Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,473)

Search Parameters:
Keywords = acoustic networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2779 KiB  
Article
Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator
by Martin Millicovsky, Luis Schierloh, Pablo Kler, Gabriel Muñoz, Juan Cerrudo, Albano Peñalva, Juan Reta and Martin Zalazar
Hardware 2025, 3(3), 9; https://doi.org/10.3390/hardware3030009 (registering DOI) - 7 Aug 2025
Abstract
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making [...] Read more.
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making accessibility a significant challenge. Additionally, their use requires specialized systems, and with only a few manufacturers dominating the market, most available solutions are proprietary, limiting customization and adaptability for specific research needs. In this work, a low-cost open-source LSAW biosensing system prototype was developed based on a commercially acquired resonator. The development integrates microfluidics through a polydimethylsiloxane (PDMS) chip, low-cost electronics, and both 3D printed ultraviolet (UV) resin and polylactic acid (PLA) parts. The instrument used for measurements was a vector network analyzer (VNA) that features open-source software. The code was customized for this study to enable real-time, label-free biosensing. Experimental validation consisted of evaluating the sensitivity and repeatability of the system, from the setup to its use with different fluids. Results demonstrated that the development is able to advance to more complex applications. Full article
Show Figures

Figure 1

25 pages, 6742 KiB  
Article
Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime
by Hend Abdel-Ghani, A. H. Abbas and Ivan S. Maksymov
AppliedMath 2025, 5(3), 101; https://doi.org/10.3390/appliedmath5030101 (registering DOI) - 7 Aug 2025
Abstract
The rising computational and energy demands of artificial intelligence systems urge the exploration of alternative software and hardware solutions that exploit physical effects for computation. According to machine learning theory, a neural network-based computational system must exhibit nonlinearity to effectively model complex patterns [...] Read more.
The rising computational and energy demands of artificial intelligence systems urge the exploration of alternative software and hardware solutions that exploit physical effects for computation. According to machine learning theory, a neural network-based computational system must exhibit nonlinearity to effectively model complex patterns and relationships. This requirement has driven extensive research into various nonlinear physical systems to enhance the performance of neural networks. In this paper, we propose and theoretically validate a reservoir-computing system based on a single bubble trapped within a bulk of liquid. By applying an external acoustic pressure wave to both encode input information and excite the complex nonlinear dynamics, we showcase the ability of this single-bubble reservoir-computing system to forecast a Hénon benchmarking time series and undertake classification tasks with high accuracy. Specifically, we demonstrate that a chaotic physical regime of bubble oscillation—where tiny differences in initial conditions lead to wildly different outcomes, making the system unpredictable despite following clear rules, yet still suitable for accurate computations—proves to be the most effective for such tasks. Full article
(This article belongs to the Topic A Real-World Application of Chaos Theory)
Show Figures

Figure 1

23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Viewed by 110
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

19 pages, 6085 KiB  
Article
Earthquake Precursors Based on Rock Acoustic Emission and Deep Learning
by Zihan Jiang, Zhiwen Zhu, Giuseppe Lacidogna, Leandro F. Friedrich and Ignacio Iturrioz
Sci 2025, 7(3), 103; https://doi.org/10.3390/sci7030103 - 1 Aug 2025
Viewed by 175
Abstract
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods [...] Read more.
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods to facilitate real-time monitoring and advance earthquake precursor detection. The AE equipment and seismometers were installed in a granite tunnel 150 m deep in the mountains of eastern Guangdong, China, allowing for the collection of experimental data on the correlation between rock AE and seismic activity. The deep learning model uses features from rock AE time series, including AE events, rate, frequency, and amplitude, as inputs, and estimates the likelihood of seismic events as the output. Precursor features are extracted to create the AE and seismic dataset, and three deep learning models are trained using neural networks, with validation and testing. The results show that after 1000 training cycles, the deep learning model achieves an accuracy of 98.7% on the validation set. On the test set, it reaches a recognition accuracy of 97.6%, with a recall rate of 99.6% and an F1 score of 0.975. Additionally, it successfully identified the two biggest seismic events during the monitoring period, confirming its effectiveness in practical applications. Compared to traditional analysis methods, the deep learning model can automatically process and analyse recorded massive AE data, enabling real-time monitoring of seismic events and timely earthquake warning in the future. This study serves as a valuable reference for earthquake disaster prevention and intelligent early warning. Full article
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Viewed by 176
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

