Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = acidic/alkaline contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1780 KB  
Article
Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation
by Ebenezer Aning-Dei, Jianmei Yu and Salam A. Ibrahim
Microorganisms 2025, 13(9), 1972; https://doi.org/10.3390/microorganisms13091972 - 23 Aug 2025
Viewed by 137
Abstract
Grape pomace (GP), a polyphenol-rich byproduct of winemaking, holds considerable health benefits and potential as an antibiotic alternative for livestock animals. However, its utilization is compromised by the contamination of mycotoxins produced by pathogenic molds (with ochratoxin A (OTA) being the most frequently [...] Read more.
Grape pomace (GP), a polyphenol-rich byproduct of winemaking, holds considerable health benefits and potential as an antibiotic alternative for livestock animals. However, its utilization is compromised by the contamination of mycotoxins produced by pathogenic molds (with ochratoxin A (OTA) being the most frequently detected), which pose hidden health risks to both livestock animals and human beings. This study evaluated the efficacy of thermal–pressure treatment (pressure cooking) with and without the addition of acidic and alkaline agents, and the combined thermal-pressure and fermentation with four lactic acid bacteria (LAB) strains, including Lactobacillus bulgaricus (LB6), Lacticaseibacillus paracasei (previously Lactobacillus paracasei) (BAA-52), Lactobacillus acidophilus, and Lactiplantibacillus plantarum (previously Lactobacillus plantarum), on reducing OTA and preserving polyphenols in GP. The study found that pressure cooking alone reduced OTA by approximately 33–35% in 30–45 min. The addition of citric acid (CA) or acetic acid (AA) enhanced OTA reduction to 46.9–55.2% and 51.7–54%, respectively, while preserving more polyphenols, notably anthocyanins. Conversely, pressure cooking with the addition of NaHCO3 facilitated greater OTA reductions (40.4–63%), but concomitantly resulted in substantial polyphenol loss, especially anthocyanins. Fermentation for 24 h with LAB following thermal–pressure treatment resulted in up to 97% OTA reduction for Lc. paracasei, L. acidophilus, and Lp. plantarum strains, which displayed similar high effectiveness in OTA reduction in GP. L. bulgaricus (LB6) was least effective (45%), even after 72 h of fermentation. These findings indicate that home-scale pressure cooking combined with lactic acid fermentation effectively detoxifies OTA-contaminated GP, thus enhancing its safety profile for consumption by livestock animals and humans, despite partial polyphenolic losses. Full article
Show Figures

Figure 1

19 pages, 5302 KB  
Article
Localized Ultrasonic Cleaning for Injection Mold Cavities: A Scalable In Situ Process with Surface Quality Monitoring
by Deviprasad Chalicheemalapalli Jayasankar, Thomas Tröster and Thorsten Marten
Technologies 2025, 13(8), 354; https://doi.org/10.3390/technologies13080354 - 11 Aug 2025
Viewed by 342
Abstract
As global industries seek to reduce energy consumption and lower CO2 emissions, the need for sustainable, efficient maintenance processes in manufacturing has become increasingly important. Traditional mold cleaning methods often require complete tool disassembly, extended downtime, and heavy use of solvents, resulting [...] Read more.
As global industries seek to reduce energy consumption and lower CO2 emissions, the need for sustainable, efficient maintenance processes in manufacturing has become increasingly important. Traditional mold cleaning methods often require complete tool disassembly, extended downtime, and heavy use of solvents, resulting in high energy costs and environmental impact. This study presents a novel localized ultrasonic cleaning process for injection molding tools that enables targeted, in situ cleaning of mold cavities without removing the tool from the press. A precisely positioned ultrasonic transducer delivers cleaning energy directly to contaminated areas, eliminating the need for complete mold removal. Multiple cleaning agents, including alkaline and organic acid solutions, were evaluated for their effectiveness in combination with ultrasonic excitation. Surface roughness measurements were used to assess cleaning performance over repeated contamination and cleaning cycles. Although initial tests were performed manually in the lab, results indicate that the method can be scaled up and automated effectively. This process offers a promising path toward energy-efficient, low-emission tool maintenance across a wide range of injection molding applications. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

