Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = acidic organic fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4097 KiB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Viewed by 328
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

16 pages, 4062 KiB  
Article
Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit
by Maciej Fabrykiewicz, Krzysztof Tesch and Janusz T. Cieśliński
Energies 2025, 18(14), 3804; https://doi.org/10.3390/en18143804 - 17 Jul 2025
Viewed by 208
Abstract
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in [...] Read more.
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in a staggered layout. Three organic phase change materials are investigated: paraffin LTP 56, fatty acid RT54HC, and fatty acid P1801. OpenFOAM software is utilized to solve the governing equations using the Boussinesq approximation. The discretization of the equations is performed with second-order accuracy in both space and time. The three-dimensional (3D) computational domain corresponds to the inner diameter of the LHSU. Calculations are conducted assuming constant thermal properties of the fluids. The experimental and numerical results indicate that for paraffin LTP56, the charging time is approximately 8% longer than the discharging time. In contrast, the discharging times for fatty acids RT54HC and P1801 exceed their charging times, with time delays of about 14% and 49% for RT54HC and 25% and 30% for P1801, according to experimental and numerical calculations, respectively. Full article
(This article belongs to the Special Issue Advancements in Energy Storage Technologies)
Show Figures

Figure 1

23 pages, 17147 KiB  
Article
Ferroptosis and Sterol Biosynthesis Dysregulation in Granulosa Cells of Patients with Diminished Ovarian Reserve
by Yang Yu, Yali Shan, Jiani Lu, Yexing Xian, Zhengshan Tang, Xinyu Guo, Yan Huang and Xin Ni
Antioxidants 2025, 14(6), 749; https://doi.org/10.3390/antiox14060749 - 17 Jun 2025
Viewed by 620
Abstract
Granulosa cell (GC) dysfunction contributes to diminished ovarian reserve (DOR). We collected GC and follicular fluid samples from the patients of normal ovarian reserve (NOR) and DOR. RNA-seq of GCs showed that cholesterol/sterol metabolism and biosynthesis and extracellular matrix organization were enriched in [...] Read more.
Granulosa cell (GC) dysfunction contributes to diminished ovarian reserve (DOR). We collected GC and follicular fluid samples from the patients of normal ovarian reserve (NOR) and DOR. RNA-seq of GCs showed that cholesterol/sterol metabolism and biosynthesis and extracellular matrix organization were enriched in the DOR group. Metabolomics of follicular fluid revealed enrichment in steroid hormone biosynthesis, tryptophan metabolism, and fatty acid β-oxidation in DOR. The apoptosis rate was increased, whereas the proliferative rate was decreased in GCs of DOR. The Prussian blue staining rate was increased whilst GPX4 and SLC7A11 expression were downregulated in GCs of DOR. Mitochondrial morphology displayed the features of ferroptosis in GCs of DOR. FSHR, CYP19A1, NR5A1, and phosphorylated CREB levels were substantially downregulated in GCs, accompanied by increased androgen levels in follicular fluids in DOR. The key factors linked to the mevalonate pathway, HMGCR, SQLE, and SREBF2, were robustly increased in DOR. FSHR and NR5A1 levels were correlated with CYP19A1 levels, whilst CYP19A1 levels were positively correlated with GPX4 and SLC7A11 levels. Our findings indicate ferroptosis and dysregulation of cholesterol/sterol metabolism and biosynthesis occurrence in GCs of DOR, which might be associated with reduced FSHR signaling and decreased conversion of androgen to estrogen. Full article
Show Figures

