Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives
Abstract
1. Introduction
- What is the latest evidence on the accuracy, efficiency, and material behavior in 3D printing and CAD/CAM milling for dentures?
- Where should future innovation focus?
2. Methods
2.1. Design
2.2. Aim
2.3. Search Strategy
- Population/Application
- (“prosthodontics” OR “dental prosthesis” OR “crown” OR “bridge” OR “denture” OR “implant prosthesis”).
- Interventions
- (“3D printing” OR “additive manufacturing” OR “stereolithography” OR “digital light processing” OR “fused deposition modeling”);
- (“CAD/CAM” OR “computer-aided design” OR “subtractive manufacturing” OR “milling” OR “CNC machining”).
- Outcomes
- (“accuracy” OR “precision” OR “trueness” OR “marginal fit” OR “dimensional error”);
- (“efficiency” OR “production time” OR “workflow” OR “cost-effectiveness”);
- (“material properties” OR “mechanical strength” OR “biocompatibility” OR “longevity”).
2.4. Eligibility Criteria
2.5. Source Selection Process
2.6. Critical Appraisal of Sources
3. Results
3.1. Selection of Studies
3.2. Overview of Selected Studies
3.3. Summary of Results: Evidence of CAD/CAM Milling and 3D Printing in Prosthodontics
3.4. Accuracy: Trueness, Precision, and Marginal/Internal Fit
- Interim Crowns: Morón-Conejo et al. found that DLP-printed interim crowns with 50 µm layer thickness and ultrasonic postprocessing (123.87 ± 67.42 µm) matched milling’s marginal fit (p = 0.760), while SprintRay’s proprietary resin and workflow with a 100 µm layer thickness (SR100) underperformed (p < 0.001) [33]. SR100 exemplifies a trade-off in proprietary 3D printing systems: while they offer convenience, they may sacrifice accuracy due to rigid workflows and suboptimal postprocessing. The study advocates for validated open workflows for better clinical outcomes. Kumar et al. reported superior precision in 3D-printed crowns, with smaller occlusal, axial, and marginal gaps than milled counterparts [34].
- Fixed Prostheses: Wang et al. observed that 3D-printed zirconia crowns exhibited comparable or better trueness than milled ones across external, intaglio, and marginal surfaces (p < 0.05) [40]. Similarly, Camargo et al. noted that inkjet-printed zirconia crowns had intermediate accuracy between chairside and industrial milling, with clinically acceptable cement-space thickness [39].
- Removable Dentures: Cameron et al. demonstrated that milled denture bases had the truest intaglio surfaces, while 3D-printed bases showed inconsistency across systems [35]. Graf et al. confirmed CNC milling’s superiority in dimensional accuracy over PolyJet, SLS, and DLP (p < 0.001), though all methods were clinically viable [37].
3.5. Efficiency: Balancing Speed, Cost, and Waste
- Chairside vs. Laboratory Production: Casucci et al. reported digital dentures reduced chairside time by 30% (154.31 ± 13.19 min vs. 218.00 ± 20.75 min, p < 0.0001) and lowered laboratory costs [32].
- Post-processing Impact: Katheng et al. highlighted that SLA dentures postpolymerized at 40 °C for 30 min achieved the highest trueness and precision (p < 0.001) [41].
3.6. Material Performance
- Mechanical Performance: Lee et al. showed hollow pontic designs (2.0 mm wall thickness) in SLA-printed FDPs improved axial fit without compromising strength (p < 0.001) [36]. Kim et al. noted SLA-assisted cast Co-Cr copings had marginal discrepancies (70.2 ± 15.5 µm) comparable to lost-wax casting (63.2 ± 16.6 µm), outperforming milled copings (130.3 ± 13.8 µm, p < 0.05) [42].
- Color and Dimensional Stability: Gad et al. found milled denture bases had superior color stability (lowest ΔE00) and dimensional accuracy after aging, while 3D-printed resins degraded significantly (p < 0.05) [38].
- Surface Roughness: Wang et al. reported additively manufactured zirconia FDPs had higher surface roughness than milled ones but better marginal quality [43].