21 pages, 1681 KiB  
Article
Cross-Modal Complementarity Learning for Fish Feeding Intensity Recognition via Audio–Visual Fusion
by Jian Li, Yanan Wei, Wenkai Ma and Tan Wang
Animals 2025, 15(15), 2245; https://doi.org/10.3390/ani15152245 - 31 Jul 2025
Viewed by 300
Abstract
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems [...] Read more.
Accurate evaluation of fish feeding intensity is crucial for optimizing aquaculture efficiency and the healthy growth of fish. Previous methods mainly rely on single-modal approaches (e.g., audio or visual). However, the complex underwater environment makes single-modal monitoring methods face significant challenges: visual systems are severely affected by water turbidity, lighting conditions, and fish occlusion, while acoustic systems suffer from background noise. Although existing studies have attempted to combine acoustic and visual information, most adopt simple feature-level fusion strategies, which fail to fully explore the complementary advantages of the two modalities under different environmental conditions and lack dynamic evaluation mechanisms for modal reliability. To address these problems, we propose the Adaptive Cross-modal Attention Fusion Network (ACAF-Net), a cross-modal complementarity learning framework with a two-stage attention fusion mechanism: (1) a cross-modal enhancement stage that enriches individual representations through Low-rank Bilinear Pooling and learnable fusion weights; (2) an adaptive attention fusion stage that dynamically weights acoustic and visual features based on complementarity and environmental reliability. Our framework incorporates dimension alignment strategies and attention mechanisms to capture temporal–spatial complementarity between acoustic feeding signals and visual behavioral patterns. Extensive experiments demonstrate superior performance compared to single-modal and conventional fusion approaches, with 6.4% accuracy improvement. The results validate the effectiveness of exploiting cross-modal complementarity for underwater behavioral analysis and establish a foundation for intelligent aquaculture monitoring systems. Full article
Show Figures

Figure 1

24 pages, 1686 KiB  
Review
Data-Driven Predictive Modeling for Investigating the Impact of Gear Manufacturing Parameters on Noise Levels in Electric Vehicle Drivetrains
by Krisztián Horváth
World Electr. Veh. J. 2025, 16(8), 426; https://doi.org/10.3390/wevj16080426 - 30 Jul 2025
Viewed by 299
Abstract
Reducing gear noise in electric vehicle (EV) drivetrains is crucial due to the absence of internal combustion engine noise, making even minor acoustic disturbances noticeable. Manufacturing parameters significantly influence gear-generated noise, yet traditional analytical methods often fail to predict these complex relationships accurately. [...] Read more.
Reducing gear noise in electric vehicle (EV) drivetrains is crucial due to the absence of internal combustion engine noise, making even minor acoustic disturbances noticeable. Manufacturing parameters significantly influence gear-generated noise, yet traditional analytical methods often fail to predict these complex relationships accurately. This research addresses this gap by introducing a data-driven approach using machine learning (ML) to predict gear noise levels from manufacturing and sensor-derived data. The presented methodology encompasses systematic data collection from various production stages—including soft and hard machining, heat treatment, honing, rolling tests, and end-of-line (EOL) acoustic measurements. Predictive models employing Random Forest, Gradient Boosting (XGBoost), and Neural Network algorithms were developed and compared to traditional statistical approaches. The analysis identified critical manufacturing parameters, such as surface waviness, profile errors, and tooth geometry deviations, significantly influencing noise generation. Advanced ML models, specifically Random Forest, XGBoost, and deep neural networks, demonstrated superior prediction accuracy, providing early-stage identification of gear units likely to exceed acceptable noise thresholds. Integrating these data-driven models into manufacturing processes enables early detection of potential noise issues, reduces quality assurance costs, and supports sustainable manufacturing by minimizing prototype production and resource consumption. This research enhances the understanding of gear noise formation and offers practical solutions for real-time quality assurance. Full article
Show Figures