Figure 1

23 pages, 1943 KiB  
Article
Exploring the Characterization, Physicochemical Properties, and Antioxidant Activities of Chitosan-Encapsulated Green Tea Extract Microsphere Resin
by Lina Yu, Siyu Feng, Yu Song, Jie Bi, Yuan Gao, Luhui Wang, Chen Jiang and Mingqing Wang
Polymers 2025, 17(12), 1633; https://doi.org/10.3390/polym17121633 - 12 Jun 2025
Viewed by 457
Abstract
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase [...] Read more.
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase suspension cross-linking polymerization. The structural characterization of CS-GTEMR was conducted using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Additionally, its physical properties, swelling behavior, polyphenol content, and antioxidant activities were investigated. The results indicate that CS-GTEMR consists of reddish-brown microspheres with a smooth surface and dense pores. The study found that the total content of polyphenolic compounds encapsulated in CS-GTEMR was 50.485 ± 0.840 μg/g. The characteristic absorption peak of phenolic hydroxyl groups appeared in the FTIR spectrum, suggesting that the polyphenolic compounds had been successfully encapsulated within the CS-GTEMR. The equilibrium swelling ratio of CS-GTEMR was determined to be 229.7%, indicating their suitability for use in solutions with a pH range of 1–13. In simulated gastric and intestinal fluids, the release rates of polyphenolic compounds from CS-GTEMR were 24.934% and 3.375%, respectively, indicating that CS-GTEMR can exert a sustained-release effect on polyphenolic compounds. CS-GTEMR demonstrated antioxidant activities such as scavenging DPPH radicals, superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide, as well as exhibiting iron-reducing and molybdenum-reducing powers. With its high mechanical strength, acid resistance, and organic solvent resistance, CS-GTEMR can protect polyphenolic compounds from damage. Therefore, CS-GTEMR can be utilized as a natural antioxidant or preventive agent in food, expanding the application scope of green tea extracts. Full article
Show Figures

Figure 1

16 pages, 4557 KiB  
Article
A Fluid Dynamic In Vitro System to Study the Effect of Hyaluronic Acid Administration on Collagen Organization in Human Skin Explants
by Andrea Galvan, Maria Assunta Lacavalla, Federico Boschi, Barbara Cisterna, Edoardo Dalla Pozza, Enrico Vigato, Flavia Carton, Manuela Malatesta and Laura Calderan
Int. J. Mol. Sci. 2025, 26(11), 5397; https://doi.org/10.3390/ijms26115397 - 4 Jun 2025
Viewed by 545
Abstract
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of [...] Read more.
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of the ECM, in the regulation of tissue homeostasis, in the resistance to mechanical stimuli/forces, and in the modulation of tissue regeneration. For these reasons, HA is widely used in regenerative medicine and cosmetics. In this study we used an innovative fluid dynamic system to investigate the effects of a cross-linked macrostructural HA formulation on dermal collagen of healthy human skin explants. The good preservation of skin explants provided by the bioreactor allowed applying refined high-resolution microscopy techniques to analyze in situ the HA-induced modifications on the ECM collagen fibrils up to 48 h from the application on the skin surface. Results demonstrated that this HA formulation, commercially proposed for subcutaneous injection, may act on dermal ECM also when applied transcutaneously, improving ECM hydration and modifying the organization of the collagen fibrils. These findings, obtained by the original combination of explanted human skin use with an advanced culture system and multiscale imaging techniques, are consistent with the volumizing and anti-aging effect of HA. Full article
Show Figures

Figure 1

21 pages, 3035 KiB  
Article
Study on the Unblocking Fluid System for Complex Blockages in Weiyuan Shale Gas Wellbores
by Yadong Yang, Yixuan Wang, Longqing Zou, Jianfeng Xiao, Qiyue He, Teng Zhang, Bangkun Qiu and Jingyi Zhu
Processes 2025, 13(6), 1684; https://doi.org/10.3390/pr13061684 - 27 May 2025
Cited by 1 | Viewed by 368
Abstract
During the early stages of drilling and completion in the Weiyuan shale gas wells, a large number of downhole materials were introduced, some of which inevitably remained in the wellbore or migrated into the reservoir. Over time, these residual materials underwent physicochemical reactions [...] Read more.
During the early stages of drilling and completion in the Weiyuan shale gas wells, a large number of downhole materials were introduced, some of which inevitably remained in the wellbore or migrated into the reservoir. Over time, these residual materials underwent physicochemical reactions with reservoir minerals and fluids, gradually forming dense composite blockages that severely restricted the production efficiency of shale gas wells. The effectiveness of single-component unblocking agents in removing such blockages is limited. This study systematically analyzed the physicochemical properties of wellbore blockages in Weiyuan shale gas wells using refined chemical techniques. The results revealed that the main inorganic components of the blockages were Fe3O4 and SiO2, while the organic components were primarily related to polymer materials from drilling and fracturing fluids. Based on the physicochemical characteristics of the blockages, a novel “organic dispersion and inorganic decomposition” unblocking strategy was proposed. Furthermore, an innovative approach that combined molecular simulation with laboratory experiments was employed to develop three unblocking fluid systems tailored to different blockage conditions: neutral, acidic, and composite. Performance evaluation showed that the composite unblocking fluid exhibited the best efficacy in treating these dense composite blockages, achieving a scale dissolution and dispersion efficiency of over 90%. Compared to the other two systems, the composite fluid demonstrated the longest penetration distance in simulated composite blockages, improving penetration by over 30%. In field applications, unblocking strategies were optimized based on whether the oil and casing were interconnected. For blocked wells without connectivity, a circulating wash method was used, while for interconnected wells, a dragging wash method was employed, ensuring efficient blockage removal. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 12805 KiB  
Article
From the Gut to the Brain: Transcriptomic Insights into Neonatal Meningitis Escherichia coli Across Diverse Host Niches
by Lekshmi K. Edison and Subhashinie Kariyawasam
Pathogens 2025, 14(5), 485; https://doi.org/10.3390/pathogens14050485 - 15 May 2025
Viewed by 807
Abstract
Neonatal Meningitis-causing Escherichia coli (NMEC) is the leading cause of neonatal meningitis and exhibits remarkable adaptability to diverse host environments. Understanding its transcriptional responses across different host niches is crucial for deciphering pathogenesis and identifying potential therapeutic targets. We performed a comparative transcriptomic [...] Read more.
Neonatal Meningitis-causing Escherichia coli (NMEC) is the leading cause of neonatal meningitis and exhibits remarkable adaptability to diverse host environments. Understanding its transcriptional responses across different host niches is crucial for deciphering pathogenesis and identifying potential therapeutic targets. We performed a comparative transcriptomic analysis of NMEC RS218, the prototype strain of NMEC, under four distinct host-mimicking conditions: colonic fluid (CF), serum (S), human brain endothelial cells (HBECs), and cerebrospinal fluid (CSF). Differential gene expression analysis was conducted to assess metabolic shifts, virulence factor regulation, and niche-specific adaptation strategies, in which RS218 demonstrated niche-specific transcriptional reprogramming. In CF, genes associated with biofilm formation, motility, efflux pumps, and cell division regulation were upregulated, aiding gut colonization. The serum environment triggered the expression of siderophore-mediated iron acquisition, enterobactin biosynthesis, and heme utilization genes, facilitating immune evasion and bacterial persistence. In HBECs, NMEC upregulated genes linked to nucleoside metabolism, membrane remodeling, pilus organization, and blood–brain barrier (BBB) traversal. In CSF, genes related to oxidative stress resistance, chemotaxis, DNA repair, biofilm formation, and amino acid biosynthesis were enriched, reflecting NMEC’s adaptive mechanisms for survival under nutrient-depleted conditions. Energy-intensive pathways were consistently downregulated across all niches, highlighting the need for an energy conservation strategy. This study provides novel insights into NMEC’s adaptive strategies across different host environments, emphasizing its metabolic flexibility, virulence regulation, and immune evasion mechanisms, offering potential targets for therapeutic intervention. Full article
Show Figures

Figure 1

11 pages, 797 KiB  
Article
Comparison of In Vitro Fermentation Characteristics Among Five Maize Varieties
by Fabio Zicarelli, Serena Calabrò, Piera Iommelli, Micaela Grossi, Federico Infascelli and Raffaella Tudisco
Fermentation 2025, 11(5), 285; https://doi.org/10.3390/fermentation11050285 - 15 May 2025
Viewed by 616
Abstract
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the [...] Read more.
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the chemical composition and the in vitro fermentation patterns of five maize varieties (Tiesto, R700 1, MAS 78.T, DKC 7074 and KWS Kantico) freshly chopped and preserved via ensiling. The results indicated that the chemical composition was not significantly different among varieties. The substrates were incubated for 72 h with buffered rumen fluid collected from cow. The ensiling process slightly reduced gas production and fermentation kinetics, likely due to the consumption of soluble sugars during fermentation. Organic matter loss (OM loss) differed significantly (p < 0.01) among varieties in ensiled maize, correlating with their neutral detergent fiber (NDF) content. While total volatile fatty acid (VFA) production showed no significant differences between varieties, the buffer capacity ratio (BCR), an indicator of protein degradation, varied significantly. Ammonia production (NH3) was significantly higher in ensiled samples, supporting previous findings that ensiling increases non-protein nitrogen (NPN) due to microbial proteolysis and plant enzyme activity. The gas production profiles and fermentation rates over time showed minor differences between fresh and ensiled samples, with fresh material exhibiting faster fermentation kinetics due to the presence of soluble sugars. These findings highlight the importance of evaluating maize silage quality to optimize ruminant nutrition and feed efficiency. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
Show Figures

