Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems †
Abstract
:1. Introduction
2. Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Preparation of Neutralized and Sterilized LAB CFSs
2.3. Screening of LAB CFSs for Inhibition of AHL-Based QS System
2.4. Screening of LAB CFSs for Interference with AI-2-Based QS System
3. Results and Discussion
3.1. Ability of LAB CFSs to Inhibit AHL-Based QS
3.2. Ability of LAB CFSs to Interfere with AI-2 QS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Pan, J.; Yang, T.; Ren, D.; Chen, W. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ. Microbiol. 2018, 20, 3918–3926. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 2013, 37, 156–181. [Google Scholar] [CrossRef]
- Duanis-Assaf, T.; Steinberg, N.; Chai, Y.; Shemesh, M. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Front. Microbiol. 2016, 6, 1517. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Xavier, K.B.; Bassler, B.L. Interference with AI-2-mediated bacterial cell-cell communication. Nature 2005, 437, 750–753. [Google Scholar] [CrossRef]
- Banerjee, G.; Ray, A.K. Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiol. Immunol. Hung. 2017, 64, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Püning, C.; Su, Y.; Lu, X.; Gölz, G. Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr. Top. Microbiol. Immunol. 2021, 431, 293–319. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, P.N.; Nychas, G.-J.E. Quorum Sensing in the Context of Food Microbiology. Appl. Environ. Microbiol. 2012, 78, 5473–5482. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mehta, A. Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug-resistant bacteria. Curr. Drug Targets 2018, 19, 1916–1932. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Ta, C.A.; Arnason, J.T. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015, 21, 29. [Google Scholar] [CrossRef]
- Giaouris, E. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms. In Recent Trends in Biofilm Science and Technology; Simões, M., Borges, A., Chaves, L., Eds.; Academic Press: London, UK, 2020; Chapter 9; pp. 205–232. [Google Scholar] [CrossRef]
- Park, S.-H.; Hwang, H.; Yang, K.-S.; Kim, M.-H. Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157:H7. Food Control 2014, 45, 62–69. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Ngasaman, R.; Pitakpornpreecha, T.; Rattanachuay, P.; Chaitiemwong, N. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ 2019, 7, e7555. [Google Scholar] [CrossRef]
- Prazdnova, E.V.; Luzina, O.V.; Sukhikh, S.A.; Bochkareva, S.S.; Dvoretskaya, Y.D.; Morozova, Y.S. Quorum-sensing inhibition by Gram-positive bacteria. Microorganisms 2022, 10, 350. [Google Scholar] [CrossRef]
- Lu, L.; Hume, M.E.; Pillai, S.D. Autoinducer-2–like Activity Associated with Foods and Its Interaction with Food Additives. J. Food Prot. 2004, 67, 1457–1462. [Google Scholar] [CrossRef]
- Singh, N.; Patil, A.; Prabhune, A.; Goel, G. Inhibition of quorum-sensing-mediated biofilm formation in Cronobacter sakazakii strains. Microbiology 2016, 162, 1708–1714. [Google Scholar] [CrossRef]
- Surette, M.G.; Bassler, B.L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1998, 95, 7046–7050. [Google Scholar] [CrossRef]
