) were aged [...] Read more.
This study evaluated the effect of various adhesive systems, particularly silane application, on the repair bond strength of a nanofill resin composite and associated stress distribution using finite element analysis (FEA). A total of 105 composite specimens (4 × 6 mm) were aged by thermal cycling (10,000 cycles), roughened, etched with phosphoric acid, and assigned to seven groups (n = 15): G1. control—no adhesive; G2. Single Bond Universal Adhesive; G3. composite primer; G4. PQ1; G5. Silane + PQ1; G6. Clearfil Universal Bond; G7. All-Bond Universal. Shear bond strength was measured using a universal testing machine (1 mm/min), and failure modes were microscopically classified. FEA was conducted under static and fatigue conditions using 3D models built in Fusion-360. Mechanical properties were obtained from technical data and the literature. A 300 N load was applied and contact detection (0.05 mm) and constraint zones were defined. Statistical analysis was performed using one-way ANOVA and Tukey’s HSD (p = 0.05). Pearson’s correlation was used to assess the relationship between bond strength and von Mises stress. The highest bond strength was found in G2 (21.54 MPa) while G1 showed the lowest (8.86 MPa). Silane-treated groups exhibited favorable stress distribution and a strong correlation between experimental and simulated outcomes. Silane applications significantly enhance composite repair performance. Full article
(This article belongs to the Special Issue Dental Materials: Latest Advances and Prospects, Third Edition)
Show Figures

Figure 1

24 pages, 5801 KiB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 264
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

19 pages, 4325 KiB  
Article
The Impact of Nanoparticle Coatings on the Color of Teeth Restored Using Dental Adhesives Augmented with Magnetic Nanoparticles
by Carina Sonia Neagu, Andreea Codruta Novac, Cristian Zaharia, Meda-Lavinia Negrutiu, Izabell Craciunescu, Vlad Mircea Socoliuc, Catalin Nicolae Marin, Ionela-Amalia Bradu, Luminita Maria Nica, Marius Stef, Virgil-Florin Duma, Mihai Romînu and Cosmin Sinescu
Medicina 2025, 61(7), 1289; https://doi.org/10.3390/medicina61071289 - 17 Jul 2025
Viewed by 372
Abstract
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the [...] Read more.
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the penetration of the adhesive into dentinal tubules. However, the restoration’s color has been found to be affected by the MNPs. This study tests the hypothesis that MNP coating can alleviate the esthetic impact of magnetic dental adhesives. Materials and Methods: We synthesized Fe3O4 MNPs with silica coating (MNPs-SiO2), calcium-based coating (MNPs-Ca), and no coating. Their morphology was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Their chemical composition was assessed by energy-dispersive X-ray spectroscopy (EDX), and magnetic properties were measured using a vibrating sample magnetometer. FTIR spectroscopy was used to evaluate the polymerization of the MNP-laden adhesive. We prepared cavities in molar phantoms divided in four groups (n = 15 each) restored using the same adhesive with different MNP contents: Group 0 (G0)—no MNPs, G1—MNPs-SiO2, G2—MNPs-Ca, and G3—uncoated MNPs. The restoration’s color was quantified in the CIELAB color space using a dental spectrophotometer. Results: MNPs-SiO2 were globular, whereas MNPs-Ca had a cubic morphology. The SiO2 layer was 73.1 nm ± 9.9 nm thick; the Ca(OH)2 layer was 19.97 nm ± 2.27 nm thick. The saturation magnetization was 18.6 emu/g for MNPs-SiO2, 1.0 emu/g for MNPs-Ca, and 65.7 emu/g for uncoated MNPs. MNPs had a marginal effect on the adhesive’s photopolymerization. The mean color difference between G0 and G2 was close to the 50:50% acceptability threshold, whereas the other groups were far apart from G0. The mean whiteness index of G2 did not differ significantly from that of G0; G1 deviated marginally from G0, whereas G3 differed significantly from G0. Conclusions: These results suggest that MNP coating can mitigate the influence of MNP-laden dental adhesives on the color of restorations. Full article
(This article belongs to the Collection New Concepts for Dental Treatments and Evaluations)
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 234
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