Figure 1

24 pages, 11557 KiB  
Article
pH-Sensitive Chitosan-Based Hydrogels Trap Poloxamer Micelles as a Dual-Encapsulating Responsive System for the Loading and Delivery of Curcumin
by Alejandra E. Herrera-Alonso, Daniela F. Rodríguez-Chávez, Alberto Toxqui-Terán, José F. Rubio-Valle, José E. Martín-Alfonso, Samuel Longoria-García, Hugo L. Gallardo-Blanco, Celia N. Sánchez-Domínguez and Margarita Sánchez-Domínguez
Polymers 2025, 17(10), 1335; https://doi.org/10.3390/polym17101335 - 14 May 2025
Cited by 1 | Viewed by 919
Abstract
pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was [...] Read more.
pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was loaded into poloxamer 407 micelles and incorporated into citric acid (CA) cross-linked Cs hydrogels using a central composite design. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheological tests, and in vitro experiments, such as hemolysis and cytotoxicity assays. FTIR confirmed cross-linking between Cs and CA, while DSC suggested interactions between Cur-loaded micelles and the hydrogel matrix. Rheological analysis revealed gel-like behavior, with G′ consistently higher than G, and temperature influenced hydrogel properties. SEM showed a denser network when Cur-loaded micelles were incorporated, slowing Cur release. At physiological pH (7.4), 75% of Cur was released after 7 days, while 84% was released at pH 5.5, showing pH-responsive behavior. Cytotoxicity tests showed over 80% viability of VERO CCL-81 cells (0.2–20 ppm hydrogel). This dual-encapsulation system provides a simple and effective platform for loading lipophilic drugs into pH-responsive hydrogels. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 4390 KiB  
Article
Effect of Fracturing Fluid Properties on the Flowback Efficiency of Marine and Continental Transitional Shale Gas Reservoirs in Ordos Basin
by Mingjun Chen, Xianyi Ning, Yili Kang, Jianjun Wu, Bing Li, Yang Shi, Zhehan Lai, Jiajia Bai and Maoling Yan
Processes 2025, 13(5), 1398; https://doi.org/10.3390/pr13051398 - 3 May 2025
Viewed by 492
Abstract
The characteristics of marine–continental transitional shale reservoirs and the performance parameters of fracturing fluids, such as pH and mineralization, play a crucial role in influencing the flowback efficiency of these fluids. Excessive retention of fracturing fluids within the reservoir can lead to a [...] Read more.
The characteristics of marine–continental transitional shale reservoirs and the performance parameters of fracturing fluids, such as pH and mineralization, play a crucial role in influencing the flowback efficiency of these fluids. Excessive retention of fracturing fluids within the reservoir can lead to a significant decrease in permeability, thereby diminishing gas well productivity. This study investigates shale samples sourced from the marine–continental transitional shale formation in the eastern Ordos Basin, along with field-collected fracturing fluid samples, including formation water, sub-formation water, distilled water, inorganic acids, and organic acids, through flowback experiments. The results show that: (1) the flowback rate of shale fracturing fluids exhibits a positive correlation with salinity, with low-salinity fluids showing a dual effect on clay mineral hydration. These fluids increase the pore volume of the sample from 0.003 cm3/g to 0.0037 cm3/g but also potentially reduce permeability by 31.15% to 99.96%; (2) the dissolution effects of inorganic and organic acids in the fracturing fluids enhance the flowback rate by 16.42% to 22.25%, owing to their chemical interactions with mineral constituents; (3) in the development of shale gas reservoirs, it is imperative to carefully devise reservoir protection strategies that balance the fracture-inducing effects of clay mineral hydration and expansion, while mitigating water sensitivity damage. The application of acid preflush, primarily including inorganic or organic acids, in conjunction with the advanced fracturing techniques, can enhance the connectivity of shale pores and fractures, thereby improving fracture conductivity, increasing the flowback rate of fracturing fluids, and ensuring sustained and high gas production from wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 1678 KiB  
Review
Mitochondria at the Heart of Sepsis: Mechanisms, Metabolism, and Sex Differences
by John Q. Yap, Azadeh Nikouee, Jessie E. Lau, Gabriella Walsh and Qun Sophia Zang
Int. J. Mol. Sci. 2025, 26(9), 4211; https://doi.org/10.3390/ijms26094211 - 29 Apr 2025
Cited by 1 | Viewed by 1215
Abstract
Sepsis is a life-threatening condition that occurs when the body is unable to effectively combat infection, leading to systemic inflammation and multi-organ failure. Interestingly, females exhibit lower sepsis incidence and improved clinical outcomes compared to males. However, the mechanisms underlying these sex-specific differences [...] Read more.
Sepsis is a life-threatening condition that occurs when the body is unable to effectively combat infection, leading to systemic inflammation and multi-organ failure. Interestingly, females exhibit lower sepsis incidence and improved clinical outcomes compared to males. However, the mechanisms underlying these sex-specific differences remain poorly understood. While sex hormones have been a primary focus, emerging evidence suggests that non-hormonal factors also play contributory roles. Despite sex differences in sepsis, clinical management is the same for both males and females, with treatment focused on combating infection using antibiotics and hemodynamic support through fluid therapy. However, even with these interventions, mortality remains high, highlighting the need for more effective and targeted therapeutic strategies. Sepsis-induced cardiomyopathy (SIC) is a key contributor to multi-organ failure and is characterized by left ventricular dilation and impaired cardiac contractility. In this review, we explore sex-specific differences in sepsis and SIC, with a particular focus on mitochondrial metabolism. Mitochondria generate the ATP required for cardiac function through fatty acid and glucose oxidation, and recent studies have revealed distinct metabolic profiles between males and females, which can further differ in the context of sepsis and SIC. Targeting these metabolic pathways could provide new avenues for sepsis treatment. Full article
(This article belongs to the Special Issue Mitochondria as a Core of Cell Signals)
Show Figures