Graphical abstract

22 pages, 6359 KiB  
Article
Development and Testing of an AI-Based Specific Sound Detection System Integrated on a Fixed-Wing VTOL UAV
by Gabriel-Petre Badea, Mădălin Dombrovschi, Tiberius-Florian Frigioescu, Maria Căldărar and Daniel-Eugeniu Crunteanu
Acoustics 2025, 7(3), 48; https://doi.org/10.3390/acoustics7030048 - 30 Jul 2025
Viewed by 254
Abstract
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human [...] Read more.
This study presents the development and validation of an AI-based system for detecting chainsaw sounds, integrated into a fixed-wing VTOL UAV. The system employs a convolutional neural network trained on log-mel spectrograms derived from four sound classes: chainsaw, music, electric drill, and human voices. Initial validation was performed through ground testing. Acoustic data acquisition is optimized during cruise flight, when wing-mounted motors are shut down and the rear motor operates at 40–60% capacity, significantly reducing noise interference. To address residual motor noise, a preprocessing module was developed using reference recordings obtained in an anechoic chamber. Two configurations were tested to capture the motor’s acoustic profile by changing the UAV’s orientation relative to the fixed microphone. The embedded system processes incoming audio in real time, enabling low-latency classification without data transmission. Field experiments confirmed the model’s high precision and robustness under varying flight and environmental conditions. Results validate the feasibility of real-time, onboard acoustic event detection using spectrogram-based deep learning on UAV platforms, and support its applicability for scalable aerial monitoring tasks. Full article
Show Figures

Figure 1

21 pages, 5817 KiB  
Article
UN15: An Urban Noise Dataset Coupled with Time–Frequency Attention for Environmental Sound Classification
by Yu Shen, Ge Cao, Huan-Yu Dong, Bo Dong and Chang-Myung Lee
Appl. Sci. 2025, 15(15), 8413; https://doi.org/10.3390/app15158413 - 29 Jul 2025
Viewed by 168
Abstract
With the increasing severity of urban noise pollution, its detrimental impact on public health has garnered growing attention. However, accurate identification and classification of noise sources in complex urban acoustic environments remain major technical challenges for achieving refined noise management. To address this [...] Read more.
With the increasing severity of urban noise pollution, its detrimental impact on public health has garnered growing attention. However, accurate identification and classification of noise sources in complex urban acoustic environments remain major technical challenges for achieving refined noise management. To address this issue, this study presents two key contributions. First, we construct a new urban noise classification dataset, namely the urban noise 15-category dataset (UN15), which consists of 1620 audio clips from 15 representative categories, including traffic, construction, crowd activity, and commercial noise, recorded from diverse real-world urban scenes. Second, we propose a novel deep neural network architecture based on a residual network and integrated with a time–frequency attention mechanism, referred to as residual network with temporal–frequency attention (ResNet-TF). Extensive experiments conducted on the UN15 dataset demonstrate that ResNet-TF outperforms several mainstream baseline models in both classification accuracy and robustness. These results not only verify the effectiveness of the proposed attention mechanism but also establish the UN15 dataset as a valuable benchmark for future research in urban noise classification. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

40 pages, 13570 KiB  
Article
DuSAFNet: A Multi-Path Feature Fusion and Spectral–Temporal Attention-Based Model for Bird Audio Classification
by Zhengyang Lu, Huan Li, Min Liu, Yibin Lin, Yao Qin, Xuanyu Wu, Nanbo Xu and Haibo Pu
Animals 2025, 15(15), 2228; https://doi.org/10.3390/ani15152228 - 29 Jul 2025
Viewed by 360
Abstract
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures [...] Read more.
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures both local spectral textures and long-range temporal dependencies in Mel-spectrogram inputs and explicitly enhances inter-class separability across low, mid, and high frequency bands. On a curated dataset of 17,653 three-second recordings spanning 18 species, DuSAFNet achieves 96.88% accuracy and a 96.83% F1 score using only 6.77 M parameters and 2.275 GFLOPs. Cross-dataset evaluation on Birdsdata yields 93.74% accuracy, demonstrating robust generalization to new recording conditions. Its lightweight design and high performance make DuSAFNet well-suited for edge-device deployment and real-time alerts for rare or threatened species. This work lays the foundation for scalable, automated acoustic monitoring to inform biodiversity assessments and conservation planning. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

19 pages, 18196 KiB  
Article
A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
by Yuqi Zhu, Binjian Shen, Biyuan Yao and Wei Wu
J. Mar. Sci. Eng. 2025, 13(8), 1422; https://doi.org/10.3390/jmse13081422 - 25 Jul 2025
Viewed by 218
Abstract
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies [...] Read more.
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies in sound speed modeling. This study proposes and validates a three-tier calibration framework consisting of a Dynamic Single-Difference (DSD) solver, a geometrically optimized reference buoy selection algorithm, and a Virtual Beacon (VB) depth inversion method based on sound speed profiles. Through simulations under varying noise conditions, the DSD method effectively mitigates common ranging and clock errors. The geometric reference optimization algorithm enhances the selection of optimal buoy layouts and reference points. At a depth of 4 km, the VB method improves vertical positioning accuracy by 15% compared to the DSD method alone, and nearly doubles vertical accuracy compared to traditional non-differential approaches. This research demonstrates that deep-sea underwater target calibration can be achieved without high-precision time synchronization and in the presence of fixed ranging errors. The proposed framework has the potential to lower technological barriers for large-scale deep-sea network deployments and provides a robust foundation for autonomous deep-sea exploration. Full article
Show Figures

Figure 1

18 pages, 4490 KiB  
Article
Tandem Neural Network Based Design of Acoustic Metamaterials for Low-Frequency Vibration Reduction in Automobiles
by Jianjiao Deng, Jiawei Wu, Xi Chen, Xinpeng Zhang, Shoukui Li, Yu Song, Jian Wu, Jing Xu, Shiqi Deng and Yudong Wu
Crystals 2025, 15(8), 676; https://doi.org/10.3390/cryst15080676 - 24 Jul 2025
Viewed by 361
Abstract
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction [...] Read more.
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction methods have proven to be mature and widely implemented. However, due to constraints related to size and weight, these methods typically address only high-frequency vibration control. Consequently, they struggle to effectively mitigate vehicle body and component vibration noise at frequencies below 200 Hz. In recent years, acoustic metamaterials (AMMs) have emerged as a promising solution for suppressing low-frequency vibrations. This development offers a novel approach for low-frequency vibration control. Nevertheless, conventional design methodologies for AMMs predominantly rely on empirical knowledge and necessitate continuous parameter adjustments to achieve desired bandgap characteristics—an endeavor that entails extensive calculations and considerable time investment. With advancements in machine learning technology, more efficient design strategies have become feasible. This paper presents a tandem neural network (TNN) specifically developed for the design of AMMs. The trained neural network is capable of deriving both the bandgap characteristics from the design parameters of AMMs as well as deducing requisite design parameters based on specified bandgap targets. Focusing on addressing low-frequency vibrations in the back frame of automobile seats, this method facilitates the determination of necessary AMMs design parameters. Experimental results demonstrate that this approach can effectively guide AMMs designs with both speed and accuracy, and the designed AMMs achieved an impressive vibration attenuation rate of 63.6%. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
Show Figures

Figure 1

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 347
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 320
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

23 pages, 3741 KiB  
Article
Multi-Corpus Benchmarking of CNN and LSTM Models for Speaker Gender and Age Profiling
by Jorge Jorrin-Coz, Mariko Nakano, Hector Perez-Meana and Leobardo Hernandez-Gonzalez
Computation 2025, 13(8), 177; https://doi.org/10.3390/computation13080177 - 23 Jul 2025
Viewed by 290
Abstract
Speaker profiling systems are often evaluated on a single corpus, which complicates reliable comparison. We present a fully reproducible evaluation pipeline that trains Convolutional Neural Networks (CNNs) and Long-Short Term Memory (LSTM) models independently on three speech corpora representing distinct recording conditions—studio-quality TIMIT, [...] Read more.
Speaker profiling systems are often evaluated on a single corpus, which complicates reliable comparison. We present a fully reproducible evaluation pipeline that trains Convolutional Neural Networks (CNNs) and Long-Short Term Memory (LSTM) models independently on three speech corpora representing distinct recording conditions—studio-quality TIMIT, crowdsourced Mozilla Common Voice, and in-the-wild VoxCeleb1. All models share the same architecture, optimizer, and data preprocessing; no corpus-specific hyperparameter tuning is applied. We perform a detailed preprocessing and feature extraction procedure, evaluating multiple configurations and validating their applicability and effectiveness in improving the obtained results. A feature analysis shows that Mel spectrograms benefit CNNs, whereas Mel Frequency Cepstral Coefficients (MFCCs) suit LSTMs, and that the optimal Mel-bin count grows with corpus Signal Noise Rate (SNR). With this fixed recipe, EfficientNet achieves 99.82% gender accuracy on Common Voice (+1.25 pp over the previous best) and 98.86% on VoxCeleb1 (+0.57 pp). MobileNet attains 99.86% age-group accuracy on Common Voice (+2.86 pp) and a 5.35-year MAE for age estimation on TIMIT using a lightweight configuration. The consistent, near-state-of-the-art results across three acoustically diverse datasets substantiate the robustness and versatility of the proposed pipeline. Code and pre-trained weights are released to facilitate downstream research. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

Back to TopTop