- Devi, S.; Chhibber, S.; Harjai, K. Optimization of cultural conditions for enhancement of anti-quorum sensing potential in the probiotic strain Lactobacillus rhamnosus GG against Pseudomonas aeruginosa. 3 Biotech 2022, 12, 133. [Google Scholar] [CrossRef]
- Kaur, J.; Yogalakshmi, K.N. Screening of quorum quenching activity of the bacteria isolated from dairy industry waste activated sludge. Int. J. Environ. Sci. Technol. 2019, 16, 5421–5428. [Google Scholar] [CrossRef]
- Isaac-Bamgboye, F.J.; Mgbechidinma, C.L.; Onyeaka, H.; Isaac-Bamgboye, I.T.; Chukwugozie, D.C. Exploring the potential of postbiotics for food safety and human health improvement. J. Nutr. Metab. 2024, 2024, 1868161. [Google Scholar] [CrossRef]
- Rodriguez-Urretavizcaya, L.; Vilaplana, M.-P.; Marco, M.-P. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int. J. Antimicrob. Agents 2024, 64, 107323. [Google Scholar] [CrossRef]
- Mgomi, F.C.; Yang, Y.R.; Cheng, G.; Yang, Z.Q. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 100118. [Google Scholar] [CrossRef]
s/n | LAB’s Code | Relative AI-2-like Activity (RLU) |
---|---|---|
1 | DFSN_B42 | 25.86 ± 7.38 |
2 | DFSN_B43 | 8.81 ± 7.63 |
3 | DFSN_B44 | 1.60 ± 0.10 |
4 | DFSN_B50 | 32.45 ± 14.48 |
5 | DFSN_B51 | 48.74 ± 9.40 |
6 | DFSN_B54 | 9.11 ± 2.42 |
7 | DFSN_B55 | 24.01 ± 10.94 |
8 | DFSN_B58 | 25.67 ± 8.57 |
9 | DFSN_B63 | 22.64 ± 11.75 |
10 | DFSN_B64 | 43.08 ± 11.33 |
11 | LFMH_B1 | 29.89 ± 5.26 |
12 | LFMH_B2 | 2.85 ± 2.18 |
13 | LFMH_B3 | 33.39 ± 5.03 |
14 | LFMH_B6 | 27.70 ± 9.71 |
15 | LFMH_B7 | 18.36 ± 8.69 |
16 | LFMH_B8 | 112.21 ± 57.48 |
17 | LFMH_B9 | 83.76 ± 37.71 |
18 | LFMH_B10 | 2.89 ± 1.27 |
19 | LFMH_B11 | 54.5 ± 20.87 |
20 | LFMH_B14 | 67.22 ± 37.13 |
21 | LFMH_B16 | 35.25 ± 11.80 |
22 | LFMH_B17 | 1.50 ± 0.79 |
23 | LFMH_B18 | 35.47 ± 25.01 |
24 | LFMH_B19 | 1.98 ± 1.41 |
25 | LFMH_B20 | 25.24 ± 23.48 |
26 | LFMH_B21 | 13.90 ± 3.86 |
27 | LFMH_B23 | 60.48 ± 42.62 |
28 | LFMH_B24 | 71.34 ± 54.09 |
29 | LFMH_B25 | 6.56 ± 2.31 |
30 | LFMH_B26 | 8.98 ± 5.91 |
31 | LFMH_B29 | 1.82 ± 0.79 |
32 | LFMH_B30 | 229.93 ± 99.35 |
33 | LFMH_B31 | 120.98 ± 82.07 |
34 | LFMH_B32 | 109.17 ± 55.58 |
35 | LFMH_B33 | 71.95 ± 23.98 |
36 | LFMH_B34 | 2.22 ± 1.93 |
37 | LFMH_B35 | 2.04 ± 1.25 |
38 | LFMH_B36 | 2.82 ± 1.26 |
39 | LFMH_B37 | 107.67 ± 53.55 |
40 | LFMH_B38 | 15.36 ± 7.85 |
41 | LFMH_B39 | 198.56 ± 71.93 |
42 | LFMH_B40 | 132.50 ± 82.22 |
43 | LFMH_B41 | 38.58 ± 23.73 |
44 | LFMH_B42 | 2.32 ± 0.81 |
45 | LFMH_B43 | 2.09 ± 1.50 |
46 | LFMH_B44 | 1.19 ± 0.33 |
47 | LFMH_B45 | 1.41 ± 0.40 |
48 | LFMH_B46 | 1.14 ± 0.59 |
49 | LFMH_B47 | 1.40 ± 0.41 |
50 | LFMH_B48 | 43.35 ± 28.19 |
51 | LFMH_B49 | 55.34 ± 37.16 |
52 | LFMH_B50 | 94.86 ± 16.88 |
53 | LFMH_B51 | 155.10 ± 69.73 |
54 | LFMH_B52a | 1.33 ± 0.10 |
55 | LFMH_B52b | 136.51 ± 73.09 |
56 | LFMH_B53 | 47.05 ± 31.94 |
57 | LFMH_B54 | 1.47 ± 0.32 |
58 | LFMH_B55 | 16.13 ± 1.13 |
59 | LFMH_B56 | 42.24 ± 23.22 |
60 | LFMH_B57a | 1.88 ± 0.69 |
61 | LFMH_B57b | 62.79 ± 32.76 |
62 | LFMH_B58 | 2.58 ± 2.82 |
63 | LFMH_B59 | 1.37 ± 0.26 |
64 | LFMH_B60 | 74.83 ± 14.64 |
65 | LFMH_B61 | 41.44 ± 16.61 |
66 | LFMH_B62 | 39.44 ± 11.26 |
67 | LFMH_B63a | 1.16 ± 0.47 |
68 | LFMH_B63b | 43.41 ± 16.42 |
69 | LFMH_B64 | 55.74 ± 19.62 |
70 | LFMH_B65a | 2.22 ± 1.59 |
71 | LFMH_B65b | 1.46 ± 0.38 |
72 | LFMH_B66 | 1.51 ± 0.55 |
73 | LFMH_B67 | 114.18 ± 81.22 |
74 | LFMH_B68 | 353.23 ± 66.57 |
75 | LFMH_B69 | 1.89 ± 0.68 |
76 | LFMH_B70 | 101.15 ± 46.30 |
77 | LFMH_B71 | 42.07 ± 15.14 |
78 | LFMH_B72 | 1.70 ± 0.41 |
79 | LFMH_B73 | 34.89 ± 20.80 |
80 | LFMH_B74 | 105.12 ± 28.38 |
81 | LFMH_B75 | 1.62 ± 0.13 |
82 | LFMH_B76 | 1.59 ± 0.33 |
83 | LFMH_B77 | 82.71 ± 38.69 |
84 | LFMH_B78 | 2.57 ± 1.17 |
85 | LFMH_B79a | 1.86 ± 0.06 |
86 | LFMH_B79b | 71.41 ± 13.73 |
87 | LFMH_B81 | 63.20 ± 22.02 |
88 | LFMH_B82 | 45.83 ± 25.60 |
89 | LFMH_B83 | 49.13 ± 12.42 |
LFMH_B86 | 197.77 ± 118.57 |
s/n | LAB’s Code | Relative AI-2-like Activity (RLU) | % Inhibition of AI-2-like Activity |
---|---|---|---|
1 | DFSN_B43 | 12.82 ± 4.12 | 87.48 ± 4.81 |
2 | DFSN_B44 | 13.58 ± 2.90 | 84.09 ± 3.40 |
3 | DFSN_B54 | 31.26 ± 14.96 | 63.37 ± 14.53 |
4 | LFMH_B2 | 7.99 ± 1.93 | 92.09 ± 2.04 |
5 | LFMH_B10 | 8.35 ± 6.37 | 90.94 ± 8.10 |
6 | LFMH_B17 | 6.89 ± 0.60 | 91.92 ± 0.70 |
7 | LFMH_B19 | 8.39 ± 0.26 | 90.17 ± 0.31 |
8 | LFMH_B25 | 5.13 ± 0.92 | 96.22 ± 0.68 |
9 | LFMH_B26 | 21.50 ± 0.39 | 84.14 ± 0.29 |
10 | LFMH_B29 | 7.52 ± 1.94 | 94.45 ± 1.43 |
11 | LFMH_B34 | 6.29 ± 3.05 | 89.56 ± 5.06 |
12 | LFMH_B35 | 3.80 ± 0.81 | 97.20 ± 0.60 |
13 | LFMH_B36 | 5.46 ± 0.39 | 95.97 ± 0.29 |
14 | LFMH_B42 | 4.91 ± 1.39 | 96.38 ± 1.02 |
15 | LFMH_B43 | 7.57 ± 5.94 | 94.41 ± 4.39 |
16 | LFMH_B44 | 2.35 ± 0.03 | 98.27 ± 0.02 |
17 | LFMH_B45 | 1.84 ± 0.32 | 98.71 ± 0.34 |
18 | LFMH_B46 | 2.15 ± 1.41 | 98.46 ± 1.11 |
19 | LFMH_B47 | 9.33 ± 9.79 | 93.11 ± 7.23 |
20 | LFMH_B52a | 5.56 ± 1.98 | 94.59 ± 1.93 |
21 | LFMH_B54 | 4.89 ± 0.16 | 95.25 ± 0.16 |
22 | LFMH_B57a | 5.18 ± 0.02 | 94.97 ± 0.02 |
23 | LFMH_B58 | 7.59 ± 2.10 | 91.11 ± 2.46 |
24 | LFMH_B59 | 5.66 ± 3.16 | 93.37 ± 3.71 |
25 | LFMH_B63a | 7.76 ± 5.25 | 90.91 ± 6.15 |
26 | LFMH_B65a | 8.05 ± 1.79 | 90.57 ± 2.09 |
27 | LFMH_B65b | 10.81 ± 4.77 | 88.97 ± 4.87 |
28 | LFMH_B66 | 7.01 ± 1.14 | 91.78 ± 1.33 |
29 | LFMH_B69 | 6.22 ± 2.22 | 92.09 ± 3.96 |
30 | LFMH_B72 | 4.39 ± 3.66 | 94.89 ± 4.32 |
31 | LFMH_B75 | 6.76 ± 1.23 | 92.08 ± 1.44 |
32 | LFMH_B76 | 14.78 ± 2.34 | 84.93 ± 2.39 |
33 | LFMH_B78 | 13.05 ± 4.99 | 84.71 ± 5.84 |
34 | LFMH_B79a | 6.85 ± 1.49 | 89.09 ± 6.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostoglou, D.; Giaouris, E. Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems. Biol. Life Sci. Forum 2024, 40, 19. https://doi.org/10.3390/blsf2024040019
Kostoglou D, Giaouris E. Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems. Biology and Life Sciences Forum. 2024; 40(1):19. https://doi.org/10.3390/blsf2024040019
Chicago/Turabian StyleKostoglou, Dimitra, and Efstathios Giaouris. 2024. "Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems" Biology and Life Sciences Forum 40, no. 1: 19. https://doi.org/10.3390/blsf2024040019
APA StyleKostoglou, D., & Giaouris, E. (2024). Screening of Lactic Acid Bacteria Isolated from Foods for Interference with Bacterial Quorum Sensing Systems. Biology and Life Sciences Forum, 40(1), 19. https://doi.org/10.3390/blsf2024040019