Figure 1

12 pages, 253 KiB  
Case Report
Rapid Clinical Resolution and Differential Diagnosis of a Neurological Case of Feline Infectious Peritonitis (FIP) Using GS-441524
by Amy Huynh, Pamela Moraguez, Logan M. Watkins, Jonathan H. Wood, Ximena A. Olarte-Castillo and Gary R. Whittaker
Pathogens 2025, 14(5), 424; https://doi.org/10.3390/pathogens14050424 - 27 Apr 2025
Viewed by 2141
Abstract
Case summary: A 2-year-old male neutered domestic shorthair cat was presented with a progressive history of tetraparesis, ataxia, and inappetence over 4 days. A physical exam revealed mucopurulent nasal discharge and stertor. A neurologic exam revealed a multifocal neurolocalization. The cat was non-ambulatory [...] Read more.
Case summary: A 2-year-old male neutered domestic shorthair cat was presented with a progressive history of tetraparesis, ataxia, and inappetence over 4 days. A physical exam revealed mucopurulent nasal discharge and stertor. A neurologic exam revealed a multifocal neurolocalization. The cat was non-ambulatory tetraparetic and developed seizures while in hospital. Hematologic assessment revealed anemia, hypoalbuminemia and hyperglobulinemia. Magnetic resonance imaging (MRI) of the brain revealed multifocal meningeal contrast enhancement in the brainstem and cervical spine, as well as mandibular and retropharyngeal lymphadenopathy. Cerebrospinal fluid revealed marked neutrophilic pleocytosis; no infectious organisms were seen. Toxoplasma IgG/IgM and Cryptococcus antigen latex agglutination were negative. Mandibular and abdominal lymph nodes were aspirated, and cytology revealed mixed inflammation. The cat was suspected to have feline infectious peritonitis, and to aid in clinical diagnosis he was enrolled in research study—with targeted Nanopore-based sequencing specifically identifying and characterizing FCoV-1 RNA in spinal fluid and anal swab, but not in urine. The cat was treated with anticonvulsants (phenobarbital and levetiracetam), an antibiotic (ampicillin/clavulanic acid), and GS-441524. Neurologic signs did not improve on an antibiotic alone but improved significantly after two subcutaneous injections of GS-441524. The cat received an 84-day course of GS-441524 and, at the time of manuscript preparation (over 12 months after diagnosis), remains ambulatory and seizure-free without recurrence of neurologic signs and no detectable viral shedding in feces. Full article
(This article belongs to the Special Issue Feline Coronavirus Infections)
18 pages, 5886 KiB  
Article
Effects of Compound Microecological Preparation Supplementation on Production Performance and Nutrient Apparent Digestibility in Hu Sheep from the Rumen Perspective
by Mu-Long Lu, Long Pan, Chen Zheng, Ruo-Yu Mao, Guo-Hong Yuan, Chen-Yang Shi, Zhe-Huan Pu, Hui-Xin Su, Qi-Yu Diao, Halidai Rehemujiang and Gui-Shan Xu
Microorganisms 2025, 13(5), 999; https://doi.org/10.3390/microorganisms13050999 - 27 Apr 2025
Cited by 1 | Viewed by 543
Abstract
This study evaluates the effects of a compound microecological preparation named ATABG, which is composed of antimicrobial peptide ID13 and Saccharomyces boulardii, on Hu sheep’s growth performance, feed digestibility, and rumen parameters. A total of 40 three-month-old Hu sheep (21.65 ± 0.33 [...] Read more.
This study evaluates the effects of a compound microecological preparation named ATABG, which is composed of antimicrobial peptide ID13 and Saccharomyces boulardii, on Hu sheep’s growth performance, feed digestibility, and rumen parameters. A total of 40 three-month-old Hu sheep (21.65 ± 0.33 kg) were randomly assigned to two groups: the control group (Con), which received a basal diet, and the experimental group (ATABG), which received the same diet supplemented with 1 g/kg ATABG on a dry matter basis. After a 10-day pre-feeding period to adapt the animals to the experimental diet, dry matter intake and weight gain were recorded during the subsequent 63-day trial period. Body weight was measured on days 1, 21, 42, and 63 of the trial, and animals were slaughtered on day 63 to collect rumen fluid and tissue. Results indicated that ATABG supplementation significantly increased the apparent digestibility of crude protein, neutral detergent fiber, acid detergent fiber, and organic matter (p < 0.05). Rumen fluid analysis revealed increased microbial protein concentration and cellulase activity (p < 0.05) in the ATABG group. Microbiota analysis indicated that ATABG increased the relative abundance of Ruminococcus and Proteobacteria, elevated Firmicutes, and reduced Bacteroidota (p < 0.05). Correlation analysis showed Ruminococcus was positively associated with crude protein digestibility, while Quinella correlated with growth-related indices (r > 0.4, p < 0.05). In conclusion, ATABG supplementation improves protein digestibility and rumen microbial protein synthesis by enriching Ruminococcus and enhancing cellulase activity, potentially optimizing nitrogen utilization in Hu sheep. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

