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Abstract: Background: Quorum sensing (QS) controls the virulence of P. aeruginosa. This study aims
to determine the anti-QS activity of aspirin alone and in combination with chitosan to reach maxi-
mum inhibition. We tested ten virulent Pseudomonas aeruginosa (P. aeruginosa) isolates and screened
for N-acyl homoserine lactone (AHL) production using Agrobacterium tumefaciens as a biosensor.
P. aeruginosa isolates were treated with sub-minimum inhibitory concentrations (MICs) of aspirin and
chitosan–aspirin. We used broth microdilution and checkerboard titration methods to determine the
MICs and the synergistic effect of these two compounds, respectively. Real-time polymerase chain
reaction (PCR) was used to estimate the anti-QS activity of the aspirin–chitosan combination on the
expression of lasI and rhlI genes. Results: Aspirin decreased the motility and production of AHLs,
pyocyanin, and biofilm. Chitosan potentiated the inhibitory effect of aspirin. The chitosan–aspirin
combination inhibited lasI and rhlI gene expression in PAO1 (ATCC 15692) by 7.12- and 0.92-fold,
respectively. In clinical isolates, the expression of lasI and rhlI was decreased by 1.76 × 102- and
1.63 × 104-fold, respectively. Molecular docking analysis revealed that aspirin could fit into the
active sites of the QS synthases lasI and rhlI with a high binding affinity, causing conformational
changes that resulted in their inhibition. Conclusions: The chitosan–aspirin combination provides
new insights into treating virulent and resistant P. aeruginosa.
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1. Background

P. aeruginosa is a pathogenic Gram-negative bacterium found in hospitals, especially
in burn units and implanted medical devices [1]. It can survive under drastic conditions as
it has many virulence factors regulated by QS [2].

The main QS systems of Pseudomonas aeruginosa are dependent on the two-component
systems (TCSs) lasI/lasR, rhlI/rhlR, PqsABCDE/PqsR (MvfR), and AmbBCDE/IqsR. These
TCSs participate in the collective reaction to extracellular signaling autoinducer molecules,
including N-(3-oxododecanoyl) homoserine lactone (3-Oxo-C12-HSL), encoded by lasI;
N-butyryl-L-homoserine lactone (C4-HSL), encoded by rhlI; 2-heptyl-3-hydroxy-4-quinolone
(PQS), encoded by PqsABCD and PqsH; and 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde
(IQS), encoded by AmbBCDE [3]. The autoinducer 3OH-C12-HSL activates the transcrip-
tion factor lasR in the las system, which subsequently drives the expression of lasI, which
initiates the synthesis of exotoxin A, LasA protease, and LasB elastase. By binding to and
interacting with rhlR in the rhl TCS, the autoinducer C4-HSL increases RhlI expression
and triggers the controlled synthesis of cytotoxic lectins, rhamnolipids, lasB elastase, and
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pyocyanin, all of which are essential for virulence and the formation and development of
biofilms. The QS systems Las, Rhl, Pqs, and Iqs are interconnected hierarchically [4,5].

Since the QS mechanism and its critical role in bacterial virulence were discovered, novel
targets have been identified for reducing bacterial pathogenicity. QS can be disrupted using
natural microbial products, which are integral for developing novel therapeutic chemicals [6].
The continuous emergence of multidrug-resistant (MDR) pathogens necessitates using QS
inhibition methods instead of bactericidal and bacteriostatic techniques to avoid virulence [7].

As several clinically relevant bacteria become increasingly resistant to commonly used
antimicrobial agents, the focus has shifted to developing novel antimicrobial therapeutics
from different pharmacological classes. Using drugs with varying properties, physiological
activities, and functions might benefit different areas of medicine. This has led to the
realization that drugs from other pharmacological classes might exhibit possible antimi-
crobial activity [8]. Non-steroidal anti-inflammatory drugs (NSAIDs) have shown potent
antimicrobial activity against several Gram-positive and Gram-negative bacteria, with
MICs ranging between 50 and 200 g mL−1 and even lower in some cases [9].

