Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,750)

Search Parameters:
Keywords = active ingredient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3115 KiB  
Article
Functional Identification of Acetyl-CoA C-Acetyltransferase Gene from Fritillaria unibracteata
by Zichun Ma, Qiuju An, Xue Huang, Hongting Liu, Feiying Guo, Han Yan, Jiayu Zhou and Hai Liao
Horticulturae 2025, 11(8), 913; https://doi.org/10.3390/horticulturae11080913 (registering DOI) - 4 Aug 2025
Abstract
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active [...] Read more.
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active ingredient production of plants; however, the functional characterization of MVA-pathway genes in the Liliaceae family remains poorly documented. In this study, an Acetyl-CoA C-acetyltransferase gene (FuAACT) was first cloned from F. unibracteata. It exhibited structural features of the thiolase family and showed the highest sequence identity with the Dioscorea cayenensis homolog. The Km, Vmax, and Kcat of the recombinant FuAACT were determined to be 3.035 ± 0.215 μM, 0.128 ± 0.0058 μmol/(min·mg), and 1.275 ± 0.0575 min−1, respectively. The optimal catalytic conditions for FuAACT were ascertained to be 30 °C and pH 8.9. It was stable below 50 °C. His361 was confirmed to be a key amino acid residue to enzymatic catalysis by site-directed mutagenesis. Subsequent subcellular localization experiments demonstrated that FuAACT was localized in chloroplasts and cytoplasm. FuAACT-overexpressing transgenic Arabidopsis thaliana plants showed higher drought tolerance than wild-type plants. This phenotypic difference was corroborated by significant differences in seed germination rate, lateral root number, plant height, and leaf number (p < 0.05). Furthermore, the FuAACT transgenic plants resulted in the formation of a more developed fibrous root system. These results indicated that the FuAACT gene revealed substantial biological activity in vitro and in vivo, hopefully providing the basis for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 (registering DOI) - 4 Aug 2025
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 (registering DOI) - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

16 pages, 1167 KiB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 (registering DOI) - 4 Aug 2025
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

18 pages, 5592 KiB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 45
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 1608 KiB  
Article
Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin
by Yeong-Su Kim, Chae Sun Na and Kyung-Chul Shin
Antioxidants 2025, 14(8), 950; https://doi.org/10.3390/antiox14080950 (registering DOI) - 2 Aug 2025
Viewed by 43
Abstract
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of [...] Read more.
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of rutin to isoquercitrin using α-l-rhamnosidase and to evaluate the changes in biological activities after conversion. A sugar-free D. lotus leaf extract was prepared and subjected to enzymatic hydrolysis with α-l-rhamnosidase under optimized conditions (pH 5.5, 55 °C, and 0.6 U/mL). Isoquercitrin production was monitored via high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were assessed using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging and lipoxygenase (LOX) inhibition assays, respectively. The enzymatic reaction resulted in complete conversion of 30 mM rutin into isoquercitrin within 180 min, increasing isoquercitrin content from 9.8 to 39.8 mM. The enzyme-converted extract exhibited significantly enhanced antioxidant activity, with a 48% improvement in IC50 value compared with the untreated extract. Similarly, LOX inhibition increased from 39.2% to 48.3% after enzymatic conversion. Both extracts showed higher inhibition than isoquercitrin alone, indicating synergistic effects of other phytochemicals present in the extract. This study is the first to demonstrate that α-l-rhamnosidase-mediated conversion of rutin to isoquercitrin in D. lotus leaf extract significantly improves its antioxidant and anti-inflammatory activities. The enzymatically enhanced extract shows potential as a functional food or therapeutic ingredient. Full article
Show Figures

Figure 1

20 pages, 462 KiB  
Article
Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles
by Ana Saldanha, Mikel Añibarro-Ortega, Adriana K. Molina, José Pinela, Maria Inês Dias and Carla Pereira
Separations 2025, 12(8), 204; https://doi.org/10.3390/separations12080204 - 2 Aug 2025
Viewed by 99
Abstract
Fistulina hepatica (Schaeff.) With. and Clitocybe nuda (Bull.) H.E. Bigelow & A.H. Sm. are wild edible mushrooms with nutritional and functional potential that remain insufficiently characterized. This study provides the first comparative assessment of their nutritional profiles, phenolic composition, and antioxidant activity, using [...] Read more.
Fistulina hepatica (Schaeff.) With. and Clitocybe nuda (Bull.) H.E. Bigelow & A.H. Sm. are wild edible mushrooms with nutritional and functional potential that remain insufficiently characterized. This study provides the first comparative assessment of their nutritional profiles, phenolic composition, and antioxidant activity, using specimens collected from Montesinho Natural Park (Portugal). Proximate composition, organic and phenolic acids, free sugars, and fatty acids were analyzed by chromatographic methods, and antioxidant capacity was assessed through OxHLIA and TBARS assays. F. hepatica showed higher carbohydrates (9.3 ± 0.2 g/100 g fw) and estimated energy values (43 ± 1 kcal/100 g fw), increased phenolic acids content (2.7 ± 0.1 mg/g extract), and the exclusive presence of p-coumaric and cinnamic acids, along with OxHLIA activity (IC50 = 126 ± 5 µg/mL at Δt = 60 min). C. nuda displayed higher protein (2.5 ± 0.1 g/100 g dw) and quinic acid contents (4.13 ± 0.02 mg/g extract), a PUFA-rich profile, and greater TBARS inhibition (EC50 = 303 ± 17 µg/mL). These findings highlight distinct and complementary bioactive traits, supporting their valorization as natural functional ingredients. Their compositional features offer promising applications in sustainable food systems and nutraceutical development, encouraging further investigations into safety, bioaccessibility, and formulation strategies. Notably, F. hepatica is best consumed at a young developmental stage, as its sensory properties tend to decline with maturity. Full article
Show Figures

Graphical abstract

13 pages, 487 KiB  
Article
From Waste to Worth: Utilizing Downgraded Greek Chestnuts in Gluten-Free Functional Biscuits
by Vasiliki Kossyva, Mariastela Vrontaki, Vasileios Manouras, Anastasia Tzereme, Ermioni Meleti, Lamprini Dimitriou, Ioannis Maisoglou, Maria Alexandraki, Michalis Koureas, Eleni Malissiova and Athanasios Manouras
Sci 2025, 7(3), 106; https://doi.org/10.3390/sci7030106 - 2 Aug 2025
Viewed by 123
Abstract
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour [...] Read more.
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour ingredient in the biscuit formulation, in order to assess its nutritional and functional contribution. The moisture, lipid, protein, and ash contents were analyzed in chestnut flour samples, which showed significant regional differences. Chestnut flour biscuits (CFB) were compared to wheat flour biscuits (WFB). CFB exhibited significantly higher ash content (3.01% compared to 0.94% in WFB) and greater antioxidant capacity, with DPPH scavenging activity reaching 70.83%, as opposed to 61.67% in WFB, while maintaining similar moisture and lipid levels. Although CFB showed slightly lower protein content, the elevated mineral and phenolic compound levels contributed to its functional value. These findings indicate that downgraded chestnuts can be upcycled into gluten-free bakery products with improved functional characteristics. Given their antioxidant activity and mineral content, chestnut flour biscuits may serve as a valuable option for gluten-free diets, supporting circular economy principles and reducing food waste. Full article
Show Figures

Figure 1

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 (registering DOI) - 2 Aug 2025
Viewed by 184
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

14 pages, 1436 KiB  
Article
Secoisolariciresinol Diglucoside with Antioxidant Capacity from Flaxseed: A Study on Microwave-Assisted Germination Optimization
by Jinling Hu, Qingyi Zhang, Yaning Li, Qiqi Zhang, Caihua Jia, Fenghong Huang, Qianchun Deng and Cuie Tang
Foods 2025, 14(15), 2716; https://doi.org/10.3390/foods14152716 - 1 Aug 2025
Viewed by 148
Abstract
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and [...] Read more.
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and antioxidant activity of several flaxseed tissue components. Lignans were primarily dispersed in the flaxseed seed coat. Microwave treatment and germination significantly affected the levels of lignans in various flaxseed sections. Flaxseed hulls’ lignan content and antioxidant activity could be increased by microwave treatment (130 W for 14 s) after germination of 0, 48, or 96 h. Flaxseed kernels lignan content and antioxidant activity could be increased by microwave treatment (130 W for 10 s) before germination. Whole flaxseeds could be improved by microwave treatment (130 W for 10 s) after germination for 72 h. The findings provided a theoretical basis for reducing the loss of lignan resources in flaxseed, enhancing its use as a functional food ingredient, and clarifying the targeted utilization of various lignan sources. Full article
(This article belongs to the Special Issue Oils and Fats: Structure and Stability)
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 172
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 - 1 Aug 2025
Viewed by 185
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

35 pages, 1395 KiB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 - 1 Aug 2025
Viewed by 294
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 180
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

Back to TopTop