15 pages, 2574 KiB  
Article
The Effect of Organic Acid Modification on the Pore Structure and Fractal Features of 1/3 Coking Coal
by Jiafeng Fan and Feng Cai
Fractal Fract. 2025, 9(5), 283; https://doi.org/10.3390/fractalfract9050283 - 26 Apr 2025
Viewed by 310
Abstract
The acidification modification of coal seams is a significant technical measure for transforming coalbed methane reservoirs and enhancing the permeability of coal seams, thereby improving the extractability of coalbed methane. However, the acids currently used in fracturing fluids are predominantly inorganic acids, which [...] Read more.
The acidification modification of coal seams is a significant technical measure for transforming coalbed methane reservoirs and enhancing the permeability of coal seams, thereby improving the extractability of coalbed methane. However, the acids currently used in fracturing fluids are predominantly inorganic acids, which are highly corrosive and can contaminate groundwater reservoirs. In contrast, organic acids are not only significantly less corrosive than inorganic acids but also readily bind with the coal matrix. Some organic acids even exhibit complexing and flocculating effects, thus avoiding groundwater contamination. This study focuses on the 1/3 coking coal from the Guqiao Coal Mine of Huainan Mining Group Co., Ltd., in China. It systematically investigates the fractal characteristics and chemical structure of coal samples before and after pore modification using four organic acids (acetic acid, glycolic acid, oxalic acid, and citric acid) and compares their effects with those of hydrochloric acid solutions at the same concentration. Following treatment with organic acids, the coal samples exhibit an increase in surface fractal dimension, a reduction in spatial fractal dimension, a decline in micropore volume proportion, and a rise in the proportions of transitional and mesopore volumes, and the structure of the hydroxyl group and oxygen-containing functional group decreased. This indicates that treating coal samples with organic acids enhances their pore structure and chemical structure. A comparative analysis reveals that hydrochloric acid is more effective than acetic acid in modifying coal pores, while oxalic acid and citric acid outperform hydrochloric acid, and citric acid shows the best results. The findings provide essential theoretical support for organic acidification modification technology in coalbed methane reservoirs and hydraulic fracturing techniques for coalbed methane extraction. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Underground Engineering)
Show Figures

Figure 1

22 pages, 5127 KiB  
Article
Antipyretic Mechanism of Bai Hu Tang on LPS-Induced Fever in Rat: A Network Pharmacology and Metabolomics Analysis
by Ke Pei, Yuchen Wang, Wentao Guo, He Lin, Zhe Lin and Guangfu Lv
Pharmaceuticals 2025, 18(5), 610; https://doi.org/10.3390/ph18050610 - 23 Apr 2025
Viewed by 667
Abstract
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg [...] Read more.
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg for half an hour, body temperature was measured at hourly intervals for 9 consecutive hours. Then, serum levels of TNF-α, IL-1β, and IL-6, and serum and cerebrospinal fluid (CSF) levels of AVP, cAMP, PGE2, Ca and CRH, and the remaining sera were used for metabolomics. These were then combined with network pharmacology methodology to further analyse the antipyretic effect of BHT and then dock key targets with differential components. Results: Administration of BHT to LPS-induced febrile rats significantly reduced elevated body temperature, TNF-α, IL-1β and IL-6 levels, but serum and CSF levels of AVP, cAMP, PGE2, Ca2+ and CRH were significantly elevated compared to the control group. Network pharmacological analyses indicated that the putative functional targets of BHT were regulation of immune responses, associated protein binding and inflammatory responses, and fine-tuning of phosphatase binding and activation of signalling pathways such as MAPK, PI3K, AKT, NF-kB, cAMP and inflammatory pathways. Metabolomic analysis showed that the antipyretic effect of BHT and its mechanism are likely to be involved in fatty acid metabolism, bile acid metabolism and amino acid metabolism in the organism, with L-arginine, glycyrrhetinic acid and N-acetylpentraxine as the main differential metabolites that play a significant role in heat recovery. The results also showed better docking of glycyrrhetinic acid with TNF-α, IL-6R, PTGS2. Conclusions: BHT provides a valuable adjunct to traditional clinical antipyretics by improving body temperature and metabolism and reducing inflammation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop