Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,898)

Search Parameters:
Keywords = active bioactive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 2022 KB  
Review
Therapeutic Bioactivity Exerted by the Apis mellifera Bee Venom and Its Major Protein Melittin: A Scoping Review
by Perihan Mutlu Erdoğan, Funda Bilgili-Tetikoğlu, Selcen Çelik-Uzuner, Oktay Yıldız, Sevgi Kolayli and Dimitris Mossialos
Molecules 2025, 30(19), 4003; https://doi.org/10.3390/molecules30194003 (registering DOI) - 7 Oct 2025
Abstract
Honey bee (Apis mellifera) products have been extensively utilized in traditional medicine. Bee venom (BV) is one of the major bee products with a high concentration of the small peptide melittin (MEL) and exerts bioactivity ranging from anti-microbial to anti-inflammatory and [...] Read more.
Honey bee (Apis mellifera) products have been extensively utilized in traditional medicine. Bee venom (BV) is one of the major bee products with a high concentration of the small peptide melittin (MEL) and exerts bioactivity ranging from anti-microbial to anti-inflammatory and anti-cancer. This scoping review aims to sum up research articles on the bioactivity exerted by BV and MEL published in PubMed and Scopus from 2010 onwards. PRISMA guidelines were implemented to analyze the relevant literature; we ended up with 425 research articles. Bioactivity of BV and MEL was grouped as (i) anti-inflammatory (85), (ii) immunomodulatory (37), (iii) anti-microbial (179), (iv) anti-cancer (170), and (v) anti-oxidant (32). Although there is a significant body of research on the anti-cancer and anti-microbial activity of BV and MEL, their anti-oxidant, anti-inflammatory and immunomodulatory properties have received comparatively less attention. Many studies on the immunomodulatory effects of BV or MEL have focused on cancer. However, the effects on Parkinson’s and Alzheimer’s disease have not been extensively studied regarding the anti-inflammatory effects. Given the critical role of the immune system and inflammatory response in cancer, neurodegenerative diseases, senescence and against infections, it is paramount to further explore the immunomodulatory and anti-inflammatory potential of BV and MEL. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Figure 1

