Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = additive–subtractive manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5921 KB  
Article
Milling Versus Printing: The Effect of Fabrication Technique on the Trueness and Fitness of Fabricated Crowns (A Comparative In Vitro Study)
by Mohammed Hassen Ali and Manhal A. Majeed
Prosthesis 2025, 7(5), 107; https://doi.org/10.3390/prosthesis7050107 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: Computer-aided manufacturing techniques are divided into subtractive (milling) and additive (3D printing) techniques. The accuracy of both techniques is measured only indirectly by testing the fabricated restorations. However, the role of the fabrication technique is masked by the differences in the [...] Read more.
Background/Objectives: Computer-aided manufacturing techniques are divided into subtractive (milling) and additive (3D printing) techniques. The accuracy of both techniques is measured only indirectly by testing the fabricated restorations. However, the role of the fabrication technique is masked by the differences in the materials used. Hence, this study used the same printing resin to print crowns and blocks for milling. Methods: Ten maxillary first premolars were prepared for full crowns and scanned with Primescan Connect IOS, and then crown restorations were designed using Exocad. A CAD/CAM block equal to size C14 was designed in CAD software (Microsoft 3D Builder) (Version 18.0.1931.0). The designed crowns and blocks were printed using three hybrid ceramic materials, namely, Ceramic Crown (SprintRay), Varseosmile Crown plus (Bego), and P-crown (Senertek), using a SprintRay Pro95S 3D-printer. The printed blocks were then used to fabricate the designed crowns using an In-Lab MCXL milling machine. The trueness and marginal and internal gaps of the crowns were then measured using Geomagic Control X metrology software (Version 2022.1). Statistical analysis was performed using the Kruskal–Wallis test, Dunn’s test, one-way ANOVA test, and Tukey’s HSD test. Results: Generally, the milled crowns showed significantly higher trueness but lower fitness than their 3D-printed counterparts (p < 0.05). A significant reverse correlation was found between the trueness and fitness of the fabricated restorations. Conclusions: The fabrication technique significantly influenced the accuracy of the hybrid ceramic crowns. Milling offered superior trueness, whereas 3D printing resulted in better internal and marginal adaptation. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

12 pages, 1175 KB  
Article
Physical Assessment of CAD/CAM and 3D-Printed Resin-Based Ceramics Integrating Additive and Subtractive Methods
by Khalid K. Alanazi and Ali A. Elkaffas
Polymers 2025, 17(16), 2168; https://doi.org/10.3390/polym17162168 - 8 Aug 2025
Viewed by 373
Abstract
Additive manufacturing (3D printing) using Computer-Aided Design (CAD) has emerged as a cost-effective alternative to subtractive milling in restorative dentistry, offering reduced material waste and lower production costs. This study aimed to compare the physical properties, specifically water sorption, water solubility, and surface [...] Read more.
Additive manufacturing (3D printing) using Computer-Aided Design (CAD) has emerged as a cost-effective alternative to subtractive milling in restorative dentistry, offering reduced material waste and lower production costs. This study aimed to compare the physical properties, specifically water sorption, water solubility, and surface roughness, of milled and 3D-printed hybrid resin composite materials. Standardized disk-shaped samples were fabricated using a digital workflow. The additive group included 15 samples printed with a DLP printer using CROWNTEC resin at three different orientations (0°, 45°, and 90°), with five samples prepared at each printing orientation. The subtractive group consisted of specimens milled from the SHOFU DISK hybrid resin composite. Surface roughness samples were also prepared for both methods. Statistical analysis using one-way ANOVA, post hoc tests, and paired t-tests revealed significant differences among groups in all tested properties (p < 0.001). Subtractive manufacturing consistently outperformed additive techniques. Among the printed groups, orientation at 0° showed the most favorable outcomes. Moreover, polishing significantly improved surface roughness in both manufacturing methods (p < 0.001). These findings emphasize the influence of the fabrication method and printing orientation on the clinical performance of hybrid resin composites, highlighting the importance of polishing in optimizing the surface quality for 3D-printed restorations. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

15 pages, 9399 KB  
Article
Analysis of 3D-Printed Zirconia Implant Overdenture Bars
by Les Kalman and João Paulo Mendes Tribst
Appl. Sci. 2025, 15(15), 8751; https://doi.org/10.3390/app15158751 - 7 Aug 2025
Viewed by 307
Abstract
Dental implant components are typically fabricated using subtractive manufacturing, often involving metal materials that can be costly, inefficient, and time-consuming. This study explores the use of additive manufacturing (AM) with zirconia for dental implant overdenture bars, focusing on mechanical performance, stress distribution, and [...] Read more.
Dental implant components are typically fabricated using subtractive manufacturing, often involving metal materials that can be costly, inefficient, and time-consuming. This study explores the use of additive manufacturing (AM) with zirconia for dental implant overdenture bars, focusing on mechanical performance, stress distribution, and fit. Solid and lattice-structured bars were designed in Fusion 360 and produced using LithaCon 210 3Y-TZP zirconia (Lithoz GmbH, Vienna, Austria) on a CeraFab 8500 printer. Post-processing included cleaning, debinding, and sintering. A 3D-printed denture was also fabricated to evaluate fit. Thermography and optical imaging were used to assess adaptation. Custom fixtures were developed for flexural testing, and fracture loads were recorded to calculate stress distribution using finite element analysis (ANSYS R2025). The FEA model assumed isotropic, homogeneous, linear-elastic material behavior. Bars were torqued to 15 Ncm on implant analogs. The average fracture loads were 1.2240 kN (solid, n = 12) and 1.1132 kN (lattice, n = 5), with corresponding stress values of 147 MPa and 143 MPa, respectively. No statistically significant difference was observed (p = 0.578; α = 0.05). The fracture occurred near high-stress regions at fixture support points. All bars demonstrated a clinically acceptable fit on the model; however, further validation and clinical evaluation are still needed. Additively manufactured zirconia bars, including lattice structures, show promise as alternatives to conventional superstructures, potentially offering reduced material use and faster production without compromising mechanical performance. Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

17 pages, 7597 KB  
Article
Screen-Printed 1 × 4 Quasi-Yagi-Uda Antenna Array on Highly Flexible Transparent Substrate for the Emerging 5G Applications
by Matthieu Egels, Anton Venouil, Chaouki Hannachi, Philippe Pannier, Mohammed Benwadih and Christophe Serbutoviez
Electronics 2025, 14(14), 2850; https://doi.org/10.3390/electronics14142850 - 16 Jul 2025
Viewed by 332
Abstract
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × [...] Read more.
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × 4 Quasi-Yagi-Uda antenna array on a high-transparency flexible Zeonor thin-film substrate for emerging 26 GHz band (24.25–27.55 GHz) 5G applications. As part of this study, screen-printing implementation rules are developed by properly managing ink layer thickness on a transparent flexible Zeonor thin-film dielectric to achieve a decent antenna array performance. In addition, a screen-printing repeatability study has been carried out through a performance comparison of 24 antenna array samples manufactured by our research partner from CEA-Liten Grenoble. Despite the challenging antenna array screen printing at higher frequencies, the measured results show a good antenna performance as anticipated from the traditional subtractive printed circuit board (PCB) manufacturing process using standard substrates. It shows a wide-band matched input impedance from 22–28 GHz (i.e., 23% of relative band-width) and a maximum realized gain of 12.8 dB at 27 GHz. Full article
Show Figures

Figure 1

13 pages, 4323 KB  
Article
The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials
by Omar Alageel, Najm Alfrisany, Abdullah Alshamrani and Omar Alsadon
J. Funct. Biomater. 2025, 16(7), 257; https://doi.org/10.3390/jfb16070257 - 11 Jul 2025
Viewed by 718
Abstract
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM [...] Read more.
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM milling from prefabricated discs (Ti-ML and Zr-ML), and 3D printing via SLM (Ti-3D) and DLP/LCM systems (Zr-3D). The specimens were bonded with dental cement to form four test groups: Zr-ML/Ti-ML, Zr-ML/Ti-3D, Zr-3D/Ti-ML, and Zr-3D/Ti-3D. Half of the specimens in each group underwent thermocycling to assess the effect of aging on bond strength. The density, microhardness, and surface morphology were evaluated, along with the shear bond strength and failure modes of the resin composites. Statistical differences were analyzed using one-way ANOVA and Tukey’s HSD test across all groups. The 3D-printed specimens of both materials exhibited higher microhardness and lower surface roughness than the milled specimens. The shear bond strength (SBS) was the highest in the Ti-ML/Zr-ML combination group before and after thermocycling, which had more cohesive failures, whereas the lowest bond strength was observed in the Ti-3D/Zr-ML group. The adhesion between titanium and zirconia-based materials was the strongest when both were fabricated using subtractive methods, followed by additive and mixed-method combinations. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

41 pages, 6695 KB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 644
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

15 pages, 1683 KB  
Review
Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives
by Catalina Cioloca Holban, Monica Tatarciuc, Anca Mihaela Vitalariu, Roxana-Ionela Vasluianu, Magda Antohe, Diana Antonela Diaconu, Ovidiu Stamatin and Ana Maria Dima
J. Clin. Med. 2025, 14(14), 4837; https://doi.org/10.3390/jcm14144837 - 8 Jul 2025
Viewed by 622
Abstract
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified [...] Read more.
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified 28 studies (27 in vitro, 1 retrospective). Data were extracted on accuracy, efficiency, materials, and outcomes. Results: CAD/CAM milling demonstrated superior accuracy for fixed prostheses, with marginal gaps for milled zirconia (123.89 ± 56.89 µm), comparable to optimized 3D-printed interim crowns (123.87 ± 67.42 µm, p = 0.760). For removable prostheses, milled denture bases achieved a trueness of 65 ± 6 µm, while SLA-printed dentures post-processed at 40 °C for 30 min showed the lowest root mean square error (RMSE) (30 min/40 °C group). Three-dimensional printing excelled in material efficiency (<5% waste vs. milling > 30–40%) and complex geometries, such as hollow-pontic fixed dental prostheses (FDPs) (2.0 mm wall thickness reduced gaps by 33%). Build orientation (45° for crowns, 30–45° for veneers) and post-processing protocols significantly influenced accuracy. Milled resins exhibited superior color stability (ΔE00: 1.2 ± 0.3 vs. 3D-printed: 4.5 ± 1.1, p < 0.05), while 3D-printed Co-Cr frameworks (SLM) showed marginal fits of 8.4 ± 3.2 µm, surpassing milling (130.3 ± 13.8 µm). Digital workflows reduced chairside time by 29% (154.31 ± 13.19 min vs. 218.00 ± 20.75 min). All methods met clinical thresholds (<120 µm gaps). Conclusions: Milling remains preferred for high-precision fixed prostheses, while 3D printing offers advantages in material efficiency, complex designs, and removable applications. Critical gaps include long-term clinical data and standardized protocols. Future research should prioritize hybrid workflows, advanced materials, and AI-driven optimization to bridge technical and clinical gaps. Full article
Show Figures

Figure 1

45 pages, 1648 KB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 1198
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

23 pages, 4048 KB  
Article
Experimental Study on Hybrid Additive and Subtractive Manufacturing Processes for Improving Surface Quality
by Monika Jabłońska
Materials 2025, 18(13), 3136; https://doi.org/10.3390/ma18133136 - 2 Jul 2025
Viewed by 3224
Abstract
Hybrid machining has considerable potential for industrial applications. The process allows the limitations of additive manufacturing to be reduced and high-precision components to be produced. This article discusses tests determining the impact of 3D printing parameters, machining parameters, and selected milling tools on [...] Read more.
Hybrid machining has considerable potential for industrial applications. The process allows the limitations of additive manufacturing to be reduced and high-precision components to be produced. This article discusses tests determining the impact of 3D printing parameters, machining parameters, and selected milling tools on achieving defined surface roughness values in parts made of PETG (polyethylene terephthalate glycol). Perpendicular-shaped samples were printed by fused deposition modelling (FDM) using variable layer heights of 0.1 mm and 0.2 mm and variable feed rates of 90, 100, 110, and 120 mm/s. Surface roughness values, topography, and Abbott–Firestone curves were determined using a Keyence VR-6000 profilometer. Straight grooves were machined in the test samples using a DMG MORI CMX 600V milling machine with a rotary burr, single-edge spiral burr cutter and spiral endmill. The microstructure was examined using a Motic inverted microscope. The surface roughness parameters of the grooves were investigated. The results confirmed that the use of hybrid machining (with a printed layer height Lh = 0.1 mm, Vfeed = 120 mm/s, and a cutter–rotary burr) allows for lower surface roughness parameters, i.e., Ra = 1.54 μm. The relationships developed between printing, cutting, and milling tool parameters can be employed to predict the roughness parameters of filaments with similar characteristics. Full article
Show Figures

Figure 1

13 pages, 1653 KB  
Article
Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites
by Selinsu Öztürk, Ezgi Altuntaş, Ayşe Aslı Şenol, Erkut Kahramanoğlu, Pınar Yılmaz Atalı, Bilge Tarçın and Cafer Türkmen
Biomimetics 2025, 10(7), 433; https://doi.org/10.3390/biomimetics10070433 - 1 Jul 2025
Viewed by 447
Abstract
Biomimetic restorative protocols aim to preserve natural tooth structure while enhancing restoration longevity. This in vitro study aimed to evaluate the shear bond strength (SBS) in the repair of additively and subtractively manufactured CAD/CAM materials using bulk-fill resin composites and to assess the [...] Read more.
Biomimetic restorative protocols aim to preserve natural tooth structure while enhancing restoration longevity. This in vitro study aimed to evaluate the shear bond strength (SBS) in the repair of additively and subtractively manufactured CAD/CAM materials using bulk-fill resin composites and to assess the effect of thermocycling. Forty rectangular specimens (14.5 × 7 × 3 mm) were prepared from Grandio Blocs (GB, VOCO) and VarseoSmile CrownPlus (VS, BEGO), and thermocycled (5000 cycles, 5–55 °C, 20 s dwell time). All surfaces were roughened with 50 μm Al2O3. Samples were repaired using VisCalor (VCB, VOCO) and Charisma Bulk Flow One (CBO, Kulzer) composites (n = 10 per group) with their respective adhesives. Each group was further divided into immediate and post-thermocycling subgroups. All specimens were tested under shear force until failure, and failure types were examined under a stereomicroscope. Representative samples were examined by SEM to evaluate filler morphology. Statistical analysis was performed with SPSS v23 (p < 0.05). No statistically significant differences in SBS were found between groups (p > 0.05). Mean SBS values were highest in VS-CBO and lowest in GB-CBO. Cohesive failures were more frequent in immediate groups, while adhesive failures predominated after thermocycling. Bulk-fill composites did not influence the repair bond strength of indirect materials. Thermocycling affected the failure type, though not the SBS values. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications: 2nd Edition)
Show Figures

Figure 1

20 pages, 1271 KB  
Review
Energy Efficiency and Sustainability of Additive Manufacturing as a Mass-Personalized Production Mode in Industry 5.0/6.0
by Izabela Rojek, Dariusz Mikołajewski, Jakub Kopowski, Tomasz Bednarek and Krzysztof Tyburek
Energies 2025, 18(13), 3413; https://doi.org/10.3390/en18133413 - 28 Jun 2025
Viewed by 857
Abstract
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and [...] Read more.
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and reducing energy consumption. The integration of smart technologies such as AI and IoT is explored to optimize AM processes and support decentralized, on-demand manufacturing. Thisarticle discusses different AM techniques and materials from an environmental and life-cycle perspective, identifying key benefits and constraints. This review also examines the potential of AM to support circular economy practices through local repair, remanufacturing, and material recycling. The net energy efficiency of AM depends on the type of process, part complexity, and production scale, but the energy savings per component can be significant if implemented strategically.AM significantly improves energy efficiency in certain manufacturing contexts, often reducing energy consumption by 25–50% compared to traditional subtractive methods. The results emphasize the importance of innovation in both hardware and software to overcome current energy and sustainability challenges. This review highlights AM as a key tool in achieving a human-centric, intelligent, and ecological manufacturing paradigm. Full article
Show Figures

Figure 1

15 pages, 15667 KB  
Article
Novel Tools for Analyzing Life Cycle Energy Use, Carbon Emissions, and Cost of Additive Manufacturing
by Christopher Price, Kristina Armstrong, Dipti Kamath, Sachin Nimbalkar and Joseph Cresko
J. Manuf. Mater. Process. 2025, 9(7), 214; https://doi.org/10.3390/jmmp9070214 - 25 Jun 2025
Viewed by 689
Abstract
Decarbonizing industrial manufacturing is a significant challenge in the effort to limit the impacts of global climate change. Additive manufacturing (AM) is one pathway for reducing the impacts of manufacturing as it creates parts layer-by-layer rather than by removing (i.e., subtracting) material from [...] Read more.
Decarbonizing industrial manufacturing is a significant challenge in the effort to limit the impacts of global climate change. Additive manufacturing (AM) is one pathway for reducing the impacts of manufacturing as it creates parts layer-by-layer rather than by removing (i.e., subtracting) material from solid stock as with conventional techniques. This reduces material inputs and generates less waste, which can substantially lower life cycle energy consumption and greenhouse gas emissions. However, AM adoption in the manufacturing sector has been slow, partly due to challenges in making a strong business case compared with more traditional and widely available techniques. This paper highlights the need for the development of simple screening analysis tools to speed the adoption of AM in the manufacturing sector by providing decision-makers easy access to important production life cycle emissions, and cost information. Details on the development of two Microsoft Excel software tools are provided: upgrades to an existing tool on the energy and carbon impacts of AM and a new tool for analyzing the major cost components of AM. A case study applies these two tools to the production of a lightweight aerospace bracket, showing how the tools can be used to estimate the environmental benefits and production costs of AM. Full article
Show Figures

Graphical abstract

15 pages, 4414 KB  
Article
A New Sustainable Approach to Enhancing the Subtractive Process in the Additive–Subtractive Hybrid Manufacturing of AISI H13 Dry Machining
by Hiva Hedayati and Maryam Aramesh
Lubricants 2025, 13(7), 278; https://doi.org/10.3390/lubricants13070278 - 21 Jun 2025
Viewed by 772
Abstract
In additive–subtractive hybrid manufacturing (ASHM), machining and additive processes are combined in a single operation to merge the benefits of both. This method faces challenges, especially during the machining steps. Parts made through additive manufacturing often have low machinability due to factors like [...] Read more.
In additive–subtractive hybrid manufacturing (ASHM), machining and additive processes are combined in a single operation to merge the benefits of both. This method faces challenges, especially during the machining steps. Parts made through additive manufacturing often have low machinability due to factors like residual stresses and fine, hard microstructures. In ASHM, intermediate heat treatments are not possible, leading to the increased hardness of the printed material. Cutting fluids, typically used to reduce temperature and friction, can contaminate the build environment and impair layer adhesion; therefore, they are not recommended in ASHM. This study investigates soft metallic lubricant coatings in ASHM as substitutes for conventional fluid lubricants during dry machining. The coatings form a lubricating layer between the tool and workpiece, providing an alternative to cutting fluids. This research evaluates their effectiveness in improving the surface integrity of additively manufactured parts and supporting dry machining. The results of our research show a 65% reduction in force, a 50% reduction in tool wear, and a reduction in microstructural changes during machining while maintaining dry machining. Full article
(This article belongs to the Special Issue Coatings and Lubrication in Extreme Environments)
Show Figures

Figure 1

13 pages, 2748 KB  
Article
Additive–Subtractive Manufacturing Based on Water-Soluble Sacrificial Layer: High-Adhesion Metal Patterning via Inkjet Printing
by Mengyang Su, Jin Huang, Hongxiao Gong, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao, Jianjun Wang and Jie Zhang
Micromachines 2025, 16(6), 706; https://doi.org/10.3390/mi16060706 - 13 Jun 2025
Viewed by 1153
Abstract
Inkjet printing has become a primary technique for manufacturing flexible and conformal electronics due to its digital control, design flexibility, and material compatibility. However, its direct deposition nature results in weak adhesion between metal films and substrates, as it mainly relies on van [...] Read more.
Inkjet printing has become a primary technique for manufacturing flexible and conformal electronics due to its digital control, design flexibility, and material compatibility. However, its direct deposition nature results in weak adhesion between metal films and substrates, as it mainly relies on van der Waals or capillary forces, which severely limits its broader application in these fields. To address this limitation, we proposed an additive–subtractive manufacturing method based on a water-soluble sacrificial layer. First, the sacrificial material is inkjet-printed onto the substrate. Then, ion sputtering is employed to bombard the surface with high-energy ions, enabling metal atoms to embed into the substrate and form a strongly adhered conductive layer. Finally, the substrate is immersed in water, dissolving the sacrificial layer and detaching the undesired metal, thereby achieving selective retention of the conductive pattern. Experimental results demonstrate that the optimized water-soluble material, with tailored viscosity and surface tension, enables a patterning resolution of ±10 μm. The adhesion strength of the sputtered metal layer is 5.2 times greater than that of inkjet-printed silver nanoparticles. This method was further applied to fabricate conductive patterns on a curved surface with a 91 mm radius confirming its feasibility and adaptability for complex 3D surfaces. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

15 pages, 1065 KB  
Article
Comparison of the Fracture Resistance of Provisional Crowns and Fixed Partial Dentures Manufactured with Conventional, Milling, and 3D-Printing Techniques
by Beyza Güney, Asude Dilek Nalbant and Merve Bankoğlu Güngör
Appl. Sci. 2025, 15(12), 6539; https://doi.org/10.3390/app15126539 - 10 Jun 2025
Viewed by 637
Abstract
This study aimed to evaluate the effect of different manufacturing techniques and thermal aging on the fracture resistance of provisional crowns and fixed partial dentures. Methods: A total of 60 provisional crowns and 60 provisional fixed partial dentures were fabricated using three manufacturing [...] Read more.
This study aimed to evaluate the effect of different manufacturing techniques and thermal aging on the fracture resistance of provisional crowns and fixed partial dentures. Methods: A total of 60 provisional crowns and 60 provisional fixed partial dentures were fabricated using three manufacturing techniques: conventional manufacturing (CM), subtractive manufacturing (SM), and additive manufacturing (AM). An index created from SM-manufactured restorations was used to produce the CM group. Artificial abutments were created by duplicating scanned phantom teeth using model resin. Half of the restorations (n = 10 per group) were subjected to thermal aging (5–55 °C, 5000 cycles). The fracture resistance values of the specimens were tested using a universal testing machine. Data were analyzed using a two-way ANOVA and Tukey’s post hoc tests (α = 0.05). The highest mean fracture resistance was observed in the SM group without aging, both for crowns (1645.4 ± 346.8 N) and fixed partial dentures (1291.13 ± 564.15 N). The two-way ANOVA revealed statistically significant differences among the groups, and thermal aging significantly reduced the fracture resistance (p < 0.05). Both the manufacturing method and thermal aging significantly influenced the fracture resistance of provisional crowns and fixed partial dentures. In fixed partial dentures, a significant effect of aging was associated with the reduced durability of restorations fabricated using the subtractive manufacturing method. Full article
Show Figures

Figure 1

Back to TopTop