Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = acyl homoserine lactone (AHL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3146 KiB  
Article
Quorum-Sensing C12-HSL Drives Antibiotic Resistance Plasmid Transfer via Membrane Remodeling, Oxidative Stress, and RpoS-RMF Crosstalk
by Yang Yang, Ziyan Wu, Li’e Zhu, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1837; https://doi.org/10.3390/microorganisms13081837 - 6 Aug 2025
Abstract
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200 [...] Read more.
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200 μM C12-HSL; p < 0.001), while quorum-quenching by sub-inhibitory vanillin suppressed this effect by 95% (p < 0.0001). C12-HSL compromised membrane integrity via ompF upregulation (4-fold; p < 0.01) and conjugative pore assembly (trbBp upregulated by 1.38-fold; p < 0.05), coinciding with ROS accumulation (1.5-fold; p < 0.0001) and SOS response activation (recA upregulated by 1.68-fold; p < 0.001). Crucially, rpoS and rmf deletion mutants reduced conjugation by 65.5% and 55.8%, respectively (p < 0.001), exhibiting attenuated membrane permeability (≤65.5% reduced NPN influx; p < 0.0001), suppressed ROS (≤54% downregulated; p < 0.0001), and abolished transcriptional induction of conjugation/stress genes. Reciprocal RpoS–RMF (ribosomal hibernation factor) crosstalk was essential for AHL responsiveness, with deletions mutually suppressing expression (≤65.9% downregulated; p < 0.05). We establish a hierarchical mechanism wherein long-chain AHLs drive resistance dissemination through integrated membrane restructuring, stress adaptation, and RpoS–RMF-mediated genetic plasticity, positioning QS signaling as a viable target for curbing resistance spread. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

40 pages, 3175 KiB  
Review
The Causative Agent of Soft Rot in Plants, the Phytopathogenic Bacterium Pectobacterium carotovorum subsp. carotovorum: A Brief Description and an Overview of Methods to Control It
by Alla I. Perfileva, Elena I. Strekalovskaya, Nadezhda V. Klushina, Igor V. Gorbenko and Konstantin V. Krutovsky
Agronomy 2025, 15(7), 1578; https://doi.org/10.3390/agronomy15071578 - 28 Jun 2025
Viewed by 702
Abstract
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: [...] Read more.
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: vegetables, ornamental and medicinal crops, both during vegetation and during the storage of fruits. Symptoms of Pcc damage include the wilting of plants, blackening of vessels on leaves, stems and petioles. At the flowering stage, the stem core gradually wilts and, starting from the root, the stem breaks and the plant dies. Pcc is a rod-shaped, non-capsule and endospore-forming facultative anaerobic Gram-negative bacterium with peritrichous flagellation. Pcc synthesizes bacteriocins—carocins. The main virulence factors of Pcc are the synthesis of N-acyl-homoserine lactone (AHL) and plant cell wall-degrading enzymes (PCWDEs) (pectinases, polygalacturonases, cellulases, and proteases). Diagnostic methods for this phytopathogen include polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), multilocus genotyping of strain-specific genes and detection of unique volatile organic compounds (VOCs). The main methods to control this microorganism include the use of various chemicals (acids, phenols, esters, salts, gases), plant extracts (from grasses, shrubs, trees, and algae), antagonistic bacteria (Bacillus, Pseudomonas, Streptomyces, and lactic acid bacteria), viruses (including a mixture of bacteriophages), and nanomaterials based on metals and chitosan. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 2351 KiB  
Article
Regulatory Mechanisms of Exogenous Acyl-Homoserine Lactones in the Aerobic Ammonia Oxidation Process Under Stress Conditions
by Chen Qiu, Kailing Pan, Yuxuan Wei, Xiaolin Zhou, Qingxian Su, Xuejun Bi and Howyong Ng
Microorganisms 2025, 13(3), 663; https://doi.org/10.3390/microorganisms13030663 - 14 Mar 2025
Viewed by 597
Abstract
This study investigated the mechanism by which N-acyl-homoserine lactone (AHL) signaling molecules influence ammonia-oxidizing microorganisms (AOMs) under inhibitory conditions. In laboratory-scale sequential batch reactors (SBRs), the effects of different AHLs (C6-HSL and C8-HSL) on the metabolic activity, microbial community structure, and quorum sensing [...] Read more.
This study investigated the mechanism by which N-acyl-homoserine lactone (AHL) signaling molecules influence ammonia-oxidizing microorganisms (AOMs) under inhibitory conditions. In laboratory-scale sequential batch reactors (SBRs), the effects of different AHLs (C6-HSL and C8-HSL) on the metabolic activity, microbial community structure, and quorum sensing (QS) system response of AOMs were examined. Caffeic acid, 1-octyne, and allylthiourea were used as ammoxidation inhibitors. The results indicated that under inhibitory conditions, AHLs effectively reduced the loss of ammonia oxidation activity and enhanced the resistance of AOMs to unfavorable environments. Additionally, AHLs enriched AOMs in the microbial community, wherein C6-HSL significantly increased the abundance of amoA genes in AOMs. Furthermore, AHLs maintained the activity of QS-related genes and preserved the communication ability between microorganisms. Correlation analysis revealed a positive relationship between AOMs and QS functional bacteria, suggesting that AHLs can effectively regulate the ammonia oxidation process. Overall, exogenous AHLs can improve the metabolic activity and competitive survival of AOMs under inhibitory conditions. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

11 pages, 1464 KiB  
Article
N-Acyl Homoserine Lactone-Degrading Bacillus sp. Improves the Survival of Penaeus vannamei Larvae Challenged with Vibrio harveyi
by Reinaldo González, Héctor Cabrera, Yufeng Niu, Alessandra Roncarati, Adrian Toledo, Yulaine Corrales, Yanelis Quevedo, Livio Galosi, Peter Bossier and Amilcar Arenal
Microbiol. Res. 2025, 16(3), 56; https://doi.org/10.3390/microbiolres16030056 - 28 Feb 2025
Viewed by 796
Abstract
This study aimed to isolate AHL-degrading bacteria from the intestine of Penaeus vannamei and evaluate their ability to control pathogenic Vibrio harveyi in P. vannamei larvae. Twenty-seven isolates were obtained from the digestive tract of healthy Pacific white shrimp juveniles (P. vannamei [...] Read more.
This study aimed to isolate AHL-degrading bacteria from the intestine of Penaeus vannamei and evaluate their ability to control pathogenic Vibrio harveyi in P. vannamei larvae. Twenty-seven isolates were obtained from the digestive tract of healthy Pacific white shrimp juveniles (P. vannamei) after six cycles of pasteurization at 70 °C, but only three isolates (E1LP2, E2LP1, and E2LP2) could degrade AHL. The 16S sequence results gave a high identity (>95%) with Bacillus sp. The isolates exhibited quorum-quenching abilities by degrading AHLs, thereby disrupting Vibrio quorum sensing and virulence. In Zoea and Mysis, the challenged larvae plus the administration of E1LP2 resulted in the lowest survival compared to the other groups. Isolates degrading N-acyl homoserine lactone improved the survival of shrimp Zoea and Mysis larvae when challenged with pathogenic V. harveyi. This is the first report on the use of quorum-sensing disrupter bacteria in P. vannamei larval shrimp culture. Our findings suggest that these Bacillus spp. strains have potential as biocontrol agents for sustainable shrimp aquaculture, reducing the reliance on antibiotics while mitigating vibriosis outbreaks. Full article
Show Figures

Figure 1

8 pages, 244 KiB  
Proceeding Paper
Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems
by Dimitra Kostoglou and Efstathios Giaouris
Biol. Life Sci. Forum 2024, 40(1), 19; https://doi.org/10.3390/blsf2024040019 - 5 Feb 2025
Cited by 1 | Viewed by 747
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism through which microorganisms can sense their population density and adjust their physiology by producing and detecting small signaling molecules called autoinducers (AIs). QS influences various aspects of microbial physiology, including virulence and pathogenesis by bacterial [...] Read more.
Quorum sensing (QS) is a cell-to-cell communication mechanism through which microorganisms can sense their population density and adjust their physiology by producing and detecting small signaling molecules called autoinducers (AIs). QS influences various aspects of microbial physiology, including virulence and pathogenesis by bacterial pathogens, biofilm formation, sporulation, antimicrobial resistance, etc. Lactic acid bacteria (LAB) have been used for centuries in food fermentation to improve sensory and nutritional profiles and preserve against spoilage and pathogenic microflora. This study investigated the potential of foodborne LAB of various genera, including Lactococcus, Lactobacillus, Leuconostoc, Streptococcus, and Enterococcus, to interfere with the QS system of bacterial pathogens. For this, cell-free supernatants (CFSs) of 89 LAB foodborne isolates were collected by centrifugation following a 20 h culture (at 30 °C) in quarter-strength Brain Heart Infusion (BHI) broth. The pH of all CFSs was adjusted to 6.5 and sterilized by filtration. The anti-QS activity of the sterilized and neutralized CFSs was initially screened using the biosensor strains Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4 (pZLR4) through an agar well diffusion assay that can detect the inhibition of the QS system that is based on acylated homoserine lactones (AHLs), which are used as AIs by Gram-negative bacteria. Additionally, all the CFSs were also screened for interference with the autoinducer 2 (AI-2) QS system that is mostly used for interspecies communication by both Gram-positive and Gram-negative bacteria. This was assessed using a luminescence bioassay with the Vibrio harveyi BAA-1117 biosensor strain. The results indicate that none of the LAB CFSs could inhibit AHL-based QS. However, 61.8% (55/89) of the CFSs induced luminescence in V. harveyi BAA-1117, while the remaining 38.2% (34/89) of the samples were capable of inhibiting AI-2-based QS. In the next steps, the most representative of these latter AI-2 interfering LAB isolates will be investigated for possible inhibition of biofilm formation by some important foodborne bacterial pathogens. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
23 pages, 2968 KiB  
Review
Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities
by Kinga Markowska, Ksenia Szymanek-Majchrzak, Hanna Pituch and Anna Majewska
Int. J. Mol. Sci. 2024, 25(23), 12808; https://doi.org/10.3390/ijms252312808 - 28 Nov 2024
Cited by 7 | Viewed by 4416
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as [...] Read more.
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms. Full article
Show Figures

Figure 1

17 pages, 1835 KiB  
Article
Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency
by Behnaz Soleimani, Heike Lehnert, Adam Schikora, Andreas Stahl, Andrea Matros and Gwendolin Wehner
Microorganisms 2024, 12(10), 1936; https://doi.org/10.3390/microorganisms12101936 - 24 Sep 2024
Viewed by 1279
Abstract
Leaf rust (Puccinia triticina) is a common disease that causes significant yield losses in wheat. The most frequently used methods to control leaf rust are the application of fungicides and the cultivation of resistant genotypes. However, high genetic diversity and associated [...] Read more.
Leaf rust (Puccinia triticina) is a common disease that causes significant yield losses in wheat. The most frequently used methods to control leaf rust are the application of fungicides and the cultivation of resistant genotypes. However, high genetic diversity and associated adaptability of pathogen populations hamper achieving durable resistance in wheat. Emerging alternatives, such as microbial priming, may represent an effective measure to stimulate plant defense mechanisms and could serve as a means of controlling a broad range of pathogens. In this study, 175 wheat genotypes were inoculated with two bacterial strains: Ensifer meliloti strain expR+ch (producing N-acyl homoserine lactone (AHL)) or transformed E. meliloti carrying the lactonase gene attM (control). In total, 21 genotypes indicated higher resistance upon bacterial AHL priming. Subsequently, the phenotypic data of 175 genotypes combined with 9917 single-nucleotide polymorphisms (SNPs) in a genome-wide association study to identify quantitative trait loci (QTLs) and associated markers for relative infection under attM and expR+ch conditions and priming efficiency using the Genome Association and Prediction Integrated Tool (GAPIT). In total, 15 QTLs for relative infection under both conditions and priming efficiency were identified on chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 6A, and 6B, which may represent targets for wheat breeding for priming and leaf-rust resistance. Full article
(This article belongs to the Special Issue Harnessing Beneficial Microbiota in Sustainable Agriculture)
Show Figures