17 pages, 1152 KB  
Article
From Isolation to Genomics: Characterization of Aspergillus uvarum HT4 as a Novel Producer of Extracellular Tannase
by Erika Arbildi, Karen Ovsejevi, Diego Roldán, Rosario Durán, Magdalena Portela, Gabriela Garmendia and Silvana Vero
J. Fungi 2025, 11(10), 722; https://doi.org/10.3390/jof11100722 (registering DOI) - 7 Oct 2025
Abstract
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 [...] Read more.
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 fungal isolates were obtained, of which 17 showed tannase activity. Molecular identification based on calmodulin gene sequencing identified three species of tannase-producing black aspergilli: Aspergillus luchuensis, A. niger (formerly A. welwitschiae), and A. uvarum. The isolate A. uvarum HT4 exhibited the highest extracellular tannase activity (182 U/mL) and was selected for further study. Whole-genome sequencing of HT4 revealed 15 putative tannase genes, most sharing high identity with A. uvarum CBS 121591. Two divergent genes appeared to be acquired via horizontal gene transfer from Aspergillus brunneoviolaceus and Penicillium angulare. Proteomic analysis of the secretome confirmed the expression of two extracellular tannases. The enzyme showed optimal activity at pH 5.0–6.0 and 40–50 °C. Secretome analysis revealed hydrolytic enzymes typical of saprophytic fungi in lignocellulose-rich environments. Importantly, no biosynthetic gene clusters of major mycotoxins were detected, supporting the biosafety of HT4 for industrial applications. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 6060 KB  
Article
High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy
by Cecilia Hebe Orphèe, María Inés Mercado, Fernando Eloy Argañaraz Martínez, Mario Eduardo Arena and Elena Cartagena
Fermentation 2025, 11(10), 576; https://doi.org/10.3390/fermentation11100576 - 6 Oct 2025
Abstract
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts [...] Read more.
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts derived from peels of different varieties of tubers, such as Oxalis tuberosa Mol., Ullucus tuberosus Caldas, and Solanum tuberosum L. were incorporated into lactobacilli cultures and individually evaluated. These selectively enhance the development of the probiotic strain Lactiplantibacillus plantarum ATCC 10241 and of Lacticaseibacillus paracasei CO1-LVP105 from ovine origin, without promoting the growth of a pathogenic bacteria set (Escherichia coli O157:H12 and ATCC 35218, Salmonella enterica serovar Typhimurium ATCC 14028, and S. corvalis SF2 and S. cerro SF16), in small amounts. To determine the main phenolic group concentrated in the phytoextracts, a bio-guided study was conducted. The most significant results were obtained by O. tuberosa phytochemicals added to the culture medium at 50 µg/mL, yielding promising increases in biofilm formation (78% for Lp. plantarum and 43% for L. paracasei) and biosurfactant activity (112% for CO1-LVP105 strain). These adaptive strategies developed by bacteria possess key biotechnological significance. Furthermore, the bio-detoxification capacity of phenol and o-phenyl phenol, particularly of the novel strain CO1-LVP105, along with its mode of action and genetic identification, is described for the first time to our knowledge. In conclusion, lactobacilli strains have potential as fermentation starters and natural products, recovered from O. tuberosa peels, and added into culture media contribute to multiple bacterial biotechnological applications in both health and the environment. Full article
35 pages, 4696 KB  
Article
Neuronal Differentiation and Exosome Profiling of Dental Pulp Stem Cells: Unveiling Their Potential for Nerve Repair
by Bruna Lopes, Patrícia Sousa, Alícia de Sousa Moreira, Ana Catarina Sousa, Alexandra Rêma, Luís Atayde, António J. Salgado, Stefano Geuna, Rui Alvites and Ana Colette Maurício
Int. J. Mol. Sci. 2025, 26(19), 9723; https://doi.org/10.3390/ijms26199723 - 6 Oct 2025
Abstract
Peripheral nerve injuries remain a major clinical problem, and cell-free therapies using stem cell-derived bioproducts have emerged as promising alternatives. This study evaluated the influence of neurogenic differentiation and passage number on the secretomic and exosomal profile of human dental pulp stem cells [...] Read more.
Peripheral nerve injuries remain a major clinical problem, and cell-free therapies using stem cell-derived bioproducts have emerged as promising alternatives. This study evaluated the influence of neurogenic differentiation and passage number on the secretomic and exosomal profile of human dental pulp stem cells (hDPCSs). Conditioned media from undifferentiated and neurodifferentiated hDPSCs, and exosomes derived from undifferentiated hDPSCs at passages 4 and 7, were analyzed using multiplex immunoassays, RT-PCR, and scanning electron microscopy (SEM). Neurodifferentiated hDPSCs at early passages secreted higher levels of neurotrophic, angiogenic and immunomodulatory factors, including FGF-2, IL-6, IL-8, and PDGF-AA. Exosomes from early-passage undifferentiated cells showed a more abundant and relevant neuroregenerative mRNA cargo in comparison to the later passages. Both cell types and exosomes adhered to the Reaxon® nerve guidance conduit, confirming the permissive nature of the materials regarding cells and cellular products, allowing adhesion and survival. Neurite outgrowth assays performed on neurodifferentiated hDPSCs confirmed functional neural behavior. In later passages, a decline in secretory and exosomal activity was noted. These results highlight the relevance of early-passage hDPSCs as a source of bioactive factors and support their application in cell-free approaches for peripheral nerve regeneration. Full article
(This article belongs to the Special Issue Advancements in Regenerative Medicine Research)
Show Figures

Figure 1

17 pages, 4159 KB  
Article
Production of Bioactive Compounds in Grammatophyllum speciosum Blume Using Bioreactor Cultures Under Elicitation with Sodium Chloride
by Jittraporn Chusrisom, Gadewara Matmarurat, Nattanan Panjaworayan T-Thienprasert, Wannarat Phonphoem and Pattama Tongkok
Plants 2025, 14(19), 3083; https://doi.org/10.3390/plants14193083 - 6 Oct 2025
Abstract
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive [...] Read more.
Grammatophyllum speciosum Blume is an endangered wild orchid with medicinal properties. In this research, we propagated G. speciosum from vegetative organs grown under aseptic conditions. Subsequently, salinity stress was applied at the plantlet stage to investigate its effect on the accumulation of bioactive compounds. Half-strength Murashige and Skoog (½ MS) medium supplemented with a combination of 1 mg of L−1 1-naphthaleneacetic acid (NAA) and 0.5 mg of L−1 6-benzylaminopurine (BAP) proved to be a more suitable medium for shoot formation (32.33 ± 2.52 shoots per explant). The protocorm-like bodies, derived from embryogenic callus, were transferred into a temporary immersion bioreactor (TIB) system; 10-min of immersion every 3 h enhanced the maximum number of shoots, shoot height, and the fresh growth index (127.00 ± 2.16, 5.00 ± 0.51 cm and 4.26 ± 0.52, respectively). The proliferated plantlets from the TIB system successfully rooted in Vacin and Went medium. Furthermore, the plantlets were maintained in ½ MS medium supplemented with sodium chloride (NaCl) (0, 50, 100 or 200 µM) under a white light-emitting diode for 72 h to determine the total phenolic content (TPC) in the in vitro cultures. The TPC was highest in the medium with 100 µM of NaCl (111.06 ± 2.24 mg gallic acid equivalent g−1 dry weight), the diphenyl picrylhydrazyl antioxidant activity was 24.50 ± 0.76% and ferric-reducing antioxidant power values were in the range 2441.79 ± 1.21 to 2491.96 ± 3.23 µM ascorbic acid equivalent g−1 dry weight. The G. speciosum extracts showed antibacterial activity against acne pathogens, with minimum inhibitory concentration and minimum bactericidal concentration values in the ranges 6.4–12.8 mg mL−1 and 12.8–25.6 mg mL−1, respectively. Full article
Show Figures

Figure 1

18 pages, 2470 KB  
Article
6-O-trans-feruloyl Catalpol, a Natural Antioxidant from the Stem Bark of Catalpa ovata, Accelerates Liver Regeneration In Vivo via Activation of Hepatocyte Proliferation Signaling Pathways
by Jiyoung Park, Yun-Seo Kil, Ho Jin Yi, Eun Kyoung Seo and Hyun Ae Woo
Antioxidants 2025, 14(10), 1210; https://doi.org/10.3390/antiox14101210 - 6 Oct 2025
Abstract
Background: Liver regeneration is a complex process involving multiple signaling pathways that coordinate hepatocyte proliferation, survival, and tissue repair. Natural compounds like silymarin, ursolic acid, quercetin, and resveratrol have shown regenerative potential, though their precise molecular mechanisms remain unclear. 6-O-trans-feruloyl catalpol [...] Read more.
Background: Liver regeneration is a complex process involving multiple signaling pathways that coordinate hepatocyte proliferation, survival, and tissue repair. Natural compounds like silymarin, ursolic acid, quercetin, and resveratrol have shown regenerative potential, though their precise molecular mechanisms remain unclear. 6-O-trans-feruloyl catalpol (6FC), a major bioactive compound from Catalpa ovata, exhibits anti-inflammatory and potential antioxidant effects via regulation of NF-κB signaling and redox-sensitive pathways such as Akt and MAPK, which are critical for cell survival and proliferation. Moreover, 6FC exhibits peroxynitrite-scavenging activity, suggesting its potential antioxidant properties that may protect hepatocytes from oxidative damage during regeneration. However, the role of 6FC in liver regeneration has not been elucidated, positioning it as a promising natural therapeutic candidate for hepatic repair. Purpose: This study aimed to determine whether 6FC promotes hepatocyte proliferation and liver regeneration in vivo using a 2/3 PHx mouse model, and to validate its proliferative effects in vitro with HGF-stimulated Hep3B cells. Methods: A 2/3 PHx liver regeneration model was used to evaluate 6FC-mediated liver regeneration. Histological and molecular analyses assessed hepatocyte proliferation and signaling activation. HGF-stimulated Hep3B cells were also used to examine 6FC proliferative effects in vitro. Results: 6FC significantly promoted liver regeneration by restoring the liver-to-body weight ratio and reducing serum ALT and AST levels without inducing excessive immune responses. Mechanistic studies revealed that 6FC activates Akt and MAPK pathways, increases the expression of critical growth factors, and upregulates cell cycle regulators. These effects were also observed in HGF-stimulated Hep3B cells, suggesting that 6FC may enhance hepatocyte proliferation without triggering excessive immune responses. Conclusions: 6FC accelerates hepatocyte proliferation and promotes liver regeneration by activating key redox-sensitive signaling pathways, highlighting its potential as a natural antioxidant-based therapeutic agent. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

22 pages, 4332 KB  
Article
Vasorelaxant and Hypotensive Mechanisms of Nelumbo nucifera Seed Extract: Roles of Nitric Oxide, Calcium Channel Blockade and eNOS Interaction with Active Compounds
by Usana Chatturong, Nitra Nuengchamnong, Anjaree Inchan, Kittiwoot To-On, Tippaporn Bualeong, Wiriyaporn Sumsakul, Anyapat Atipimonpat, Kittiphum Meekarn, Yasuteru Shigeta, Kowit Hengphasatporn, Sarawut Kumphune and Krongkarn Chootip
Pharmaceuticals 2025, 18(10), 1500; https://doi.org/10.3390/ph18101500 - 6 Oct 2025
Abstract
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on [...] Read more.
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on endothelial NO production, and antihypertensive activity. Methods: LSE was characterized via LC-ESI-QTOF-MS using accurate mass data and fragmentation patterns. Vasorelaxant effects were evaluated in isolated rat aortas, and the underlying mechanisms were explored using pharmacological inhibitors. NO production was assessed in human endothelial EA.hy926 cells. Hypotensive activity was examined in normotensive rats following intravenous administration of LSE (10, 30, and 100 mg/kg). Molecular docking was performed to analyze interactions between LSE bioactive compounds and endothelial nitric oxide synthase (eNOS). Results: LC-ESI-QTOF-MS analysis identified 114 compounds, including primary and secondary metabolites. LSE induced vasorelaxation in endothelium-intact aortas, which was reduced by endothelium removal (p < 0.001) and by L-NAME (p < 0.001). LSE also inhibited receptor-operated, Ca2+ channel-mediated vasoconstriction (p < 0.05). In vivo, LSE decreased blood pressure in a dose-dependent manner. In EA.hy926 cells, LSE (750 and 1000 µg/mL) increased NO production, an effect attenuated by L-NAME. Molecular docking showed that LSE alkaloids, including nelumborine, nelumboferine, neferine, and isoliensinine had strong affinities for binding with eNOS at the tetrahydrobiopterin (BH4) binding site. Nelumborine exhibited the highest affinity, suggesting its potential as an eNOS modulator. Conclusions: LSE promotes vasorelaxation through the stimulation of endothelium-derived NO release and Ca2+ influx inhibition, contributing to blood pressure reduction. These findings support LSE as a potential natural antihypertensive supplement. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

22 pages, 2773 KB  
Article
Synthesis, Crystallographic Study and Antibacterial Activity of Ternary Copper(II) Complex with Chromone-Based Ligand and Pyridine
by Nikolina Filipović, Anamarija Stanković, Martina Medvidović-Kosanović, Dominik Goman, Stjepan Šarić, Goran Palijan and Tomislav Balić
Crystals 2025, 15(10), 870; https://doi.org/10.3390/cryst15100870 - 6 Oct 2025
Abstract
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the [...] Read more.
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the central Cu(II) ion. The coordination sphere comprises oxygen atoms from the chromone moiety and nitrogen atoms from pyridine, resulting in a five-coordinate complex. A comprehensive physicochemical characterization was performed using Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, elemental (C, H, N), electrochemical (CV) and thermal analysis (TGA/DSC) to confirm the coordination environment and thermal stability of the compound. The complex exhibits distinct spectroscopic features indicative of ligand–metal charge transfer and dd transitions typical of Cu(II) species. In addition, the synthesized complex was subjected to antimicrobial screening against Gram-positive and Gram-negative bacteria. The compound showed promising antibacterial activity, particularly against Escherichia coli, indicating its potential as a bioactive coordination compound. These results contribute to the growing body of research on metal-based chromone derivatives and emphasize the importance of copper complexes for the development of new antibacterial agents with defined crystal structures. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

19 pages, 1751 KB  
Article
Dillapiole Dampens the Expression of the Major Virulence Genes of Francisella tularensis
by Elliot M. Collins, Anthony Sako, Kristen Sikorsky, James Denvir, Jun Fan, Donald A. Primerano, Deanna M. Schmitt, Stuart Cantlay, Roger Seeber, Francisco León and Joseph Horzempa
Molecules 2025, 30(19), 3995; https://doi.org/10.3390/molecules30193995 - 6 Oct 2025
Abstract
Francisella tularensis is a pathogenic bacterium and the causative agent of the disease tularemia. Because of the virulence of this bacterium and the potential for weaponization, the Centers for Disease Control and Prevention (CDC) has classified F. tularensis as a Category A Bioterrorism [...] Read more.
Francisella tularensis is a pathogenic bacterium and the causative agent of the disease tularemia. Because of the virulence of this bacterium and the potential for weaponization, the Centers for Disease Control and Prevention (CDC) has classified F. tularensis as a Category A Bioterrorism Agent. Therefore, the need for new treatments for tularemia is critical. In this work, we screened a cataloged library of natural extracts to identify those that inhibit the growth of F. tularensis only during infection of THP-1 monocyte cells. One of the most promising extracts identified in this screen was derived from Foeniculum vulgare (fennel). Using bioassay-guided fractionation, the fennel extract was fractionated, and the bioactive compound was isolated and structurally elucidated as the phenylpropanoid dillapiole. We subsequently confirmed that dillapiole alone could limit the replication of F. tularensis in infected THP-1 cells, but not outside of this infection model. Investigations on host responses suggested that dillapiole was not substantially augmenting the immunity of these THP-1 cells. We then investigated the potential virulence modulation activity of dillapiole. To test this hypothesis, RNA-seq analysis was carried out on F. tularensis bacteria that were treated with dillapiole. This showed that dillapiole caused a significant downregulation of genes controlled by the transcriptional regulators MglA and SspA, including those encoded in the Francisella pathogenicity island. Western blotting validated these findings as both IglA and IglC expression was diminished in F. tularensis LVS bacteria treated with dillapiole. Because dillapiole dampens the virulence gene expression of F. tularensis, we concluded that this compound has potential to be used as a novel therapeutic for tularemia with a unique mechanism of action. Full article
(This article belongs to the Special Issue Discovery of Antibacterial Drugs)
Show Figures

Figure 1

20 pages, 1154 KB  
Article
Development and Characterization of Topical Gels Containing Lipid Nanosystems Loaded with Echinacea purpurea
by Ramona-Daniela Pavaloiu, Georgeta Neagu, Adrian Albulescu, Mihaela Deaconu, Anton-Liviu Petrica, Corina Bubueanu and Fawzia Sha’at
Gels 2025, 11(10), 801; https://doi.org/10.3390/gels11100801 - 5 Oct 2025
Abstract
This study explores an innovative delivery strategy for the management of skin conditions: lipid nanosystems incorporated into a gel matrix. Echinacea purpurea extract, known for its antibacterial, antioxidant, and wound-healing properties, was encapsulated into lipid-based nanosystems and subsequently incorporated into Carbopol-based gel. The [...] Read more.
This study explores an innovative delivery strategy for the management of skin conditions: lipid nanosystems incorporated into a gel matrix. Echinacea purpurea extract, known for its antibacterial, antioxidant, and wound-healing properties, was encapsulated into lipid-based nanosystems and subsequently incorporated into Carbopol-based gel. The extract, rich in chicoric and caftaric acids, exhibited strong antioxidant activity (IC50 = 56.9 µg/mL). The resulting nanosystems showed nanometric size (about 200 nm), high entrapment efficiency (63.10–75.15%), and excellent short-term stability. Superior biocompatibility of the nanosystems, compared to the free extract, was demonstrated using an MTS assay on L-929 fibroblasts. Moreover, the cytoprotective potential of the lipid carriers was evident, as pre-treatment significantly increased cell viability under H2O2-induced oxidative stress. These findings suggest that lipid-based encapsulation enhances the therapeutic profile of E. purpurea. The optimal lipid formulation was incorporated into a Carbopol-based gel, which demonstrated an appropriate pH (5.15 ± 0.75), favorable textural properties, sustained polyphenol release, and overall good stability. This research highlights the potential of plant-derived bioactives in the development of dermatocosmetic products, aligning with current trends in eco-conscious and sustainable skincare. Full article
(This article belongs to the Special Issue Gels for Skin Treatment and Wound Healing)
Show Figures

Graphical abstract

18 pages, 3287 KB  
Article
Photodynamic and Sonodynamic Antibacterial Activity of Grape Leaf Extracts
by Tigabu Haddis Ale, Iryna Hovor, Melad Atrash, Olga Semenova, Natalia Zemliana, Natalya M. Kogan, Marina Nisnevitch and Faina Nakonechny
Appl. Sci. 2025, 15(19), 10738; https://doi.org/10.3390/app151910738 - 5 Oct 2025
Abstract
Food spoilage and contamination are major global challenges, reducing food quality, safety, and availability, causing significant economic losses. This study evaluates the photodynamic and sonodynamic antibacterial activities of grape leaf extracts from Beer and Hanut Orcha varieties. The extracts were tested against Staphylococcus [...] Read more.
Food spoilage and contamination are major global challenges, reducing food quality, safety, and availability, causing significant economic losses. This study evaluates the photodynamic and sonodynamic antibacterial activities of grape leaf extracts from Beer and Hanut Orcha varieties. The extracts were tested against Staphylococcus aureus and Escherichia coli under illumination and ultrasonic activation. The results demonstrated that the photodynamic and sonodynamic treatments significantly enhanced the antibacterial efficacy of the extracts when higher concentrations of the extracts and prolonged exposure led to complete bacterial eradication. Separation of the extracts using RP-18 cartridges (Yicozoo Energy Technology Co., Ltd., Xi’an, China) enabled us to get an active fraction containing components responsible for antimicrobial effects. Singlet oxygen generation measurements confirmed the involvement of reactive oxygen species in bacterial inactivation under illumination. Using HPLC/MS, the active components responsible for the photodynamic properties of the extracts were identified as quercetin 3’-O-glucuronide and pheophorbide a. The findings suggest that these natural extracts, in combination with photodynamic and sonodynamic activation, represent promising alternatives to conventional antibiotics. Further studies should focus on the isolation of active individual compounds, the improvement of treatment parameters, and the investigation of molecular mechanisms to facilitate the development of practical applications in medicine and food preservation. Full article
Show Figures

Figure 1

24 pages, 2510 KB  
Article
Honey–Propolis-Enriched Pectin Films for Active Packaging of Soluble Coffee and Matcha Powders
by Daniela Pauliuc, Florina Dranca, Mariana Spinei, Sorina Ropciuc and Mircea Oroian
Gels 2025, 11(10), 800; https://doi.org/10.3390/gels11100800 - 5 Oct 2025
Abstract
This study reports the development and characterization of novel active edible films based on apple pectin and honey (80:20, w/w), incorporating raw propolis powder at 0.1%, 0.2%, and 0.3% (w/w, relative to honey) as a natural [...] Read more.
This study reports the development and characterization of novel active edible films based on apple pectin and honey (80:20, w/w), incorporating raw propolis powder at 0.1%, 0.2%, and 0.3% (w/w, relative to honey) as a natural source of bioactive compounds for sustainable packaging of soluble coffee and matcha powders. The study aims to provide sustainable and functional packaging solutions capable of maintaining the stability and quality of these powdered beverages. The effects of honey and propolis incorporation on the physicochemical, mechanical, optical, and microbiological properties of the films were systematically evaluated. Propolis addition resulted in decreased tensile strength, elastic modulus, and elongation at break, but did not significantly alter the thermal stability of the films, as evidenced by differential scanning calorimetry and thermogravimetric analysis. Increasing propolis concentrations led to higher total phenolic content and significantly improved antioxidant activity, with the 0.3% formulation exhibiting the most pronounced effect. Application tests demonstrated that the honey–propolis-enriched pectin films effectively preserved the sensory attributes and physicochemical quality of soluble coffee and matcha powders. Overall, these results highlight the potential of pectin–honey–propolis films as bioactive carriers and functional materials for active packaging of powdered beverages. Full article
(This article belongs to the Special Issue Advances in Engineering Emulsion Gels for Food Application)
Show Figures

Graphical abstract

26 pages, 7334 KB  
Article
Dynamics of Physicochemical Properties, Flavor, and Bioactive Components in Lactobacillus-Fermented Pueraria lobata with Potential Hypolipidemic Mechanisms
by Ye Tang, Liqin Li, Qiong Li, Zhe Li, Huanhuan Dong, Hua Zhang, Huaping Pan, Weifeng Zhu, Zhenzhong Zang and Yongmei Guan
Foods 2025, 14(19), 3425; https://doi.org/10.3390/foods14193425 - 5 Oct 2025
Abstract
This study systematically analyzed the multidimensional effects of Lactobacillus fermentation on Pueraria lobata (PL) and investigated the potential mechanisms underlying its hypolipidemic activity. Results indicated that fermentation significantly increased the total acid content from 1.02 to 3.48 g·L−1, representing [...] Read more.
This study systematically analyzed the multidimensional effects of Lactobacillus fermentation on Pueraria lobata (PL) and investigated the potential mechanisms underlying its hypolipidemic activity. Results indicated that fermentation significantly increased the total acid content from 1.02 to 3.48 g·L−1, representing a 2.41-fold increase. Although slight reductions were observed in total flavonoids (8.67%) and total phenolics (6.72%), the majority of bioactive components were well preserved. Other antioxidant capacities were retained at >74.71% of baseline, except hydroxyl radical scavenging. Flavor profiling showed increased sourness and astringency, accompanied by reduced bitterness, with volatile compounds such as β-pinene and trans-2-hexenyl butyrate contributing to a distinct aromatic profile. Untargeted metabolomics analysis revealed that fermentation specifically enhanced the abundance of low-concentration isoflavone aglycones, including daidzein and genistein, suggesting a compositional shift that may improve hypolipidemic efficacy. Integrated network pharmacology and computational modeling predicted that eight key components, including genistein, could stably bind to ten core targets (e.g., AKT1 and MMP9) primarily through hydrogen bonding and hydrophobic interactions, potentially regulating lipid metabolism via the PI3K-AKT, PPAR, and estrogen signaling pathways. This study reveals the role of Lactobacillus fermentation in promoting the conversion of isoflavone glycosides to aglycones in PL and constructs a multi-dimensional “components-targets-pathways-disease” network, providing both experimental evidence and a theoretical foundation for further research on the lipid-lowering mechanisms of fermented PL and the development of related functional products. Full article
Show Figures

Figure 1

25 pages, 2327 KB  
Article
Extraction Methods Shape the Phenolic Composition and Bioactivities of Defatted Moroccan Pistacia lentiscus L. Resin
by Abdessamad Beraich, Daniela Batovska, Krastena Nikolova, Burak Dikici, Göksen Gören, Yousra Belbachir, Mohamed Taibi, Amine Elbouzidi, Irena Mincheva, Natalina Panova, Abdesselam Tahani, Abdeslam Asehraou and Abdelmonaem Talhaoui
Antioxidants 2025, 14(10), 1207; https://doi.org/10.3390/antiox14101207 - 5 Oct 2025
Abstract
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction [...] Read more.
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction methods—cold maceration (CM), Soxhlet extraction (SE), and ultrasound-assisted extraction (UAE)—using sequential acetone and 70% ethanol to recover complementary phenolic compounds from defatted resin. Targeted UHPLC–ESI–MS/MS profiling identified and quantified 30 phenolics, mainly flavonoids and phenolic acids, providing the first systematic dataset for Moroccan mastic gum. UAE–EtOH extract displayed the strongest antioxidant activity (DPPH IC50 = 0.029 mg/mL; ABTS•+ IC50 = 0.026 mg/mL). SE–acetone and SE–EtOH extracts showed potent antifungal activity, particularly against Geotrichum candidum, Rhodotorula glutinis, and Aspergillus niger (MBC = 1.7%). The SE–acetone extract exhibited cytotoxicity toward MIA PaCa-2 pancreatic cancer cells (IC50 = 19 µg/mL). These findings demonstrate that extraction method and solvent choice strongly influence phenolic recovery and associated bioactivities, supporting the valorization of Moroccan mastic gum as a promising source for nutraceutical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Green Extraction of Antioxidant from Natural Source)
Show Figures

Figure 1

23 pages, 1287 KB  
Article
Antimicrobial Activity and Activation of Defense Genes in Plants by Natural Extracts: Toward Sustainable Plant Health Management
by Christine Bilen, Sebastiano Laera, Palma R. Rotondo, Matteo Dimaglie, Lorenza Vaccaro, Michela Marashi, Tiziana Mascia, Angela A. Lopedota, Roberta Spanò, Stefania Pollastro, Francesco Faretra, Daniel El Chami and Rita M. De Miccolis Angelini
Agronomy 2025, 15(10), 2342; https://doi.org/10.3390/agronomy15102342 - 5 Oct 2025
Abstract
The increasing demand for sustainable agriculture has accelerated research into eco-friendly plant health management, particularly through natural substances rich in bioactive compounds. In this study, various substances, including essential oils, extracts from Aloe vera, artichoke and ornamental plants, by-products from beer and [...] Read more.
The increasing demand for sustainable agriculture has accelerated research into eco-friendly plant health management, particularly through natural substances rich in bioactive compounds. In this study, various substances, including essential oils, extracts from Aloe vera, artichoke and ornamental plants, by-products from beer and coffee processing, and selected commercial formulations including biostimulants and a plant strengthener, were evaluated for their antimicrobial properties and ability to trigger plant defenses. Notably, Agapanthus spp. exhibited strong antifungal activity against the fungus Botrytis cinerea (Bc), while thyme, tea tree, and lavender essential oils were effective against both Bc and the bacterium Pseudomonas syringae pv. tomato (Pst). Greenhouse trials on tomato plants demonstrated the protective effects of A. vera gel and ornamental plant extracts against Bc and Potato virus Y (PVY), while coffee and artichoke extracts were effective against Pst. An alginate-based formulation containing thyme oil showed enhanced in planta efficacy against the three pathogens. Gene expression analyses revealed early upregulation of PR-1 and PR-4, especially with alginate treatments and A. vera gel at 12 h post-treatment (hpt) while coffee extract triggered the strongest late response at 72 hpt. These findings highlight the potential of plant-derived substances in promoting sustainable plant disease management through both direct antimicrobial action and immune system activation. Full article
Show Figures

Figure 1

Back to TopTop