Even though aspirin is mainly used to treat pain, it exhibits broad-spectrum antimi-
crobial activity against some planktonic and biofilm cultures [10]. El-Mowafy et al. [11]
demonstrated that aspirin could effectively inhibit QS, virulence, and toxins in P. aeruginosa.
Moreover, chitosan displayed anti-QS activity by inhibiting the P. aeruginosa lasI and rhlI
genes, which control QS [12,13].

This study aims to examine the effect of an aspirin–chitosan combination on the
virulence factors of P. aeruginosa, which are controlled by QS (including motility, pyocyanin
production, and biofilm formation), and on the expression of the lasI and rhlI genes. We
also investigated the structural basis of aspirin’s inhibitory activity. We applied molecular
docking to explore the possible interactions and the binding pattern of aspirin to the lasI
and rhlI active sites.

2. Methods

We selected 10 clinical P. aeruginosa isolates, which were previously screened from
100 isolates based on motility, QS activity, biofilm, and pyocyanin production [13]. Their
antimicrobial susceptibility pattern, motility, biofilm formation, pyocyanin, and acyl ho-
moserine production, along with the minimum inhibitory concentration (MIC) of chitosan,
were also previously reported [13]. We evaluated the effects of aspirin and the aspirin–
chitosan combination on these isolates.

2.1. Bacterial Strains and Media

We used the standard P. aeruginosa strain PAO1 (ATCC 15692) and the ten previously
studied clinical isolates [13]. From frozen culture stocks (−80 ◦C), they were sub-cultured
in a nutrient-rich Luria–Bertani broth containing 1% peptone, 0.5% yeast extract, and 1%
sodium chloride (pH 7.4) at 37 ◦C for 24 h, with shaking [13]. The motility of the P. aeruginosa
isolates was tested using swimming [14] and swarming media [15]. A pyocyanin assay was
conducted using King A broth medium [16].

A. tumefaciens KYC55 (pJZ372; pJZ384; pJZ410) was used as a biosensor for the AHLs.
A. tumefaciens was cultured in AT limited salt medium supplemented with 100 g mL−1

spectinomycin, 100 g mL−1 gentamicin, and 4 g mL−1 tetracycline to preserve the required
plasmids [17]. The antibiotics and chemicals were purchased from Sigma-Aldrich, Germany.

2.2. Inhibitory Activity of Aspirin and Chitosan–Aspirin against P. aeruginosa Virulence Factors
2.2.1. Determination of MICs of Aspirin and Chitosan–Aspirin

The MICs of aspirin (10 mg/mL) and chitosan (26.666 mg/mL) were determined
using broth microdilution, as recommended by CLSI [18]. The preparation of aspirin
and chitosan and the determination of the MICs and sub-MICs were performed based
on [13,18]. In brief, the tested agents were used for preparing 2-fold serial dilutions in
MHB. Diluted tested agents were inoculated with 5 µL P. aeruginosa culture, equivalent to a
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0.5 McFarland standard, and incubated at 37 ◦C for 24 h. The MIC was calculated as the
lowest concentration of tested agents that inhibited the visible growth of the organism.

Chitosan (26.666 mg/mL) was mixed with aspirin (10 mg/mL) to determine the
synergism between the two compounds using an interaction (synergy) study based on the
checkerboard titration method. For antimicrobial combinations, the fractional inhibitory
concentration (FIC) index was determined using the following equation:

FIC index = FICA + FICB = A/MICA + B/MICB

where MICA and MICB are the MICs of chitosan and aspirin alone, and A and B are the
MICs of the chitosan–aspirin in combination [19].

2.2.2. Phenotypic Identification of Aspirin and Chitosan–Aspirin Inhibitory Activity

The isolates were treated with the sub-MICs of aspirin and chitosan–aspirin, as pre-
viously described by Badawy et al. [13], to observe their effect on P. aeruginosa virulence
factors (QS activity, motility, biofilm, and pyocyanin production).

2.2.3. Genotypic Identification of Chitosan–Aspirin Inhibitory Activity

RNA was extracted from the P. aeruginosa clinical isolates and PAO1 using Gene JET
RNA Purification Kit (Thermo Scientific, Lithuania, Vilnius, Caracas, Venezuela) according
to the manufacturer’s guidelines. Thermo Scientific Verso SYBR Green 1-Step QRT-PCR and
ROX Vial (Thermo Scientific, Lithuania) kits were used to synthesize the complementary
DNA from the RNA. Real-time PCR was used to evaluate the effect of sub-MICs of chitosan–
aspirin on the QS genes (lasI and rhlI) in the treated and untreated cultures using the primers
for lasI, rhlI, and ropD. All experiments were performed in duplicates. ropD is the used
reference genes to normalize the results in real time PCR. The following primers were used
for the amplification of rhlI forward 5′-GTAGCGGGTTTGCGGATG-3′ and rhlI reverse
5′-CGGCATCAGGTCTTCATCG-3′; lasI forward, 5′-CGCACATCTGGGAACTCA-3′ and
lasI reverse 5′-CGGCACGGATCATCATCT-3′; ropD forward, 5′-CGAACTGCTTGCCGACTT-
3′ and ropD reverse, 5′-GCGAGAGCCTCAAGGATAC-3′ [20]. The primer sequences were
checked using the Basic Local Alignment Search Tool (BLAST) (NCBI).

2.3. Homology Modeling

The rhlI synthase domain sequence, obtained from the UniProtKB database (www.
uniprot.org, entry P5429, accessed on 2 March 2022), was utilized to search for the tem-
plates with high identity from the Protein Data Bank (PDB) database. The best-matched
template (PDB ID: 3P2H) with 37.99% sequence identity was selected to build the homology
model using the Swiss model (www.swissmodel.expasy.org/ accessed on 4 March 2022).
ModRefiner was used for protein refinement and energy minimization.

2.3.1. Homology Model Validation

The generated 3D model of the rhlI synthase was validated using PROCHECK to
calculate the Ramachandran plot and ERRAT scores to investigate the energy criteria of
this model with the template structure.

2.3.2. Molecular Docking

We performed semi-flexible molecular docking using Vina Autodock V1.5.7, freely
available software. The crystal structures of lasI were retrieved from the PDB (PDB ID:
1RO5), while the rhlI 3D structure was built using homology modeling. For docking using
Vina Autodock, the ligand and receptor were adjusted in PDBQT format. Additionally,
the coordinates and dimensions of the grid box around the binding sites were determined
using M.G.L tools, and the docking simulation was conducted. The molecular docking
results were visualized using the Biovia discovery-studio 2020 visualizer to generate the
predicted interactions in 2D and 3D modes for aspirin (https://3dsbiovia.com/resource-
center/downloads/ accessed on 20 April 2022).

www.uniprot.org
www.uniprot.org
www.swissmodel.expasy.org/
https://3dsbiovia.com/resource-center/downloads/
https://3dsbiovia.com/resource-center/downloads/
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2.4. Statistical Analyses

IBM SPSS® Statistics version 22 (IBM® Corp., Armonk, NY, USA) was used for the
statistical analyses. The values were expressed as the mean and standard deviation (SD)
or median and range, whichever was applicable. Frequency and percentage were used to
express the qualitative data.

3. Results

The highly virulent P. aeruginosa isolates (n = 10) displayed motility, QS, biofilm
formation, and pyocyanin production, as previously mentioned [13]. The antibiogram of
those virulent isolates proved that 30% were MDR while 70% were non-MDR.

3.1. Inhibitory Activity of Aspirin and Chitosan–Aspirin against P. aeruginosa Virulence Factors
3.1.1. MICs of Aspirin and Chitosan–Aspirin

The MIC values of aspirin and chitosan–aspirin ranged from 0.156 to 2.5 and 0.035 to
0.143 mg mL−1, respectively. The results of interaction studies between the chitosan and
aspirin revealed the presence of synergism between them (Table 1). The FIC indexes were
interpreted as follows: ≤0.5, synergy; 0.5–4.0, neutral; and >4.0, antagonism.

Table 1. Interaction studies between chitosan and aspirin.

Isolate
No.

MIC of
Aspirin

MIC of
Chitosan

MIC of Aspirin in
Combination

MIC of Chitosan in
Combination

MIC of
Ch.–Asp.

FIC
Index Interpretation

ps34 0.625 0.052 0.156 0.013 0.071 0.499 Synergism
ps36 2.5 0.416 0.3125 0.052 0.071 0.25 Synergism
ps37 1.25 0.416 0.156 0.104 0.017 0.37 Synergism
ps45 1.25 1.666 0.3125 0.208 0.071 0.37 Synergism
ps47 1.25 0.208 0.156 0.026 0.035 0.24 Synergism
ps62 0.625 0.104 0.07 0.013 0.035 0.23 Synergism
ps63 1.25 0.104 0.3125 0.026 0.143 0.5 Synergism
ps88 1.25 0.104 0.156 0.013 0.143 0.24 Synergism
ps99 1.25 0.104 0.156 0.013 0.143 0.24 Synergism

ps100 1.25 0.208 0.3125 0.013 0.071 0.31 Synergism
PAO1 0.156 0.052 0.07 0.0065 0.071 0.5 Synergism

3.1.2. Phenotypic Identification of Aspirin and Chitosan–Aspirin’s Inhibitory Activity

Aspirin reduced AHL, pyocyanin, and biofilm formation in PAO1 and the virulent
clinical isolates (Table 2). Biofilm formation was also inhibited in the clinical isolates, and
the optical density (OD) of the mean (±SD) was reduced from 0.240 to 0.075 to 0.012 to 0.005
after treatment with the sub-MIC of aspirin (Table 2). Aspirin decreased the production
of pyocyanin in PAO1 from 19.88 to 11.41 µg mL−1. It also decreased the mean (±SD)
pyocyanin production from 21.96 (±8.19) to 12.24 (±2.623) µg mL−1 in the clinical isolates
(Table 2).

Aspirin significantly decreased AHL production in all the strains. Swimming and
swarming motility were also reduced in all isolates after treatment with the sub-MIC of
aspirin (Table 2, Figure 1).

Combining chitosan with aspirin significantly increased the chitosan’s inhibitory
activity (p-value = 0.01). We observed a substantial drop in AHL production as the mean
zone diameters of the clinical isolates decreased from 2 (±0) to 0.4 (±0.5). The concentration
of pyocyanin produced by the standard strain PAO1 was decreased from 19.888 to 6.196,
and the mean of pyocyanin production by the clinical isolates was decreased from 21.963
(±8.192) to 6.353 (±01.337). Aspirin–chitosan decreased biofilm development (the OD of
PAO1 was reduced to 0.01, mean ODs of the clinical isolates were reduced from 0.24 to
0.010 (±0.001)). Motility, i.e., swimming, and swarming activities were reduced from 5.9
(±0.7) and 5.6 (±1.0) to 2.9 (±0.3) and 2.3 (±0.5) mm, respectively (Table 2).
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Table 2. Effects of aspirin and chitosan–aspirin on P. aeruginosa virulence factors.

Swimming
Motility, 24 h. (mm)

Swarming
Motility, 24 h. (mm)

Biofilm
Formation (Å) Pyocyanin (µg mL−1) QS (Score)

C Ch Asp. Ch.–Asp. C Ch Asp. Ch.–Asp. C Ch Asp. Ch.–Asp. C Ch Asp. Ch.–Asp. C Ch Asp. Ch–Asp.

PAO1 7 4 3 3 5 5 2 2 0.21 (+2) 0.012 (0) 0.018 (0) 0.01 (0) 19.88 7.68 11.41 6.196 (0) (0) (0) (0)
Clinical isolates

ps34 6 6 4 3 4 4 3 2 0.22 (+2) 0.011 (0) 0.013 (0) 0.009 (0) 25.69 8.51 12.90 6.393 (+2) (+1) (+1) (0)
ps36 6 6 2 2 6 3 2 2 0.24 (+2) 0.025 (0) 0.025 (0) 0.012 (0) 8.826 5.83 7.68 5.852 (+2) (0) (0) (0)
ps37 7 7 3 3 5 3 2 2 0.26 (+2) 0.01 (0) 0.009 (0) 0.008 (0) 16.48 4.06 10.82 5.166 (+2) (0) (+1) (0)
ps45 5 3 3 3 7 3 2 2 0.2 (+2) 0.012 (0) 0.01 (0) 0.013 (0) 15.71 4.56 14.50 5.387 (+2) (+1) (+1) (+1)
ps47 5 5 3 3 6 3 3 3 0.23 (+2) 0.014 (0) 0.01 (0) 0.009 (0) 31.22 6.51 17.17 7.336 (+2) (+1) (+1) (+1)
ps62 6 6 3 3 7 4 2 2 0.24 (+2) 0.016 (0) 0.01 (0) 0.01 (0) 11.94 6.24 9.679 6.820 (+2) (0) (0) (0)
ps63 5 5 3 3 5 5 2 2 0.44 (+3) 0.044 (0) 0.011 (0) 0.011 (0) 28.61 7.57 13.21 4.228 (+2) (+1) (+1) (+1)
ps88 6 5 3 3 5 4 3 3 0.18 (+1) 0.011 (0) 0.009 (0) 0.01 (0) 23.74 3.82 11.11 7.323 (+2) (0) (+1) (+1)
ps99 6 4 4 3 6 5 5 2 0.18 (+1) 0.097 (0) 0.012 (0) 0.011 (0) 32.15 6.04 12.85 8.954 (+2) (0) (+1) (0)
ps100 7 4 3 3 5 4 2 2 0.21 (+2) 0.01 (0) 0.009 (0) 0.01 (0) 25.23 5.70 12.46 6.075 (+2) (0) (+1) (0)
Mean

(n = 10) 5.9 5.1 3.1 2.9 5.6 3.8 2.6 2.3 0.240 0.025 0.012 0.010 21.963 5.89 12.24 6.353 2 0.4 0.7 0.4

±SD 0.7 1.2 0.6 0.3 1 0.8 1 0.5 0.075 0.027 0.005 0.001 8.192 1.47 2.623 1.337 0 5 0.5 0.5

C: control without aspirin or chitosan–aspirin, Ch: chitosan, Asp.: aspirin, Ch.–Asp.: chitosan–aspirin, Å: absorbance. The strength of biofilm production was graded on a scale of
0 to 3 based on the OD, as follows: OD ≤ 0.09 = none (0); 0.09 < OD ≤ 0.18 = weak (1+); 0.18 < OD ≤ 0.36 = moderate (2+); 0.36 < OD = strong (3+). The QS capacity was scored from 0 to
+2 based on the intensities of AHL processing, as follows: zone diameter (mm) = none (0); mm ≤ 2.5 = moderate; 2.5 < mm = strong.
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Figure 1. Swimming and swarming motility assay. Swimming and swarming motility were inhibited
by aspirin (b,f) and chitosan–aspirin (c,d), respectively; (a,e) represent the swimming and swarming
motility controls, respectively.

3.1.3. Genotypic Identification of Chitosan–Aspirin’s Inhibitory Activity

The chitosan–aspirin combination significantly increased chitosan’s inhibitory activity
at the genotypic level (p-value = 0.01). In several virulent isolates, chitosan–aspirin induced
a greater decrease in the expression of lasI and rhlI genes than chitosan alone, with tran-
scription of lasI and rhlI being decreased by 1.76 × 102- and 1.63 × 104-fold, respectively.
After treatment with chitosan–aspirin, the values ranged from 0.47 to 3.95 × 109 in lasI and
from 1.73 to 1.83 × 107 in rhlI. Table 3 shows that the lasI expression in PAO1 was reduced
by 7.12-fold after treatment with chitosan–aspirin.

Table 3. Measurement of LasI and RhlI expression in P. aeruginosa after treatment with chitosan–
aspirin.

Cycle Threshold (CT) of lasI Inhibition of lasI Cycle Threshold (CT) of rhlI Inhibition of rhlI

C Ch. Ch.–Asp. Ch. Ch.–Asp. C Ch. Ch.–Asp. Ch. Ch.–Asp.

PAO1 21.7 22.8 23.5 1.39 7.12 16.2 17.8 18.9 2.09 0.92

Clinical isolates (n = 10)

ps34 18.7 23.0 21.0 84.5 1.0 13.7 23.0 21.0 2.70 × 103 2.28 × 102

ps36 16.5 20.8 18.0 1.11 × 102 1.65 × 102 15.2 17.5 19.4 25.6 6.6

ps37 13.0 19.3 18.9 5.26 × 102 1.40 × 102 16.4 22.6 39.0 4.71 × 102 1.83 × 107

ps45 20.6 21.6 24.5 36.0 1.86 × 102 19.4 21.3 35.1 68.17 5.11 × 105

ps47 24.8 26.8 26.8 7.76 5.87 20.8 23.5 24.1 12.99 4.51 × 102

ps62 19.9 21.4 23.0 1.64 3.57 × 106 19.0 20.2 20.3 1.40 1.73

ps63 16.2 18.1 37.0 16.73 4.34 × 103 16.2 18.1 33.6 16.73 3.41 × 105

ps88 11.7 27.5 23.9 9.357 × 104 5.91 × 103 10.4 23.9 29.4 1.85 × 104 4.8 × 105

ps99 20.4 32.0 32.2 2.70 × 103 3.95 × 109 14.1 16.3 16.7 3.802 9.53

ps100 4.6 31.7 37.0 9.46 × 107 0.47 6.4 16.1 21.9 5.77 × 102 3.22 × 104

Median 17.6 22.3 24.23 98.08 1.76 × 102 15.8 20.7 23.05 46.91 1.63 × 104
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3.2. Molecular Docking Study

The 3D crystal structures of lasI (PDB ID: 1RO5) were obtained from the PDB [21]. The
3D structure of rhlI synthase was modeled using the SWISS MODEL homology method, as
it was not available in the PDB. Then, energy minimization and refinement of the modeled
structure were performed using ModRefiner. Ramachandran plot analysis was used to
validate the final model based on the chi (Φ) and psi (Ψ) values. Figure 2 shows the
Ramachandran plot of the modeled rhlI, with 90.7% of residues in the preferred region,
8.5% in the permitted regions, and 0.8% in the outlier region. We validated the model
using ERRAT, a verification algorithm for protein structure that can differentiate between
correctly and incorrectly determined areas of protein structures depending on specific
atomic interactions [22]. It provides an “overall quality factor” value, the percentage of
proteins with an error value less than the statistical rejection limit of 95%. The ERRAT
scores of the model and template were 97.5 and 95.9, respectively, indicating that the model
is high-quality and suitable for molecular docking.
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The docking simulations for aspirin revealed a high binding affinity to lasI, as it fits
properly in its active site cavity with a docking score of −8.8 kcal/mol (Figures 3 and 4). A
hydrogen bond was observed between aspirin’s ester oxygen and Arg30 (2.04 Å). Moreover,
the ester carbonyl group formed two hydrogen bond interactions: one formed with the
important and highly conserved amino acid residue Thr144 (2.05 Å), and the second formed
with Arg145 (2.56 Å).
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Figure 4. Aspirin’s proposed 3D binding mode within the lasI active site. Hydrogen bonds are
displayed as green dotted lines, with the bond length in Å. Oxygen atoms are colored red and
hydrogen atoms are colored white. The protein is colored according to its secondary structure; Alpha
helices are colored red, beta sheets are colored cyan, turns are colored grey, and all other residues are
colored green.

Further, the docking study analysis of aspirin in the active site of rhlI displayed proper
fitting with a docking score of −9.7 kcal/mol. The carboxylic acid functional group of
aspirin was involved in hydrogen bond interaction with Thr140 (2.77 Å), while the ester
group formed a hydrogen bond with Arg104 (2.03 Å). Furthermore, the phenyl moiety
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was near Tyr105, forming a Van der Waals interaction and pi–pi stacking interaction with
Ala137 (Figures 5 and 6).
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4. Discussion

Research indicates that antimicrobial resistance (AMR) results in over 2.8 million docu-
mented cases and over 35,000 fatalities in the US alone each year. Despite the increasing re-
search studying drug resistance mechanisms to find different alternative strategies [23–30],
the bacterial community is well interconnected to fight any new drugs. One of the new
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strategies is reducing bacterial virulence and disrupting their communication by interrupt-
ing their QS [27]. Since QS is essential for P. aeruginosa and other pathogenic bacteria’s
virulence and survival, it is a novel target for anti-infective drugs [31]. QS inhibitors do
not influence bacterial growth or viability and hence do not exert heavy selective pres-
sure, leading to resistance, unlike antibiotics. There is an urgent need to discover safe,
broad-spectrum, and stable anti-QS compounds with confirmed therapeutic properties [32].

The anti-QS strategy is helpful for serious microorganisms such as P. aeruginosa, which
has normal drug resistance and virulence mechanisms that enable its survival in harsh
environments [33]. As QS has been shown to use signal molecules to coordinate various
functions between bacteria [20], targeting these molecules might prove beneficial.

In the current study, we focused on finding anti-virulence and anti-QS compounds
as novel strategies for combating P. aeruginosa by reducing their virulence by interrupting
their QS. We chose to use chitosan as a promising natural biopolymer because of its special
qualities, including its innate antimicrobial qualities, natural abundance, adaptability, non-
toxicity, and biodegradability [34]. We combined its use with aspirin with its assumed
antimicrobial properties to maximize the antibacterial efficacy [35]. We examined their
effect phenotypically by detecting the AHL production using A. tumefaciens as a biosensor,
and analyzing different virulence factors, e.g., motility, pyocyanin production, and biofilm
formation. We discussed this combination genotypically by determining its effect on the
synthase enzyme genes lasI and rhlI with their important role in the regulation of the QS
system in P. aeruginosa, as they initiate the Las and Rhl pathways, and generate the signaling
molecules acyl homoserine lactones (AHLs) [36].

Chitosan alone is proven to have antimicrobial, anti-virulence, and anti-Qs proper-
ties [13,37]. It is observed that aspirin can enhance the effect of other antibacterial drugs
by increasing bacterial susceptibility to different antibiotics [38,39]. In the current study,
we demonstrated that chitosan’s activity is potentiated by its combination with aspirin.
Aspirin reduces bacterial virulence by suppressing swimming and swarming motility,
pyocyanin production, and biofilm development due to its quorum-quenching effect rather
than its bacteriostatic or bactericidal effects. These properties are in accordance with other
studies [11,40,41].

We observed that aspirin significantly decreases AHL production in P. aeruginosa,
consistent with the results observed by El-Mowafy et al. [11]. At the genotypic level,
we examined the effect on the synthase genes lasI and rhlI, which have a key role in the
interconnected QS system controlling virulence and biofilm formation in P. aeruginosa.
The combination of chitosan and aspirin significantly increased (p-value = 0.01) chitosan’s
inhibitory activity on gene expression. Chitosan–aspirin decreased the expression of the lasI
and rhlI genes to a greater extent than chitosan alone, with the transcription of lasI and rhlI
being decreased by 1.76 × 102- and 1.63 × 104- fold, respectively. However, the inhibitory
effect on different isolates showed high variability, and hence the inhibition activity was
represented as a median rather than a mean.

El-Mowafy et al. [11] found that aspirin suppresses the expression of QS-regulatory
genes (lasI and rhlI) at the transcriptional level. lasI expression was inhibited by aspirin by
38%. Moreover, aspirin reduced the expression of the C4-HSL synthase gene rhlI by 72%.
The 2−∆∆Ct approach was used to determine the QS-regulated genes’ relative expression
levels. Aspirin inhibited the expression of lasI and rhlI by 38% and 69%, respectively, at
sub-MIC levels.

To know more about the effect of aspirin as an anti-QS molecule at the molecular
level, we performed a molecular docking study to elucidate the possible binding pattern of
aspirin to the active sites of both lasI and rhlI, and we predicted its affinity to the prospective
targets using a scoring function based on the interactions and binding energy. We showed
that the aspirin molecule fits inside the active sites of lasI and rhlI, which might result
in conformational changes to these proteins and their subsequent suppression. This is
consistent with the previous related study.
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To our knowledge, this paper is the first report on the impact of a chitosan–aspirin
combination on the inhibition of P. aeruginosa QS-dependent virulence factors, as no related
studies have been published so far. This paper may shed a light on drug repurposing
of the currently available molecules as anti-QS agents to use them in the fight against
bacterial resistance.

5. Conclusions

Novel applications of already-available approved drugs are recommended to control
antibiotic-resistant bacteria, such as P. aeruginosa. Aspirin, a commonly used NSAID,
inhibited QS in P. aeruginosa, and this inhibitory function was enhanced by chitosan. The
chitosan–aspirin combination inhibited AHL development, biofilm formation, pyocyanin
production, motility, and the lasI and rhlI synthases. Furthermore, the molecular docking
study showed that aspirin fits into the lasI and rhlI active sites in the correct orientation,
rationalizing its potent inhibitory activity.
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