Figure 1

8 pages, 1416 KiB  
Communication
Comparison of Biofilm Growth and Quorum Sensing Molecules in Vaginal Lactobacillus Species: A Preliminary Report
by Asley Sanchez, Fnu Alimiran, Kushal Gandhi, Samuel David, Christopher B. Babayco, Chloe Fiveash, John Garza, Duc Le, Triet Le, Athenia Oldham, Douglas Henderson, Michael Galloway and Gary Ventolini
Microbiol. Res. 2024, 15(3), 1486-1493; https://doi.org/10.3390/microbiolres15030100 - 8 Aug 2024
Viewed by 1416
Abstract
Recently, studies suggest that the protective effects of Lactobacillus within the female reproductive tract may be partly due to their ability to form biofilms. This study aims to explore the possibility that Lactobacillus can produce key mediators to further bolster the survival of [...] Read more.
Recently, studies suggest that the protective effects of Lactobacillus within the female reproductive tract may be partly due to their ability to form biofilms. This study aims to explore the possibility that Lactobacillus can produce key mediators to further bolster the survival of biofilms in human vaginal microbiomes. Three bacterial species, namely, Lactobacillus gasseri, L. crispatus, and L. jensenii, sourced from human female subjects were used to carry out experiments examining the growth of biofilms using a microfermenter system. The bacteria were used to inoculate a glass rod spatula which was subsequently transferred to the microfermenter system. The resulting biofilm growing on the glass spatula was harvested in media and stored in a −80 °C freezer for gas chromatography–mass spectroscopy analysis. We found that quorum sensing compounds, acyl homoserine lactones (AHLs), were detected in the biofilm of L. crispatus and L. jensenii, but none were detected in L. gasseri. The biofilm produced by L. crispatus and L. jensenii was much higher in quantity than the biofilm produced by L. gasseri. Aside from oligopeptides quorum sensing, lactobacilli were found to also have AHL compounds that may help them produce more biofilms and improve the survival and growth of their bacterial communities in the female genital area. Full article
Show Figures

Figure 1

7 pages, 1232 KiB  
Communication
N-Acyl Homoserine Lactone Production by the Marine Isolate, Dasania marina
by Fnu Alimiran, Samuel David, Scott Birks, Athenia Oldham and Douglas Henderson
Microorganisms 2024, 12(7), 1496; https://doi.org/10.3390/microorganisms12071496 - 22 Jul 2024
Viewed by 1230
Abstract
Dasania marina (isolate SD1D, with 98.5% sequence similarity to Dasania marina DMS 21967 KOPRI 20902) is a marine bacterium that was isolated from ballast tank fluids as part of a biofilm study in 2014. Our previous work indicated that although this strain produced [...] Read more.
Dasania marina (isolate SD1D, with 98.5% sequence similarity to Dasania marina DMS 21967 KOPRI 20902) is a marine bacterium that was isolated from ballast tank fluids as part of a biofilm study in 2014. Our previous work indicated that although this strain produced no detectable biofilm, it was the only isolate to produce N-acyl homoserine lactones (AHLs) in assays using the broad-range reporter strain, Agrobacterium tumefaciens KYC55. The goal of the current study was to determine the types of AHL molecules produced by the D. marina isolate using gas chromatography–mass spectroscopy (GCMS) and C4- to C14-AHL as standards. A time course assay indicated that the D. marina strain produced the highest level of AHLs at 20 h of growth. When extracts were subjected to GCMS, detectable levels of C8- and C10-AHL and higher levels of C12-AHL were observed. Interestingly, several biofilm-forming isolates obtained from the same source also produced detectable amounts of several AHLs. Of the isolates tested, a strain designated SD5, with 99.83% sequence similarity to Alteromonas tagae BCRC 17571, produced unstable biofilms, yet detectable levels of C6-, C8-, C10- and C12-AHL, and isolate SD8, an Alteromonas oceani S35 strain (98.85% sequence similarity), produced robust and stable biofilms accompanied by detectable levels of C8- and C12-AHL. All isolates tested produced C12-AHL at higher levels than the other AHLs. Results from this study suggest that quorum sensing and biofilm formation are uncoupled in D. marina. Whether the suite of AHLs produced by this isolate could modulate biofilm formation in other strains requires further study. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

16 pages, 4699 KiB  
Review
Cyanobacterial Bloom Formation by Enhanced Ecological Adaptability and Competitive Advantage of Microcystis—Non-Negligible Role of Quorum Sensing
by Ziqing Zhang and Jieming Li
Microorganisms 2024, 12(7), 1489; https://doi.org/10.3390/microorganisms12071489 - 20 Jul 2024
Cited by 3 | Viewed by 1997
Abstract
Microcystis-dominated cyanobacterial blooms (MCBs) frequently occur in freshwaters worldwide due to massive Microcystis colony formation and severely threaten human and ecosystem health. Quorum sensing (QS) is a direct cause of Microcystis colony formation that drives MCBs outbreak by regulating Microcystis population characteristics [...] Read more.
Microcystis-dominated cyanobacterial blooms (MCBs) frequently occur in freshwaters worldwide due to massive Microcystis colony formation and severely threaten human and ecosystem health. Quorum sensing (QS) is a direct cause of Microcystis colony formation that drives MCBs outbreak by regulating Microcystis population characteristics and behaviors. Many novel findings regarding the fundamental knowledge of the Microcystis QS phenomenon and the signaling molecules have been documented. However, little effort has been devoted to comprehensively summarizing and discussing the research progress and exploration directions of QS signaling molecules-mediated QS system in Microcystis. This review summarizes the action process of N-acyl homoserine lactones (AHLs) as major signaling molecules in Microcystis and discusses the detailed roles of AHL-mediated QS system in cellular morphology, physiological adaptability, and cell aggregation for colony formation to strengthen ecological adaptability and competitive advantage of Microcystis. The research progress on QS mechanisms in Microcystis are also summarized. Compared to other QS systems, the LuxI/LuxR-type QS system is more likely to be found in Microcystis. Also, we introduce quorum quenching (QQ), a QS-blocking process in Microcystis, to emphasize its potential as QS inhibitors in MCBs control. Finally, in response to the research deficiencies and gaps in Microcystis QS, we propose several future research directions in this field. This review deepens the understanding on Microcystis QS knowledge and provide theoretical guidance in developing strategies to monitor, control, and harness MCBs. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 2679 KiB  
Article
An In-Depth Study on the Inhibition of Quorum Sensing by Bacillus velezensis D-18: Its Significant Impact on Vibrio Biofilm Formation in Aquaculture
by Luis Monzón-Atienza, Jimena Bravo, Silvia Torrecillas, Antonio Gómez-Mercader, Daniel Montero, José Ramos-Vivas, Jorge Galindo-Villegas and Félix Acosta
Microorganisms 2024, 12(5), 890; https://doi.org/10.3390/microorganisms12050890 - 29 Apr 2024
Cited by 5 | Viewed by 2509
Abstract
Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain [...] Read more.
Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 3051 KiB  
Article
Chitosan–Aspirin Combination Inhibits Quorum-Sensing Synthases (lasI and rhlI) in Pseudomonas aeruginosa
by Mona Shaban E. M. Badawy, Omnia Karem M. Riad, Marwa F. Harras, Reem Binsuwaidan, Asmaa Saleh and Samar A. Zaki
Life 2024, 14(4), 481; https://doi.org/10.3390/life14040481 - 5 Apr 2024
Cited by 2 | Viewed by 2089
Abstract
Background: Quorum sensing (QS) controls the virulence of P. aeruginosa. This study aims to determine the anti-QS activity of aspirin alone and in combination with chitosan to reach maximum inhibition. We tested ten virulent Pseudomonas aeruginosa (P. aeruginosa) isolates and [...] Read more.
Background: Quorum sensing (QS) controls the virulence of P. aeruginosa. This study aims to determine the anti-QS activity of aspirin alone and in combination with chitosan to reach maximum inhibition. We tested ten virulent Pseudomonas aeruginosa (P. aeruginosa) isolates and screened for N-acyl homoserine lactone (AHL) production using Agrobacterium tumefaciens as a biosensor. P. aeruginosa isolates were treated with sub-minimum inhibitory concentrations (MICs) of aspirin and chitosan–aspirin. We used broth microdilution and checkerboard titration methods to determine the MICs and the synergistic effect of these two compounds, respectively. Real-time polymerase chain reaction (PCR) was used to estimate the anti-QS activity of the aspirin–chitosan combination on the expression of lasI and rhlI genes. Results: Aspirin decreased the motility and production of AHLs, pyocyanin, and biofilm. Chitosan potentiated the inhibitory effect of aspirin. The chitosan–aspirin combination inhibited lasI and rhlI gene expression in PAO1 (ATCC 15692) by 7.12- and 0.92-fold, respectively. In clinical isolates, the expression of lasI and rhlI was decreased by 1.76 × 102- and 1.63 × 104-fold, respectively. Molecular docking analysis revealed that aspirin could fit into the active sites of the QS synthases lasI and rhlI with a high binding affinity, causing conformational changes that resulted in their inhibition. Conclusions: The chitosan–aspirin combination provides new insights into treating virulent and resistant P. aeruginosa. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

22 pages, 3573 KiB  
Article
Effect of Matricaria aurea Essential Oils on Biofilm Development, Virulence Factors and Quorum Sensing-Dependent Genes of Pseudomonas aeruginosa
by Haitham Qaralleh, Sultan Ayesh Mohammed Saghir, Muhamad O. Al-limoun, Saif M. Dmor, Khaled Khleifat, Basma Ezzat Mustafa Al-Ahmad, Laila Al-Omari, Yasser Tabana, Ramzi A. Mothana, Hanan M. Al-Yousef and Abdulaziz M. Alqahtani
Pharmaceuticals 2024, 17(3), 386; https://doi.org/10.3390/ph17030386 - 18 Mar 2024
Cited by 9 | Viewed by 2854
Abstract
The emergence of drug-resistant microorganisms presents a substantial global public health threat. The increase in pathogens resistant to commonly prescribed antibiotics underscores the urgent requirement to explore alternative treatment strategies. This study adopts a novel approach by harnessing natural resources, specifically essential oils [...] Read more.
The emergence of drug-resistant microorganisms presents a substantial global public health threat. The increase in pathogens resistant to commonly prescribed antibiotics underscores the urgent requirement to explore alternative treatment strategies. This study adopts a novel approach by harnessing natural resources, specifically essential oils (EO), to combat bacterial pathogenicity. The primary aim of this research was to analyze the chemical composition of the aerial part of the Matricaria aurea (M. aureas) EO and evaluate its potential for inhibiting quorum sensing (QS) and disrupting biofilm formation in Pseudomonas aeruginosa (P. aeruginosa). The gas chromatography-mass spectrometry (GCMS) analysis unveiled that α-bisabolol oxide A constituted the predominant portion, comprising 64.8% of the total, with β-bisabolene at 6.3% and α-farnesene at 4.8% following closely behind. The antibiofilm efficacy was observed at concentrations of 0.3, 0.15, and 0.08 mg/mL, demonstrating negligible effects on cell viability. Furthermore, the EO from M. aurea effectively inhibited the formation of P. aeruginosa biofilms by diminishing aggregation, hydrophobicity, and swarming motility. Significantly, the EO treatment resulted in a conspicuous decrease in the production of pyocyanin, rhamnolipid, and extracellular polymeric substances (EPS), along with a reduction in the enzymatic activity of protease and chitinase. The EO effectively hindered QS by disrupting QS mechanisms, resulting in a marked decline in the secretion of N-Acyl homoserine lactone (AHL) molecules and the expression of phazA1 and aprA genes. This investigation offers compelling evidence supporting the potential of M. aurea EO as a promising therapeutic candidate for addressing infectious diseases induced by biofilm formation. Full article
(This article belongs to the Special Issue Natural Anti-Biofilm Agents)
Show Figures

Figure 1

12 pages, 2475 KiB  
Article
The Effect of Bacterial AHL on the Cyclic Adenosine Monophosphate Content in Plants According to High-Performance Liquid Chromatography
by Xuemeng Zhao, Wen Li, Xiliu Li, Zhenhua Jia, Shuishan Song and Qian Zhao
Molecules 2024, 29(5), 1074; https://doi.org/10.3390/molecules29051074 - 29 Feb 2024
Cited by 1 | Viewed by 1562
Abstract
Cyclic adenosine monophosphate (cAMP) is an important second messenger in cells, mediating various stimulation signals such as the growth and development of organisms and stress and participating in regulating various biological processes of cells. This article explores the quantitative determination of cAMP in [...] Read more.
Cyclic adenosine monophosphate (cAMP) is an important second messenger in cells, mediating various stimulation signals such as the growth and development of organisms and stress and participating in regulating various biological processes of cells. This article explores the quantitative determination of cAMP in plants using High-Performance Liquid Chromatography (HPLC) and applies this method to analyzing the changes in cAMP content during the process of plant response to the bacterial quorum sensing signal N-acyl homoserine lactone (AHL). Research has shown that the optimal detection conditions for HPLC are as follows: the chromatographic column is Venusil MP C18 (2), the mobile phase is methanol–water (0.1% trifluoroacetic acid) (v:v, 10:90), the detection wavelength is 259 nm, the column temperature is 35 °C, and the flow rate is 0.8 mL/min. The precision of the standard sample of this method is 98.21%, the precision of the sample is 98.87%, and the recovery rate is 101.067%. The optimal extraction conditions for cAMP in Arabidopsis are to use 15% methanol ultrasonic extraction for 10 min, followed by a 40 °C water bath for 4 h. Bacterial AHL signal processing can significantly stimulate an increase in cAMP levels in Arabidopsis leaves and roots. The establishment of HPLC detection methods for the cAMP content in plants is of great significance for in-depth research on the signal transduction mechanisms of plant–bacterial interactions. Full article
Show Figures

Figure 1

18 pages, 8717 KiB  
Article
Comprehensive Similarity Algorithm and Molecular Dynamics Simulation-Assisted Terahertz Spectroscopy for Intelligent Matching Identification of Quorum Signal Molecules (N-Acyl-Homoserine Lactones)
by Lintong Zhang, Xiangzeng Kong, Fangfang Qu, Linjie Chen, Jinglin Li, Yilun Jiang, Chuxin Wang, Wenqing Zhang, Qiuhua Yang and Dapeng Ye
Int. J. Mol. Sci. 2024, 25(3), 1901; https://doi.org/10.3390/ijms25031901 - 5 Feb 2024
Viewed by 2115
Abstract
To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, [...] Read more.
To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

Back to TopTop