22 pages, 7118 KB  
Article
A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications
by Hebat-Allah S. Tohamy
Foods 2025, 14(16), 2791; https://doi.org/10.3390/foods14162791 - 11 Aug 2025
Viewed by 376
Abstract
Carboxymethyl cellulose (CMC) films, derived from sugarcane bagasse agricultural waste (SCB) incorporated with Betalains-nitrogen-doped carbon dots (Betalains-N–CQDs), derived from beet root waste (BR), offer a sustainable, smart and naked-eye sensor for strawberry packaging due to their excellent fluorescent and shape memory properties. These [...] Read more.
Carboxymethyl cellulose (CMC) films, derived from sugarcane bagasse agricultural waste (SCB) incorporated with Betalains-nitrogen-doped carbon dots (Betalains-N–CQDs), derived from beet root waste (BR), offer a sustainable, smart and naked-eye sensor for strawberry packaging due to their excellent fluorescent and shape memory properties. These CMC-Betalains-N–CQDs aim to enhance strawberry preservation and safety by enabling visual detection of common food contaminants such as bacteria, fungi and Pb(II). Crucially, the CMC-Betalains-N–CQD film also exhibits excellent shape memory properties, capable of fixing various shapes under alkaline conditions and recovering its original form in acidic environments, thereby offering enhanced physical protection for delicate produce like strawberries. Optical studies reveal the Betalains-N–CQDs’ pH-responsive fluorescence, with distinct emission patterns observed across various pH levels, highlighting their potential for sensing applications. Scanning Electron Microscopy (SEM) confirms the successful incorporation of Betalains-N–CQDs into the CMC matrix, revealing larger pores in the composite film that facilitate better interaction with analytes such as bacteria. Crucially, the CMC-Betalains-N–CQD film demonstrates significant antibacterial activity against common foodborne pathogens like Escherichia coli, Staphylococcus aureus, and Candida albicans, as evidenced by inhibition zones and supported by molecular docking simulations showing strong binding interactions with bacterial proteins. Furthermore, the film functions as a fluorescent sensor, exhibiting distinct color changes upon contact with different microorganisms and Pb(II) heavy metals, enabling rapid, naked-eye detection. The film also acts as a pH sensor, displaying color shifts (brown in alkaline, yellow in acidic) due to the betalains, useful for monitoring food spoilage. This research presents a promising, sustainable, and multifunctional intelligent packaging solution for enhanced food safety and extended shelf life. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

14 pages, 2802 KB  
Article
Interactions of Fe, Mn, Zn, and Cd in Soil–Rice Systems: Implications for Reducing Cd Accumulation in Rice
by Yan Zhang, Su Jiang, Han Wang, Linfei Yu, Chunfu Li, Liqun Ding and Guosheng Shao
Toxics 2025, 13(8), 633; https://doi.org/10.3390/toxics13080633 - 28 Jul 2025
Viewed by 770
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with [...] Read more.
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with high (MY46) or low (ZS97B) Cd accumulation capacities grown in acidic and alkaline soils. Results demonstrated that Cd stress significantly inhibited plant growth, reducing plant height, shoot biomass, and grain yield in both soil types. Cd accumulation increased in roots, shoots, and grains, while Fe, Mn, and Zn concentrations decreased markedly. Molecular analysis revealed upregulation of metal transporter genes (OsIRT1, OsNRAMP1, OsNRAMP5) and the vacuolar sequestration gene (OsHMA3) in roots under Cd exposure. The translocation factor (TF) values of Mn and Zn from root to shoot were reduced in acidic soils, whereas Mn and Zn TFs exhibited an increasing trend in alkaline soils despite Cd exposure. Furthermore, correlation analyses indicated Mn and Zn play crucial roles in suppressing Cd accumulation in both acidic and alkaline soils. These findings provide critical insights for developing soil-specific strategies to reduce Cd accumulation in rice through micronutrient management. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

12 pages, 1599 KB  
Article
CRISPR/Cas12a-Chemiluminescence Cascaded Bioassay for Amplification-Free and Sensitive Detection of Nucleic Acids
by Xiaotian Guan, Peizheng Wang, Yi Wang and Shuqing Sun
Biosensors 2025, 15(8), 479; https://doi.org/10.3390/bios15080479 - 24 Jul 2025
Viewed by 439
Abstract
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline [...] Read more.
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline phosphatase (ALP) complex was constructed as the core component of the bioassay. During the detection process, the single-stranded target DNA was captured and enriched by LssDNA and then activated the trans-cleavage activity of Cas12a. Due to the Cas12a-mediated cleavage of LssDNA, ALP was released from the MB, subsequently catalyzing the substrate to generate a chemiluminescence (CL) signal. Given the cascade combination of CRISPR/Cas12a with the CL technique, the limits of detection for HPV-16 and PB-19 DNA were determined as 0.14 pM and 0.37 pM, respectively, and the whole detection could be completed within 60 min. The practicality and reliability of the platform were validated through target-spiked clinical specimens, and the recovery rate was 93.4–103.5%. This dual-amplification strategy—operating without target pre-amplification—featured high specificity, low contamination risk, facile preparation, and robust stability. It provides a novel approach for sensitive nucleic acid detection, with the potential for rapid extension to the diagnosis of various infectious diseases. Full article
Show Figures

Figure 1

12 pages, 1652 KB  
Article
Catalytic Degradation of Methylene Blue Using Cellulose Acetate Composite Membrane Fabricated with Nickel Nanoparticles
by Saud Bawazeer
Catalysts 2025, 15(7), 642; https://doi.org/10.3390/catal15070642 - 30 Jun 2025
Viewed by 418
Abstract
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni [...] Read more.
Environmental contamination from industrial dyes, particularly Methylene Blue (MB), presents a growing challenge due to their toxicity and persistence in aquatic systems. This study explored the catalytic potential of cellulose acetate-stabilized nickel (CA/Ni) nanoparticles for the degradation of MB in aqueous solutions. CA/Ni was synthesized and characterized using FTIR and SEM, confirming its successful incorporation into the cellulose acetate matrix and uniform distribution across the membrane. UV-Vis spectrophotometry was employed to monitor the catalytic degradation of MB, revealing a significant decrease in absorbance at 665 nm over 28 min, indicating 68% degradation efficiency. Kinetic analysis showed that the degradation followed pseudo-first-order kinetics, with an apparent rate constant of 0.0348 min−1 and an R2 value of 0.9851, confirming excellent catalytic performance. The effects of temperature and pH on MB degradation were investigated, with the highest efficiency observed at 35 °C and a pH of 7. A room temperature (25 °C) and acidic conditions (pH 5) reduced the degradation rate to 52%. In comparison, a higher temperature (45 °C) and an alkaline pH (pH 9) resulted in a slight decline to 55%, likely due to changes in catalyst efficiency and MB solubility. These findings highlight the potential of Ni NP-stabilized membranes for wastewater treatment applications, providing a scalable and efficient approach to dye removal. Full article
Show Figures

Figure 1

18 pages, 4751 KB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 441
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

34 pages, 8503 KB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 563
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 1437 KB  
Article
pH-Dependent Ozonation of Diclofenac: Molecular Insights and Implications for Water Quality and Nature-Based Water Reuse Systems
by Natalia Villota, Unai Duoandicoechea and Enzo Valentin Tosi-Zarate
Clean Technol. 2025, 7(2), 47; https://doi.org/10.3390/cleantechnol7020047 - 5 Jun 2025
Viewed by 701
Abstract
Diclofenac (DCF), a widely consumed non-steroidal anti-inflammatory drug, presents significant environmental challenges due to its persistence and toxicity in aquatic ecosystems. This study investigates the pH-dependent ozonation of DCF in aqueous media, focusing on degradation kinetics, transformation pathways, and effects on key water [...] Read more.
Diclofenac (DCF), a widely consumed non-steroidal anti-inflammatory drug, presents significant environmental challenges due to its persistence and toxicity in aquatic ecosystems. This study investigates the pH-dependent ozonation of DCF in aqueous media, focusing on degradation kinetics, transformation pathways, and effects on key water quality indicators. Ozonation experiments were conducted across a broad pH range (2.0–13.0), using a multi-scale analytical approach combining UV/Vis spectroscopy, colorimetry, turbidity, and aromaticity measurements. The results show that pH strongly influences DCF degradation efficiency: acidic conditions favor selective reactions with molecular ozone, while an alkaline pH enhances non-selective oxidation via hydroxyl radicals. Spectroscopic analyses revealed the progressive breakdown of aromatic structures, the transient formation of quinonoid and phenolic intermediates, and eventual mineralization to inorganic by-products such as nitrate. Low-pH conditions also induced turbidity due to precipitation of neutral DCF species. These findings underline the importance of pH control in optimizing ozonation performance and minimizing toxic by-products. Furthermore, this study proposes ozonation as a viable pre-treatment step within Nature-Based Solutions (NBSs), potentially improving the performance of downstream biological systems such as constructed wetlands. The results contribute to the development of integrated and sustainable water treatment strategies for pharmaceutical contaminant removal and water reuse. Full article
(This article belongs to the Special Issue Nature-Based Solutions for Water Reuse and Contaminant Reduction)
Show Figures

Figure 1

16 pages, 3311 KB  
Article
Microplastic Pollution in Tropical River: Fourier Transform Infrared Spectroscopy-Based Characterization of Abundance and Polymer Composition in Water and Sediments from Filobobos River, Mexico
by Gleybis Hernández-Morales, María Cristina López-Mendez, Alan Antonio Rico-Barragán, Jesús Pérez-Moreno, Carolina Peña-Montes, Luis Alberto Peralta-Pelaez and Humberto Raymundo González-Moreno
Hydrology 2025, 12(5), 124; https://doi.org/10.3390/hydrology12050124 - 21 May 2025
Viewed by 1110
Abstract
Veracruz is a megadiverse state facing great water resource management challenges. The contamination of water bodies with external materials of anthropogenic origin stands out, including those derived from plastic products, which are deemed ubiquitous, emerging contaminants that have gained notoriety in recent decades [...] Read more.
Veracruz is a megadiverse state facing great water resource management challenges. The contamination of water bodies with external materials of anthropogenic origin stands out, including those derived from plastic products, which are deemed ubiquitous, emerging contaminants that have gained notoriety in recent decades due to the extent and effects of their presence, persistence and distribution in aquatic ecosystems. Being a significant environmental threat, their presence, persistence and distribution in aquatic ecosystems are deserving of a more detailed study. This research focused on analyzing microplastic (MP) retention and characterization in environmental matrixes (water and sediment) in the Bobos River’s lower basin, also taking into account other water physicochemical parameters, including a pH range from slightly acidic (5.17) to slightly alkaline (8.94) as the maximum value and an average temperature of 28.87 °C (83.96 °F). MPs are most frequently found in the form of blue-colored fibers. A polymer analysis by Fourier Transform Infrared Spectroscopy (FTIR) revealed that the most common polymer was polyethylene (PE), which is the main component of most agricultural mulch and agrochemical containers. This research aims to enhance the understanding of the plastic matter contamination of water bodies, pointing out the need for further and deeper research on this subject. Full article
Show Figures

Graphical abstract

16 pages, 5131 KB  
Article
Study on Photocatalytic Performance of Bi2O3-TiO2/Powdered Activated Carbon Composite Catalyst for Malachite Green Degradation
by Yajun Chen, Man Cai, Junfeng Li and Wenshuo Zhang
Water 2025, 17(10), 1452; https://doi.org/10.3390/w17101452 - 12 May 2025
Viewed by 582
Abstract
In this study, a Bi2O3-TiO2/PAC ternary composite photocatalyst was successfully synthesized via a hydrothermal method, employing powdered activated carbon (PAC) as the support and using bismuth nitrate and tetrabutyl titanate as raw materials. The external morphology, microstructure, [...] Read more.
In this study, a Bi2O3-TiO2/PAC ternary composite photocatalyst was successfully synthesized via a hydrothermal method, employing powdered activated carbon (PAC) as the support and using bismuth nitrate and tetrabutyl titanate as raw materials. The external morphology, microstructure, elemental composition, and optoelectronic properties of the catalyst were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS, and BET analyses. The photocatalytic activity of the composite toward the degradation of malachite green (MG) was systematically evaluated under various conditions. The results revealed that the composite exhibited excellent photocatalytic activity, achieving a degradation efficiency of up to 99%. Apart from extremely acidic or alkaline conditions, MG removal efficiency increased with a rising solution pH. Moreover, the photocatalyst exhibited excellent adaptability and stability in the presence of coexisting inorganic anions and humic substances, indicating its broad potential for practical applications. Reactive-species-trapping experiments indicated that superoxide radicals (·O2) were the primary active species in the degradation process, with hydroxyl radicals (·OH) and photogenerated holes (h+) acting synergistically. Moreover, the catalyst maintained over 90% removal efficiency after five consecutive cycles, demonstrating its excellent stability and reusability. This work provides a promising strategy and theoretical foundation for the efficient photocatalytic treatment of MG-contaminated wastewater. Full article
(This article belongs to the Special Issue Innovative Nanomaterials and Surfaces for Water Treatment)
Show Figures

Figure 1

19 pages, 6275 KB  
Article
The Antibacterial Activity and Mechanisms of a Mixed Bio-Preservative on the Bacillus Stains in Crab Roe Sauce
by Rongrong Yu, Rongxue Sun, Ning Jiang, Bin Zhang, Cheng Wang, Qianyuan Liu, Zhiqiang Li and Xingna Wang
Foods 2025, 14(3), 525; https://doi.org/10.3390/foods14030525 - 6 Feb 2025
Viewed by 1580
Abstract
Crab roe sauce (CRS) is prone to spoilage due to microbial contamination. Therefore, this study aimed to investigate the inhibitory effects and mechanisms of a mixed bio-preservative (0.025% ε-polylysine hydrochloride (ε-PL) + 0.01% nisin (NS) + 0.01% tea polyphenols (TPs)) on the specific [...] Read more.
Crab roe sauce (CRS) is prone to spoilage due to microbial contamination. Therefore, this study aimed to investigate the inhibitory effects and mechanisms of a mixed bio-preservative (0.025% ε-polylysine hydrochloride (ε-PL) + 0.01% nisin (NS) + 0.01% tea polyphenols (TPs)) on the specific spoilage bacteria (SSB) in CRS. First, the SSB in CRS were isolated and identified by 16S rRNA sequencing. Two isolates were selected as representative strains based on their enzymatic spoilage potential and spoilage capability in CRS. By comparing the inhibition zones, ε-PL, NS, and TPs were selected from five conventional bio-preservatives (ε-PL, NS, TPs, grape seed extract (GSE), and rosemary extract (RE)) to prepare the mixed bio-preservative. The results showed that the minimum inhibitory concentration (MIC) of the mixed bio-preservative against Bacillus pumilus and Bacillus subtilis was 56.3 µg/mL. The growth curves and cell viability tests revealed that the mixed bio-preservative reduced the viability of both strains. The conductivity, alkaline phosphatase activity, and nucleic acid and soluble protein leakage indicated that the mixed bio-preservative disrupted the integrity of the cell walls and membranes of the two isolates in a concentration-dependent manner. Scanning electron microscopy further confirmed the damage to the cell membranes of the two isolates by the mixed bio-preservative. Overall, the mixed bio-preservative exhibited excellently inhibitory effects on the SSB and could be a promising method for the preservation of CRS. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

18 pages, 1452 KB  
Article
Identification of Peanut Cultivars with Low Cadmium Contents and Their Rhizosphere Microbial Characteristics in Alkaline and Acidic Cadmium-Contaminated Fields
by Ke Zhang, Xuefeng Du, Xiaoli Li, Shuangshuang Li, Hui Liu, Liyong Bai and Jiulan Dai
Sustainability 2025, 17(2), 626; https://doi.org/10.3390/su17020626 - 15 Jan 2025
Viewed by 1132
Abstract
Employing crop cultivars with low cadmium (Cd) accumulation and high yield is an effective strategy for the sustainable and safe utilization of Cd-contaminated farmland. However, the current understanding of peanut cultivars, particularly under field conditions, is limited. This study identified low-Cd cultivars and [...] Read more.
Employing crop cultivars with low cadmium (Cd) accumulation and high yield is an effective strategy for the sustainable and safe utilization of Cd-contaminated farmland. However, the current understanding of peanut cultivars, particularly under field conditions, is limited. This study identified low-Cd cultivars and their rhizosphere microbial characteristics in acidic and alkaline fields with moderate Cd contamination. The results indicated that cultivars LH11, FH1, LH14, and YH9414 exhibited low Cd accumulation and high yield, with kernel Cd content reduced by 27.27% to 47.28% and yield increased by 9.27% to 14.17% compared with cultivar SLH. Among them, FH1 was validated to achieve safe production in two fields. A unique microbial community was formed by the recruitment of diverse microbes, such as Alphaproteobacteria, Acidobacteria, Gemmatimonadetes, and Chloroflexi, to the rhizosphere soil of FH1, which might be associated with Cd immobilization and the promotion of plant growth. Functional predictions further validated these findings, revealing enhanced functional pathways in the FH1 rhizosphere related to microbial proliferation, Cd stabilization, and detoxification. This study provides valuable germplasm resources for safe agriculture of Cd-polluted soils and elucidates the rhizosphere microbial characteristics of different peanut cultivars under field conditions. These findings are important for the targeted management of contaminated farmland and ensuring safe food production. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 3285 KB  
Article
Study of Arsenic Contamination in the Caplina Basin, Tacna, Peru: Arsenite and Arsenate Analysis Using Inductively Coupled Plasma Mass Spectrometry and High-Performance Liquid Chromatography
by Luis Johnson Paúl Mori Sosa, Dante Ulises Morales Cabrera, Walter Dimas Florez Ponce De León, Edwin Antonio Hinojosa Ramos and Amparo Yashira Torres Ventura
Sustainability 2025, 17(2), 611; https://doi.org/10.3390/su17020611 - 14 Jan 2025
Cited by 1 | Viewed by 1742
Abstract
This study examines arsenic contamination in the Caplina Basin, Tacna, Peru, focusing on arsenic speciation and associated risks in surface waters. Arsenic concentrations were quantified using inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Total arsenic levels ranged from 0.0304 [...] Read more.
This study examines arsenic contamination in the Caplina Basin, Tacna, Peru, focusing on arsenic speciation and associated risks in surface waters. Arsenic concentrations were quantified using inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Total arsenic levels ranged from 0.0304 mg/L to 0.0730 mg/L across all monitoring points, exceeding the World Health Organization (WHO) limit of 10 µg/L (0.01 mg/L) for drinking water. Arsenite (As(III)), the most toxic and mobile species, reached levels up to 0.0154 mg/L, posing a significant concern at Point 7, characterized by acidic pH (3.82) and high conductivity (1456 µS/cm). Arsenate (As(V)), less toxic but predominant under alkaline conditions, peaked at 0.0260 mg/L at Point 6 (pH 8.42). Organic species such as dimethylarsenic acid (DMA) and monomethylarsenic acid (MMA) were also detected, indicating active methylation processes and anthropogenic influences. The risk assessment revealed carcinogenic risk values ranging from 2.56 × 10⁻⁵ to 6.28 × 10⁻⁵, below the USEPA threshold (1 × 10⁻⁴), but significant for prolonged exposure. Non-carcinogenic hazard quotient (HQ) values ranged from 0.09 to 0.21. These findings highlight severe public health implications and emphasize the urgent need for comprehensive strategies, including continuous monitoring, targeted treatment technologies, and community education, in order to guarantee water quality in vulnerable areas. Full article
Show Figures

Figure 1

57 pages, 17824 KB  
Review
Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review
by Ahmed H. Ibrahim, Xianjun Lyu, Hani E. Sharafeldin and Amr B. ElDeeb
Recycling 2025, 10(1), 6; https://doi.org/10.3390/recycling10010006 - 5 Jan 2025
Cited by 4 | Viewed by 3140
Abstract
Achieving the New World Sustainability Vision 2030 leads to enacting environmental restrictions, which aim to partially or totally reduce the negative impacts of different forms of waste and develop alternative technologies for eco-friendly and cost-effective utilization. Solid waste is a hazardous waste with [...] Read more.
Achieving the New World Sustainability Vision 2030 leads to enacting environmental restrictions, which aim to partially or totally reduce the negative impacts of different forms of waste and develop alternative technologies for eco-friendly and cost-effective utilization. Solid waste is a hazardous waste with many environmental and economic problems resulting from its storage and disposal. However, at the same time, these wastes contain many valuable elements. One of these solid wastes is heavy oil fly ash “HOFA” generated in power stations using heavy oil as fuel. HOFA is produced annually in massive amounts worldwide, the storage of which leads to the contamination of water resources by the contained heavy metals, resulting in many cancerogenic diseases. At the same time, these ashes contain many valuable metals in significant amounts, such as vanadium “V” and nickel “Ni” that can be extracted effectively compared to their low content and difficulty processing in their main ores. Hence, recycling these types of wastes reduces the environmental adverse effects of their storage and the harmful elements in their composition. This paper critically reviews the world resources of vanadium-bearing waste and various approaches described in the literature for recovering V, Ni, as well as other valuable metals from (HOFA) and other wastes, including pyro- and hydro-metallurgical processes or a combination. Hydro-metallurgical processes include alkaline or acidic leaching using different reagents followed by chemical precipitation, solvent extraction, and ion exchange to extract individual elements. The pyro-metallurgical processes involve the non-salt or salt roasting processes followed by acidic or alkaline leaching processes. The operational parameters and their impact on the efficiency of recovery are also discussed. The digestion mixtures of strong mineral acids used to dissolve metal ions in HOFA are also investigated. Bioleaching is a promising eco-friendly technology for recovering V and Ni through appropriate bacteria and fungi. Oxidation leaching is also a promising environmentally friendly approach and more effective. Among all these processes, the salt roasting treatment showed promising results concerning the cost, technological, and environmental effectiveness. The possibility of complex processing of HOFA has also been investigated, proposing innovative technology for completely utilizing this waste without any remaining residue. Effective zeolite for wastewater treatment has been formulated as a good alternative for conserving the available water resources. Full article
Show Figures

Figure 1

Back to TopTop