3.7. Outcome
- Implant-Supported Prostheses: Presotto et al. demonstrated SLM-printed Co-Cr frameworks had superior marginal fit (8.4 ± 3.2 µm) and lower stress concentrations vs. milling or casting (p < 0.05) [47]. Abu Ghofa and Önöral observed SLM frameworks had the lowest vertical discrepancies (74.2 ± 20.5 µm), outperforming conventional techniques (137.5 ± 18.9 µm, p < 0.001) [45].
4. Discussion—Navigating the Evolving Landscape of Additive and Subtractive Prosthodontics
4.1. The Accuracy Quest: Precision and Adaptability
4.2. Efficiency Reimagined: Beyond Print Speed
4.3. The Material Science Frontier
4.4. Clinical Translation: Bridging the Digital Divide
4.5. Future Directions: A Protocol for Innovation
- Intelligent Manufacturing. Machine learning algorithms that predict and compensate for material shrinkage patterns could eliminate 3D printing’s accuracy disadvantages [70]. Similarly, AI-driven nesting software can optimize milling strategies to reduce waste by 30–40%.
- Convergence Technologies. The most exciting developments lie at the additive–subtractive interface. Systems like hybrid multi-tasking platforms use milling for critical fit surfaces while 3D printing tissue-facing contours, achieving unprecedented precision–efficiency balances.
- Material science must prioritize bioactive and self-healing resins to enhance 3D printing’s clinical relevance.
- Regulatory Framework Development. As 3D-printed dentures enter mainstream care, standardized post-market surveillance systems must track long-term performance. This requires collaboration between manufacturers, clinicians, and regulatory bodies.
4.6. Limitations of This Scoping Review
5. Conclusions: A Symbiotic Future for Prosthodontic Innovation
- Milling and 3D Printing Are Complementary:
- Use milling for high-precision, high-stress cases.
- Use 3D printing for complex designs, patient-specific solutions, and interim prostheses.
- Choose Based on Patient Needs, Not Technology
- Durability? => Milling.
- Customization or complex anatomy? => 3D printing.
- Workflow optimization and material selection are paramount.
- Future Focus
- Hybrid workflows will dominate, combining both technologies for optimal results.
- Research ought to prioritize material advancements, AI integration, and long-term clinical data.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
FDP | Fixed Dental Prostheses |
RMSE | Root Mean Square Error |
PMMA | Polymethyl Methacrylate |
SLA | Stereolithography |
DLP | Digital Light Processing |
SLM | Selective Laser Melting |
Co-Cr frameworks | Cobalt-Chromium frameworks |
DTO | Denture Base-Tooth Offset |
iFDP | Implant-Fixed Dental Prosthesis |
SR100 | SprintRay 100-µm group |
References
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A Review of Dental CAD/CAM: Current Status and Future Perspectives from 20 Years of Experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Van Noort, R. The Future of Dental Devices Is Digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kalberer, N.; Mehl, A.; Schimmel, M.; Müller, F.; Srinivasan, M. CAD-CAM Milled versus Rapidly Prototyped (3D-Printed) Complete Dentures: An in Vitro Evaluation of Trueness. J. Prosthet. Dent. 2019, 121, 637–643. [Google Scholar] [CrossRef]
- Jun, M.-K.; Kim, J.-W.; Ku, H.-M. Three-Dimensional Printing in Dentistry: A Scoping Review of Clinical Applications, Advantages, and Current Limitations. Oral 2025, 5, 24. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM Technology: Options for Practical Implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Yu, J.-M.; Lee, J.-S.; Park, K.-S.; Lee, S.-Y. Evaluation of the Milling Accuracy of Zirconia-Reinforced Lithium Silicate Crowns Fabricated Using the Dental Medical Device System: A Three-Dimensional Analysis. Materials 2020, 13, 4680. [Google Scholar] [CrossRef]
- ElGendy, M.A.E.; ElSharkawi, N.M. A Review on the Evolution of CAD-CAM Materials in Fixed Prosthodontics Regarding Mechanical Properties, Aesthetic Outcomes, and Clinical Indications. ERU Res. J. 2025, 4, 2595–2629. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D Printed versus Conventionally Cured Provisional Crown and Bridge Dental Materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Bhargav, A.; Sanjairaj, V.; Rosa, V.; Feng, L.W.; Fuh Yh, J. Applications of Additive Manufacturing in Dentistry: A Review. J. Biomed. Mater. Res. 2018, 106, 2058–2064. [Google Scholar] [CrossRef]
- Jeong, M.; Radomski, K.; Lopez, D.; Liu, J.T.; Lee, J.D.; Lee, S.J. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent. J. 2023, 12, 1. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.B. Additive Manufacturing Technologies: Where Did We Start and Where Have We Landed? A Narrative Review. Int. J. Prosthodont. 2024, 37, S243–S252. [Google Scholar] [CrossRef] [PubMed]
- Mor, R.; Bagade, S.B.; Pancholi, S.; Patil, G.; Talokar, A.; Suryawanshi, Y.; Nasare, D.; Zambad, S.; Patil, D.D.; Gurav, S.S.; et al. Recent Developments in 3D Printing Assisted Surgical Dentistry. Mater. Sci. Eng. B 2025, 319, 118299. [Google Scholar] [CrossRef]
- Rodriguez Martrus, A.M.; Sánchez, C.A.; Kassis, E.N. CAD-CAM System in Dental Implants: A Systematic Review. MedNEXT J. Med. Health Sci. 2022, 3. [Google Scholar] [CrossRef]
- Suganna, M.; Kausher, H.; Tarek Ahmed, S.; Sultan Alharbi, H.; Faraj Alsubaie, B.; Ds, A.; Haleem, S.; Meer Rownaq Ali, A.B. Contemporary Evidence of CAD-CAM in Dentistry: A Systematic Review. Cureus 2022, 14, e31687. [Google Scholar] [CrossRef]
- Rexhepi, I.; Santilli, M.; D’Addazio, G.; Tafuri, G.; Manciocchi, E.; Caputi, S.; Sinjari, B. Clinical Applications and Mechanical Properties of CAD-CAM Materials in Restorative and Prosthetic Dentistry: A Systematic Review. J. Funct. Biomater. 2023, 14, 431. [Google Scholar] [CrossRef]
- Mangano, F.G.; Cianci, D.; Pranno, N.; Lerner, H.; Zarone, F.; Admakin, O. Trueness, Precision, Time-Efficiency and Cost Analysis of Chairside Additive and Subtractive versus Lab-Based Workflows for Manufacturing Single Crowns: An in Vitro Study. J. Dent. 2024, 141, 104792. [Google Scholar] [CrossRef] [PubMed]
- Al-humood, H.; Alfaraj, A.; Yang, C.-C.; Levon, J.; Chu, T.-M.G.; Lin, W.-S. Marginal Fit, Mechanical Properties, and Esthetic Outcomes of CAD/CAM Interim Fixed Dental Prostheses (FDPs): A Systematic Review. Materials 2023, 16, 1996. [Google Scholar] [CrossRef]
- Merchant, A.; Pandurangan, K.K.; Shenoy, A.D.; Nallaswamy, D.; Singh, P.N. Comparison of Marginal Fit between Milled and Three-Dimensional Printed Polymethylmethacrylate Prostheses for Single Crowns, Anterior Bridges, and Pier Abutment Bridges: An in Vitro Study. J. Indian. Prosthodont. Soc. 2025, 25, 67–73. [Google Scholar] [CrossRef]
- Kim, J.; Pinhata-Baptista, O.; Ayres, A.; Da Silva, R.; Lima, J.; Urbano, G.; No-Cortes, J.; Vasques, M.; Cortes, A. Accuracy Comparison among 3D-Printing Technologies to Produce Dental Models. Appl. Sci. 2022, 12, 8425. [Google Scholar] [CrossRef]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal Adaptation and Fracture Resistance of Milled and 3D-Printed CAD/CAM Hybrid Dental Crown Materials with Various Occlusal Thicknesses. J. Prosthodont. Res. 2023, 68, 326–335. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Herpel, C.; Tasaka, A.; Higuchi, S.; Finke, D.; Kühle, R.; Odaka, K.; Rues, S.; Lux, C.J.; Yamashita, S.; Rammelsberg, P.; et al. Accuracy of 3D Printing Compared with Milling—A Multi-Center Analysis of Try-in Dentures. J. Dent. 2021, 110, 103681. [Google Scholar] [CrossRef]
- Tsai, F.-C.; Yang, T.-C.; Wang, T.-M.; Lin, L.-D. Dimensional Changes of Complete Dentures Fabricated by Milled and Printed Techniques: An in Vitro Study. J. Prosthet. Dent. 2023, 129, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Lo Russo, L.; Lo Muzio, E.; Troiano, G.; Salamini, A.; Zhurakivska, K.; Guida, L. Accuracy of Trial Complete Dentures Fabricated by Using Fused Deposition Modeling 3-Dimensional Printing: An in Vitro Study. J. Prosthet. Dent. 2023, 129, 908–912. [Google Scholar] [CrossRef]
- Conceição, P.; Portugal, J.; Franco, M.; Alves, N.M.; Marques, D.; Neves, C.B. Comparison between Digital Superimposition and Microcomputed Tomography Methods of Fit Assessment of Removable Partial Denture Frameworks. J. Prosthet. Dent. 2024, 131, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.-J.; Jeong, I.-D.; Kim, W.-C.; Kim, J.-H. A Comparative Study of Additive and Subtractive Manufacturing for Dental Restorations. J. Prosthet. Dent. 2017, 118, 187–193. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, X.; Li, Y.; Tan, J.; Liu, X. Effect of Build Angle on the Dimensional Accuracy of Monolithic Zirconia Crowns Fabricated with the Nanoparticle Jetting Technique. J. Prosthet. Dent. 2023, 130, 613.e1–613.e8. [Google Scholar] [CrossRef]
- Boontherawara, P.; Chaijareenont, P.; Angkasith, P. Comparing the Trueness of 3D Printing and Conventional Casting for the Fabrication of Removable Partial Denture Metal Frameworks for Patients with Different Palatal Vault Depths: An in Vitro Study. J. Prosthet. Dent. 2024, 132, 434.e1–434.e6. [Google Scholar] [CrossRef]
- Hwang, S.; An, S.; Robles, U.; Rumpf, R.C. Process Parameter Optimization for Removable Partial Denture Frameworks Manufactured by Selective Laser Melting. J. Prosthet. Dent. 2023, 129, 191–198. [Google Scholar] [CrossRef]
- Carbajal Mejía, J.B.; Wakabayashi, K.; Nakamura, T.; Yatani, H. Influence of Abutment Tooth Geometry on the Accuracy of Conventional and Digital Methods of Obtaining Dental Impressions. J. Prosthet. Dent. 2017, 118, 392–399. [Google Scholar] [CrossRef]
- Cameron, A.B.; Choi, J.J.E.; Ip, A.; Lyons, N.; Yaparathna, N.; Dehaghani, A.E.; Feih, S. Assessment of the Trueness of Additively Manufactured Mol3% Zirconia Crowns at Different Printing Orientations with an Industrial and Desktop 3D Printer Compared to Subtractive Manufacturing. J. Dent. 2024, 144, 104942. [Google Scholar] [CrossRef] [PubMed]
- Casucci, A.; Ferrari Cagidiaco, E.; Verniani, G.; Ferrari, M.; Borracchini, A. Digital vs. Conventional Removable Complete Dentures: A Retrospective Study on Clinical Effectiveness and Cost-Efficiency in Edentulous Patients. J. Dent. 2025, 153, 105505. [Google Scholar] [CrossRef] [PubMed]
- Morón-Conejo, B.; Berrendero, S.; Bai, S.; Martínez-Rus, F.; Pradies, G. Fit Comparison of Interim Crowns Manufactured with Open and Proprietary 3D Printing Modes versus Milling Technology: An in Vitro Study. J. Esthet. Restor. Dent. 2024, 36, 1693–1703. [Google Scholar] [CrossRef]
- Kumar, M.V.S.; Kumar, R.; Saini, R.S.; Vyas, R.; Bai, S.; Vaddamanu, S.K. Assessment of Marginal Fit and Accuracy of Crowns Fabricated Using CADCAM Milling and 3D Printing Technology. J. Pharm. Bioallied Sci. 2024, 16, S3509–S3511. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.B.; Kim, H.; Evans, J.L.; Abuzar, M.A.; Tadakamadla, S.K.; Alifui-Segbaya, F. Intaglio Surface of CNC Milled versus 3D Printed Maxillary Complete Denture Bases—An in Vitro Investigation of the Accuracy of Seven Systems. J. Dent. 2024, 151, 105389. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.-K.; Koak, J.-Y.; Park, J.-M. Effects of a Hollow Pontic Design with Various Wall Thicknesses on the Axial Internal Fit and Failure Load of 3D Printed Three-Unit Resin Prostheses. J. Prosthet. Dent. 2024, 132, 1287.e1–1287.e10. [Google Scholar] [CrossRef]
- Graf, T.; Schweiger, J.; Goob, J.; Stimmelmayr, M.; Lente, I.; Schubert, O. Dimensional Reliability in CAD/CAM Production of Complete Denture Bases: A Comparative Study of Milling and Various 3D Printing Technologies. Dent. Mater. J. 2024, 43, 629–636. [Google Scholar] [CrossRef]
- Gad, M.A.; Abdelhamid, A.M.; ElSamahy, M.; Abolgheit, S.; Hanno, K.I. Effect of Aging on Dimensional Accuracy and Color Stability of CAD-CAM Milled and 3D-Printed Denture Base Resins: A Comparative in-Vitro Study. BMC Oral Health 2024, 24, 1124. [Google Scholar] [CrossRef]
- Camargo, B.; Willems, E.; Jacobs, W.; Van Landuyt, K.; Peumans, M.; Zhang, F.; Vleugels, J.; Van Meerbeek, B. 3D Printing and Milling Accuracy Influence Full-Contour Zirconia Crown Adaptation. Dent. Mater. 2022, 38, 1963–1976. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Liu, Y.; Jiang, X.; Gao, B. Trueness Analysis of Zirconia Crowns Fabricated with 3-Dimensional Printing. J. Prosthet. Dent. 2019, 121, 285–291. [Google Scholar] [CrossRef]
- Katheng, A.; Kanazawa, M.; Iwaki, M.; Arakida, T.; Hada, T.; Minakuchi, S. Evaluation of Trueness and Precision of Stereolithography-Fabricated Photopolymer-Resin Dentures under Different Postpolymerization Conditions: An in Vitro Study. J. Prosthet. Dent. 2022, 128, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-B.; Kim, N.-H.; Kim, J.-H.; Moon, H.-S. Evaluation of the Fit of Metal Copings Fabricated Using Stereolithography. J. Prosthet. Dent. 2018, 120, 693–698. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Zhu, H.; Jiang, J.; He, F. Accuracy, Fit, and Marginal Quality of Advanced Additively Manufactured and Milled Zirconia 3-Unit Fixed Dental Prostheses. J. Prosthet. Dent. 2025, 133, 208.e1–208.e10. [Google Scholar] [CrossRef]
- Metin, D.S.; Schmidt, F.; Beuer, F.; Prause, E.; Ashurko, I.; Sarmadi, B.S.; Unkovskiy, A. Accuracy of the Intaglio Surface of 3D-Printed Hybrid Resin-Ceramic Crowns, Veneers and Table-Tops: An in Vitro Study. J. Dent. 2024, 144, 104960. [Google Scholar] [CrossRef] [PubMed]
- Abu Ghofa, A.; Önöral, Ö. An Assessment of the Passivity of the Fit of Multiunit Screw-Retained Implant Frameworks Manufactured by Using Additive and Subtractive Technologies. J. Prosthet. Dent. 2023, 129, 440–446. [Google Scholar] [CrossRef]
- Song, S.; Zhang, J.; Liu, M.; Li, F.; Bai, S. Effect of Build Orientation and Layer Thickness on Manufacturing Accuracy, Printing Time, and Material Consumption of 3D Printed Complete Denture Bases. J. Dent. 2023, 130, 104435. [Google Scholar] [CrossRef]
- Presotto, A.G.C.; Barão, V.A.R.; Bhering, C.L.B.; Mesquita, M.F. Dimensional Precision of Implant-Supported Frameworks Fabricated by 3D Printing. J. Prosthet. Dent. 2019, 122, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Wemken, G.; Spies, B.C.; Pieralli, S.; Adali, U.; Beuer, F.; Wesemann, C. Do Hydrothermal Aging and Microwave Sterilization Affect the Trueness of Milled, Additive Manufactured and Injection Molded Denture Bases? J. Mech. Behav. Biomed. Mater. 2020, 111, 103975. [Google Scholar] [CrossRef]
- Neena, A.F.; Abd-Ellah, M.E. Trueness of Artificial Teeth for CAD-CAM Complete Dentures Fabricated with Additive Manufacturing Implementing Different Denture Base-Tooth Offset Values: An in Vitro Study. J. Prosthet. Dent. 2024, 131, 705.e1–705.e7. [Google Scholar] [CrossRef]
- Ainoosah, S.; Alzemei, M.S.; Bagabas, O.A.; Binaljadm, T.M.; Farghal, A.E.; Alnazzawi, A.A.; Alqutaibi, A.Y.; Alghauli, M.A. Impact of Digital Manufacturing Methods on the Accuracy of Ceramic Crowns. Int. J. Comput. Dent. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Packaeser, M.G.; Machry, R.V.; Grassi, E.D.A.; Saavedra, G.D.S.F.A.; Kleverlaan, C.J.; Valandro, L.F.; Tribst, J.P.M.; Pereira, G.K.R. Influence of Core Material and Occlusal Contact Pattern on Fatigue Behavior of Different Monolithic Ceramic Crowns. J. Mech. Behav. Biomed. Mater. 2025, 163, 106891. [Google Scholar] [CrossRef]
- Grymak, A.; Badarneh, A.; Ma, S.; Choi, J.J.E. Effect of Various Printing Parameters on the Accuracy (Trueness and Precision) of 3D-Printed Partial Denture Framework. J. Mech. Behav. Biomed. Mater. 2023, 140, 105688. [Google Scholar] [CrossRef]
- Mathur, V.; Dsouza, V.; Srinivasan, V.; Vasanthan, K.S. Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers. ACS Biomater. Sci. Eng. 2025, 11, 156–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, J. Application of 3D Printing Technology in Dentistry: A Review. Polymers 2025, 17, 886. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Joda, T.; Gintaute, A.; Brägger, U.; Ferrari, M.; Weber, K.; Zitzmann, N.U. Time-Efficiency and Cost-Analysis Comparing Three Digital Workflows for Treatment with Monolithic Zirconia Implant Fixed Dental Prostheses: A Double-Blinded RCT. J. Dent. 2021, 113, 103779. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Tsoi, J.K.-H.; Kan, C.; Matinlinna, J.P. A Simple Solution to Recycle and Reuse Dental CAD/CAM Zirconia Block from Its Waste Residuals. J. Prosthodont. Res. 2021, 65, 311–320. [Google Scholar] [CrossRef]
- Duane, B.; Ramasubbu, D.; Harford, S.; Steinbach, I.; Swan, J.; Croasdale, K.; Stancliffe, R. Environmental Sustainability and Waste within the Dental Practice. BDJ Team 2019, 6, 21–29. [Google Scholar] [CrossRef]
- Hassanpour, M.; Narongdej, P.; Alterman, N.; Moghtadernejad, S.; Barjasteh, E. Effects of Post-Processing Parameters on 3D-Printed Dental Appliances: A Review. Polymers 2024, 16, 2795. [Google Scholar] [CrossRef]
- Almutairi, M.D.; Aria, A.I.; Thakur, V.K.; Khan, M.A. Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers 2020, 12, 1534. [Google Scholar] [CrossRef]
- Roppolo, I.; Caprioli, M.; Pirri, C.F.; Magdassi, S. 3D Printing of Self-Healing Materials. Adv. Mater. 2024, 36, 2305537. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L. Significance of 4D Printing for Dentistry: Materials, Process, and Potentials. J. Oral Biol. Craniofacial Res. 2022, 12, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Jahangiri, S.; Zirak Hassan Kiadeh, S.; Rezvaninejad, S.; Ahmadi, Z.; Ahmadi, S.; Safarkhani, M.; Rabiee, N. Stimuli-Responsive Biomaterials: Smart Avenue toward 4D Bioprinting. Crit. Rev. Biotechnol. 2024, 44, 860–891. [Google Scholar] [CrossRef]
- Lebon, N.; Tapie, L. Milled Surface Integrity: Application to Fixed Dental Prosthesis. Crystals 2021, 11, 559. [Google Scholar] [CrossRef]
- Gligorijević, N.; Mihajlov-Krstev, T.; Kostić, M.; Nikolić, L.; Stanković, N.; Nikolić, V.; Dinić, A.; Igić, M.; Bernstein, N. Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials 2022, 12, 2453. [Google Scholar] [CrossRef]
- Fouda, A.; Tonogai, J.; McDermott, P.; Wang, D.; Dong, C.S. A Systematic Review on Patient Perceptions and Clinician-reported Outcomes When Comparing Digital and Analog Workflows for Complete Dentures. J. Prosthodont. 2024. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Nimmo, A.; Behar-Horenstein, L.S. Digital Denture Fabrication in Pre- and Postdoctoral Education: A Survey of U.S. Dental Schools. J. Prosthodont. 2016, 25, 83–90. [Google Scholar] [CrossRef]
- Porcherot, A.; Maniani, I.; Berteretche, M.; Citterio, H.; Fromentin, O.; Rignon-Bret, C.; Braud, A.; Wulfman, C. Use of Digital Tools for Preclinical Training in Complete Denture: A Pilot Study. Eur. J. Dent. Educ. 2024, 28, 292–301. [Google Scholar] [CrossRef]
- Revilla-León, M.; Frazier, K.; Costa, J.D.; Haraszthy, V.; Ioannidou, E.; MacDonnell, W.; Park, J.; Tenuta, L.M.A.; Eldridge, L.; Vinh, R.; et al. Prevalence and Applications of 3-Dimensional Printers in Dental Practice. J. Am. Dent. Assoc. 2023, 154, 355–356.e2. [Google Scholar] [CrossRef]
- Kumar, S.; Gopi, T.; Harikeerthana, N.; Gupta, M.K.; Gaur, V.; Krolczyk, G.M.; Wu, C. Machine Learning Techniques in Additive Manufacturing: A State of the Art Review on Design, Processes and Production Control. J. Intell. Manuf. 2023, 34, 21–55. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria | Rationale |
---|---|---|---|
Study Design | Comparative studies (in vitro, in vivo, clinical trials); systematic reviews (background only) | Non-comparative studies; opinion papers; editorials; conference abstracts without full data | Ensures comparison of methods/technologies; excludes low-evidence sources |
Interventions | Technology comparison, 3D printing and CAD/CAM milling in prosthodontics | Studies with no comparison of technology | Addresses the core research question of technology performance |
Outcomes | Quantitative data on | Qualitative outcomes | Focuses on measurable, clinically relevant parameters for objective analysis |
Accuracy (marginal gap, trueness), | Irrelevant metrics | ||
Efficiency (time, cost) | (e.g., patient satisfaction alone). | ||
Applications | Fixed and Removable Prosthesis on Teeth and Implants | Non-prosthodontic uses (e.g., orthodontics, endodontics) | Maintains focus on prosthodontic applications |
Publication | Peer-reviewed articles (2015–Feb 2025) | Non-peer-reviewed (theses, patents); | Ensures methodological rigor and relevance to current digital workflows. |
English language | Non-English (without translation); pre-2015 |
Study Type | Extraction Focus |
---|---|
In vitro (n = 27) | Accuracy (µm), material properties, efficiency |
Retrospective (n = 1) | Long-term performance data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioloca Holban, C.; Tatarciuc, M.; Vitalariu, A.M.; Vasluianu, R.-I.; Antohe, M.; Diaconu, D.A.; Stamatin, O.; Dima, A.M. Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives. J. Clin. Med. 2025, 14, 4837. https://doi.org/10.3390/jcm14144837
Cioloca Holban C, Tatarciuc M, Vitalariu AM, Vasluianu R-I, Antohe M, Diaconu DA, Stamatin O, Dima AM. Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives. Journal of Clinical Medicine. 2025; 14(14):4837. https://doi.org/10.3390/jcm14144837
Chicago/Turabian StyleCioloca Holban, Catalina, Monica Tatarciuc, Anca Mihaela Vitalariu, Roxana-Ionela Vasluianu, Magda Antohe, Diana Antonela Diaconu, Ovidiu Stamatin, and Ana Maria Dima. 2025. "Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives" Journal of Clinical Medicine 14, no. 14: 4837. https://doi.org/10.3390/jcm14144837
APA StyleCioloca Holban, C., Tatarciuc, M., Vitalariu, A. M., Vasluianu, R.-I., Antohe, M., Diaconu, D. A., Stamatin, O., & Dima, A. M. (2025). Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives. Journal of Clinical Medicine, 14(14), 4837. https://doi.org/10.3390/jcm14144837