13 pages, 4323 KiB  
Article
The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials
by Omar Alageel, Najm Alfrisany, Abdullah Alshamrani and Omar Alsadon
J. Funct. Biomater. 2025, 16(7), 257; https://doi.org/10.3390/jfb16070257 - 11 Jul 2025
Viewed by 638
Abstract
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM [...] Read more.
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM milling from prefabricated discs (Ti-ML and Zr-ML), and 3D printing via SLM (Ti-3D) and DLP/LCM systems (Zr-3D). The specimens were bonded with dental cement to form four test groups: Zr-ML/Ti-ML, Zr-ML/Ti-3D, Zr-3D/Ti-ML, and Zr-3D/Ti-3D. Half of the specimens in each group underwent thermocycling to assess the effect of aging on bond strength. The density, microhardness, and surface morphology were evaluated, along with the shear bond strength and failure modes of the resin composites. Statistical differences were analyzed using one-way ANOVA and Tukey’s HSD test across all groups. The 3D-printed specimens of both materials exhibited higher microhardness and lower surface roughness than the milled specimens. The shear bond strength (SBS) was the highest in the Ti-ML/Zr-ML combination group before and after thermocycling, which had more cohesive failures, whereas the lowest bond strength was observed in the Ti-3D/Zr-ML group. The adhesion between titanium and zirconia-based materials was the strongest when both were fabricated using subtractive methods, followed by additive and mixed-method combinations. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

32 pages, 11521 KiB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Viewed by 414
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

20 pages, 5375 KiB  
Article
Quality of Plywood Bonded with Nanolignin-Enriched Cardanol-Formaldehyde Adhesive
by Maria Rita Ramos Magalhães, Felipe Gomes Batista, Ana Carolina Corrêa Furtini, Mário Vanoli Scatolino, Flávia Maria Silva Brito, Lourival Marin Mendes, Thiago de Paula Protásio and José Benedito Guimarães Junior
Fibers 2025, 13(7), 95; https://doi.org/10.3390/fib13070095 - 10 Jul 2025
Viewed by 193
Abstract
Cardanol is a derivative of cashew nut shell liquid (CNSL) and has the potential to be used when developing adhesives for wood boards. Adding nanostructures to adhesive can increase its bonding and reduce formaldehyde emission. Therefore, this study aimed to evaluate the different [...] Read more.
Cardanol is a derivative of cashew nut shell liquid (CNSL) and has the potential to be used when developing adhesives for wood boards. Adding nanostructures to adhesive can increase its bonding and reduce formaldehyde emission. Therefore, this study aimed to evaluate the different concentrations of nanolignin (1, 2, and 3%) added to the cardanol-formaldehyde adhesive for gluing plywood, in comparison to the cardanol-formaldehyde adhesive without nanolignin (0%). The plywood’s physical, mechanical, and formaldehyde emission properties were assessed. Plywoods with nanolignin showed shear strength increases of around 160% in the wet condition. With the addition of nanolignin, the modulus of rupture and of elasticity increased by approximately 150% and up to 400% in the parallel direction, respectively. The resistance to combustion also significantly improved. Physical properties did not show statistically significant differences with the percentages of nanolignin. Despite the increase in formaldehyde emission with nanolignin, all treatments met the marketing requirements (≤80 mg of formaldehyde/kg), demonstrating the adhesive potential for indoor use in plywood industries. Natural adhesives using cardanol and nanolignin are an innovative and ecological alternative, combining sustainability and high potential to reduce environmental impacts, which is aligned with at least four sustainable development goals (SDGs). Full article
Show Figures

Figure 1

15 pages, 5168 KiB  
Article
Effects of Pulse Ion Source Arc Voltage on the Structure and Friction Properties of Ta-C Thin Films on NBR Surface
by Sen Feng, Wenzhuang Lu, Fei Guo, Can Wang and Liang Zou
Coatings 2025, 15(7), 809; https://doi.org/10.3390/coatings15070809 - 10 Jul 2025
Viewed by 327
Abstract
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed [...] Read more.
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed arc ion plating technology and adjusting the arc voltage of the pulsed arc ion source, tetrahedral amorphous carbon (ta-C) films with varying sp3 content were prepared on the surface of NBR. The effects of arc voltage on the structural composition and friction performance of NBR/ta-C materials were examined. A scanning electron microscopy analysis revealed that the ta-C film applied to the surface of NBR was uniform and dense, exhibiting typical network crack characteristics. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated that as the arc voltage increased, the sp3 content in the film initially rose before declining, reaching a maximum of 72.28% at 300 V. Mechanical tests demonstrated that the bonding strength and friction performance of the film are primarily influenced by the percentage of sp3 content. Notably, the ta-C film with lower sp3 content demonstrates enhanced wear resistance. At 200 V, the sp3 content of the film is 58.16%, resulting in optimal friction performance characterized by a stable friction coefficient of 0.38 and minimal wear weight loss. This performance is attributed to the protective qualities of the ta-C film and the formation of a graphitized transfer film. These results provide valuable insights for the design and development of wear-resistant rubber materials. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop