Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = acetylcholine receptor antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 3081 KiB  
Review
From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape
by Anastasia Bougea, Manuel Debasa-Mouce, Shelly Gulkarov, Mónica Castro-Mosquera, Allison B. Reiss and Alberto Ouro
Medicina 2025, 61(8), 1462; https://doi.org/10.3390/medicina61081462 - 14 Aug 2025
Viewed by 296
Abstract
Background and Objectives: Over the past few years, there has been a significant shift in focus from developing better diagnostic tools to detecting Alzheimer’s disease (AD) earlier and initiating treatment interventions. This review will explore four main objectives: (a) the role of [...] Read more.
Background and Objectives: Over the past few years, there has been a significant shift in focus from developing better diagnostic tools to detecting Alzheimer’s disease (AD) earlier and initiating treatment interventions. This review will explore four main objectives: (a) the role of biomarkers in enhancing the diagnostic accuracy of AD, highlighting the major strides that have been made in recent years; (b) the role of neuropsychological testing in identifying biomarkers of AD, including the relationship between cognitive performance and neuroimaging biomarkers; (c) the amyloid hypothesis and possible molecular mechanisms of AD; and (d) the innovative AD therapeutics and the challenges and limitations of AD research. Materials and Methods: We have searched PubMed and Scopus databases for peer-reviewed research articles published in English (preclinical and clinical studies as well as relevant reviews and meta-analyses) investigating the molecular mechanisms, biomarkers, and treatments of AD. Results: Genome-wide association studies (GWASs) discovered 37 loci associated with AD risk. Core 1 biomarkers (α-amyloid Aβ42, phosphorylated tau, and amyloid PET) detect early AD phases, identifying both symptomatic and asymptomatic individuals, while core 2 biomarkers inform the short-term progression risk in individuals without symptoms. The recurrent failures of Aβ-targeted clinical studies undermine the amyloid cascade hypothesis and the objectives of AD medication development. The molecular mechanisms of AD include the accumulation of amyloid plaques and tau protein, vascular dysfunction, neuroinflammation, oxidative stress, and lipid metabolism dysregulation. Significant advancements in drug delivery technologies, such as focused Low-Ultrasound Stem, T cells, exosomes, nanoparticles, transferin, nicotinic and acetylcholine receptors, and glutathione transporters, are aimed at overcoming the BBB to enhance treatment efficacy for AD. Aducanumab and Lecanemab are IgG1 monoclonal antibodies that retard the progression of AD. BACE inhibitors have been explored as a therapeutic strategy for AD. Gene therapies targeting APOE using the CRISPR/Cas9 genome-editing system are another therapeutic avenue. Conclusions: Classic neurodegenerative biomarkers have emerged as powerful tools for enhancing the diagnostic accuracy of AD. Despite the supporting evidence, the amyloid hypothesis has several unresolved issues. Novel monoclonal antibodies may halt the AD course. Advances in delivery systems across the BBB are promising for the efficacy of AD treatments. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

12 pages, 2243 KiB  
Article
Cholinergic Receptor Nicotinic Beta 2 Subunit Promotes the Peritoneal Disseminating Metastasis of Colorectal Cancer
by Shinichi Umeda, Kenshiro Tanaka, Takayoshi Kishida, Norifumi Hattori, Haruyoshi Tanaka, Dai Shimizu, Hideki Takami, Masamichi Hayashi, Chie Tanaka, Goro Nakayama and Mitsuro Kanda
Cancers 2025, 17(15), 2485; https://doi.org/10.3390/cancers17152485 - 28 Jul 2025
Viewed by 256
Abstract
Background: Peritoneal dissemination in colorectal cancer (CRC) is associated with poor prognosis due to limited efficacy of current therapeutic strategies. The cholinergic receptor nicotinic beta 2 subunit (CHRNB2), a component of the acetylcholine receptor, has been implicated in other malignancies, but [...] Read more.
Background: Peritoneal dissemination in colorectal cancer (CRC) is associated with poor prognosis due to limited efficacy of current therapeutic strategies. The cholinergic receptor nicotinic beta 2 subunit (CHRNB2), a component of the acetylcholine receptor, has been implicated in other malignancies, but its role in CRC remains unknown. Methods: This study evaluated the expression and function of CHRNB2 in CRC. CHRNB2 mRNA levels were quantified by qRT-PCR in cell lines and clinical specimens. Functional assays were conducted using CRC cell lines with high CHRNB2 expression, in which CHRNB2 was knocked down by shRNA. Cell proliferation, migration, and invasion were assessed in vitro. In vivo effects were evaluated using subcutaneous and peritoneal xenograft models. The impact of CHRNB2 monoclonal antibody (mAb) treatment on CRC cell proliferation was also examined. Clinical correlations were assessed between CHRNB2 expression and clinicopathological features, including recurrence patterns. Results: CHRNB2 expression varied among CRC cell lines, with the highest levels observed in LOVO cells. CHRNB2 knockdown significantly inhibited proliferation, migration, and invasion in vitro and suppressed tumor growth in vivo. CHRNB2 mAb treatment reduced cell proliferation. Clinically, high CHRNB2 expression correlated with a significantly higher cumulative rate of peritoneal recurrence, but not with recurrence in the liver, lungs, or lymph nodes. Multivariate analysis identified high CHRNB2 expression and T4 tumor depth as independent predictors of peritoneal recurrence. Conclusions: CHRNB2 promotes the malignant phenotype of CRC, particularly in peritoneal dissemination. These findings suggest that CHRNB2 may serve as a novel diagnostic biomarker and therapeutic target for CRC with peritoneal metastasis. Full article
Show Figures

Figure 1

16 pages, 1306 KiB  
Article
The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study
by Boglárka Oesch-Régeni, Nicolas Germann, Georg Hafer, Dagmar Schmid and Norbert Arn
J. Clin. Med. 2025, 14(11), 3802; https://doi.org/10.3390/jcm14113802 - 29 May 2025
Viewed by 3018
Abstract
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) [...] Read more.
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) patients fulfill the diagnostic criteria of ME/CFS. According to the Canadian Consensus Criteria (CCC), the presence of specific symptoms such as fatigue, post-exertional malaise, sleep dysfunction, pain, neurological/cognitive manifestations, and symptoms from at least two of the following categories lead to the diagnosis of ME/CFS: autonomic, neuroendocrine, and immune manifestation. In this study, the patient selection was based on the identification of ME/CFS patients with elevated autoantibodies, regardless of the triggering factor of their condition. Methods: The aim of this study was to identify ME/CFS patients among long COVID patients with elevated autoantibodies. In seven cases, plasmapheresis (PE) and intravenous immunoglobulins (IVIGs) with repetitive autoantibody measurements were applied: four PE sessions on days 1, 5, 30, and 60, and a low-dose IVIG therapy after each treatment. Antibodies were measured before the first PE and two weeks after the last PE session. To monitor clinical outcomes, the following somatic and psychometric follow-up assessments were conducted before the first PE, 2 weeks after the second, and 2 weeks after the last PE: the Schellong test, ISI (insomnia), FSS (fatigue), HADS (depression and anxiety), and EQ-5D-5L (quality of life) questionnaires. Results: There was a negative association between both the β2-adrenergic and M3-muscarinic receptor autoantibody concentration and the quality of life measurements assessed with the EQ-5D-5L questionnaire. Per 1 U/mL increase in the concentration levels of β2-adrenergic receptor antibodies or M3-muscarinic acetylcholine receptor antibodies, the EQ-5D-5L index score [−0.59 to 1] decreased by 0.01 (0.63%) or 0.02 (1.26%), respectively. There were no significant associations between the ISI, HADS, and FSS questionnaires and the β1-adrenergic and M4-muscarinic receptor antibodies titers. Conclusions: After a thorough selection of patients with present autoantibodies, this pilot study found negative associations concerning autoantibody concentration and somatic, as well as psychological wellbeing. To validate these promising feasibility study results—indicating the potential therapeutic potential of antibody-lowering methods—further investigation with larger sample sizes is needed. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

15 pages, 885 KiB  
Review
The Role of Complement in the Pathogenesis and Treatment of Myasthenia Gravis
by Armando Martinez Salazar, Sepideh Mokhtari, Edwin Peguero and Muhammad Jaffer
Cells 2025, 14(10), 739; https://doi.org/10.3390/cells14100739 - 19 May 2025
Viewed by 1611
Abstract
Myasthenia gravis is an antibody-mediated autoimmune condition characterized by defects in cholinergic transmission at the neuromuscular junction. In AchR antibody-positive patients, complement activation plays a prominent role in the disease process, which appears to be mediated by the activation of the membrane attack [...] Read more.
Myasthenia gravis is an antibody-mediated autoimmune condition characterized by defects in cholinergic transmission at the neuromuscular junction. In AchR antibody-positive patients, complement activation plays a prominent role in the disease process, which appears to be mediated by the activation of the membrane attack complex. Since IgG4 is not a good complement activator, the role of complement in MuSK antibody-positive myasthenia gravis patients is negligible. Experimental animal models of myasthenia gravis have shown promise with the antagonism of different elements of the complement cascade, with positive clinical outcomes. This has led to the development of the first C5 inhibitors approved for myasthenia gravis with AchR antibodies: eculizumab, ravulizumab, and zilucoplan. Other clinical trials are currently in progress, investigating the potential therapeutic role of other targets, including the Factor B inhibition or hepatic synthesis of the C5 protein. Other proposed potential targets that have not yet been clinically tested are also discussed in this review article. Full article
Show Figures

Figure 1

16 pages, 811 KiB  
Article
Surgical and Neurological Outcomes in Robotic Thymectomy for Myasthenic Patients with Thymoma
by Khrystyna Kuzmych, Dania Nachira, Amelia Evoli, Raffaele Iorio, Carolina Sassorossi, Maria Teresa Congedo, Gregorio Spagni, Alessia Senatore, Giuseppe Calabrese, Stefano Margaritora and Elisa Meacci
Life 2025, 15(3), 371; https://doi.org/10.3390/life15030371 - 26 Feb 2025
Cited by 1 | Viewed by 913
Abstract
Background: While the safety and feasibility of robotic thymectomy have been well documented through several studies, the surgical and long-term neurological outcomes in patients with thymomatous myasthenia gravis (MG), particularly in advanced stages, remain scarce. This study aims to evaluate the surgical outcomes [...] Read more.
Background: While the safety and feasibility of robotic thymectomy have been well documented through several studies, the surgical and long-term neurological outcomes in patients with thymomatous myasthenia gravis (MG), particularly in advanced stages, remain scarce. This study aims to evaluate the surgical outcomes in patients undergoing robotic-assisted thymectomy (RATS) for thymoma and to analyze neurological outcomes in patients with myasthenia. Material and Methods: Out of 128 robotic thymectomies performed at our institution between October 2013 and January 2022, clinical and pathological data from 55 patients diagnosed with thymoma were reviewed. Of these, thirty (54.5%) patients had concomitant acetylcholine-receptor-antibody-associated MG. Neurological outcomes were assessed using the Myasthenia Gravis Foundation of America post-intervention score (MGFA-PIS). Results: Thirty-nine (70.9%) procedures were performed using the left-sided approach. The mean operative time was 196.9 ± 79.9 min in patients with MG compared to 175.8 ± 61.6 min in non-MG patients (p = 0.285). Additionally, patients with MG had a longer in-hospital stay (4.8 ± 2.6 vs. 3.3 ± 2.2 days, p = 0.01) and a significantly higher need for intensive care unit admission (p < 0.01). No deaths were reported. The rates of conversions (3.3% vs. 4.0%, p = 0.895) and complications (p = 0.813) were comparable between the myasthenic and non-myasthenic thymomas. A multivariable analysis identified lung involvement (p = 0.023), vascular involvement (p = 0.04), and extended resection (p = 0.019) as significant risk factors for conversion and complications. The mean age of surgery for patients with MG was 54.5 ± 15.9 years. After a mean follow-up period of 35.6 ± 25.7 months, 18 (60%) patients with myasthenia showed clinical improvement of their condition. Specifically, 2 patients (6.6%) achieved complete stable remission (CSR), 2 (6.6%) experienced pharmacological remission (PR), 12 (40.0%) demonstrated minimal manifestation (MM), and 4 (13.3%) exhibited a combination of PR and MM. Twelve patients (40%) exhibited no changes, maintaining a stable clinical condition. No clinical worsening was observed. The overall improvement rates at 2 years and 5 years were 38% and 83%, respectively. Conclusions: RATS thymectomy is a safe and feasible approach for patients with thymoma. Patients with coexisting MG may benefit through a good rate of neurological improvement. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

17 pages, 2636 KiB  
Article
Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis
by Vu B. Trinh and Robert H. Fairclough
Int. J. Mol. Sci. 2025, 26(1), 229; https://doi.org/10.3390/ijms26010229 - 30 Dec 2024
Cited by 1 | Viewed by 1027
Abstract
We have designed and produced 39 amino acid peptide mimics of the Torpedo and human acetylcholine receptors’ (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50–70% of the [...] Read more.
We have designed and produced 39 amino acid peptide mimics of the Torpedo and human acetylcholine receptors’ (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50–70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the Torpedo electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR. Many of these mAbs cross react with the rat neuromuscular AChR MIR and induce myasthenic symptoms when injected into naïve rats. The human MIR mimic peptide (H39MIR) is evolutionarily related to that of the Torpedo electric organ MIR mimic peptide (T39MIR) with eight amino acid differences between the two MIR mimics. The mAbs raised to the electric organ AChR MIR cross react with the human and scores of other species’ neuromuscular AChRs. However, the mAbs do not cross react with the H39MIR mimic attached to the N-terminus of an intein–chitin-binding domain (H39MIR-IChBD) even though they do bind to the T39MIR-IChBD construct. To account for this difference in binding anti-MIR mAbs, each of the eight human amino acids was substituted individually into the T39MIR-IChBD, and four of them were found to weaken mAb recognition. Substituting the corresponding four Torpedo amino acids individually and in combination into the homologous positions in H39MIR-IChBD makes chimeric human MIR mimic peptides (T/H39MIR), some of which bind anti-MIR mAbs and anti-MIR Abs from rat EAMG and human MG sera. The best mAb binding chimeric peptide constructs may potentially serve as the basis of a diagnostic anti-MIR Ab titer assay that is both prognostic and predictive of disease severity. Furthermore, the best peptides may also serve as the targeting element of a non-steroidal antigen-specific treatment of MG to remove anti-AChR MIR Abs, either as fused to the N-terminals of the human immunoglobin Fc fragment or as the targeting component of a T cell chimeric autoantibody receptor (CAAR) directed to anti-MIR memory B cells for elimination. Full article
(This article belongs to the Special Issue Autoimmune Diseases: From Molecular Basis to Therapy)
Show Figures

Figure 1

18 pages, 6128 KiB  
Article
HLA Class I and II Alleles in Anti-Acetylcholine Receptor Antibodies Positive and Double-Seronegative Myasthenia Gravis Patients of Romanian Descent
by Cristina Georgiana Croitoru, Daniela Constantinescu, Mariana Pavel-Tanasa, Dan Iulian Cuciureanu, Corina Maria Cianga, Diana Nicoleta Hodorog and Petru Cianga
Neurol. Int. 2024, 16(6), 1819-1836; https://doi.org/10.3390/neurolint16060130 - 10 Dec 2024
Cited by 1 | Viewed by 1303
Abstract
Background: Several significant associations between certain Human Leukocyte Antigen (HLA) alleles and myasthenia gravis (MG) subtypes were established in populations from Western Europe and North America and, to a lesser extent, from China and Japan. However, such data are scarcely available for [...] Read more.
Background: Several significant associations between certain Human Leukocyte Antigen (HLA) alleles and myasthenia gravis (MG) subtypes were established in populations from Western Europe and North America and, to a lesser extent, from China and Japan. However, such data are scarcely available for Eastern Europe. This study aimed to analyze the associations of HLA Class I and II alleles with MG and its serological subtypes (with anti-acetylcholine receptor autoantibodies, RAch+MG, and double-seronegative, dSNMG) in myasthenic patients of Romanian descent. Methods: We consecutively enrolled adult Romanian unrelated myasthenic patients, which were genotyped by next-generation sequencing for HLA-A, -B, -C, -DRB1 and -DQB1. The descent-matched controls were represented by two separate groups of random normal subjects genotyped for the main five HLA loci at the two-digit and four-digit levels, respectively, collected from the Allele Frequency Net Database. Results: A total of 40 patients (females: 80.00%; median age at onset: 42.5 years, range: 1–78; RAch+MG: 75.00%; dSNMG: 22.50%) were included. We were able to confirm previously acknowledged allelic associations: positive for HLA-B*08, DRB1*14:54 and DRB1*16:01 and negative for DRB1*13. However, we found some potential novel significant positive associations between MG and the HLA-A*02:36, B*47, B*73, B*44:27 and B*57:02 alleles. All alleles positively associated with MG remained significantly associated with RAch+MG, regardless of the patients’ clinical and thymic heterogeneity. We found significant positive associations between dSNMG and the HLA-B*47, B*44:27 and DRB1*14:54 alleles that are shared with RAch+MG. Conclusions: These results suggest both distinct and common etiopathogenic mechanisms between dSNMG and RAch+MG. Our study pioneers allele associations in Romanian MG patients. Full article
Show Figures

Figure 1

39 pages, 2843 KiB  
Review
Wilson’s Disease—Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues
by Grażyna Gromadzka, Julia Czerwińska, Elżbieta Krzemińska, Adam Przybyłkowski and Tomasz Litwin
Int. J. Mol. Sci. 2024, 25(16), 9034; https://doi.org/10.3390/ijms25169034 - 20 Aug 2024
Cited by 10 | Viewed by 4714
Abstract
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical [...] Read more.
Wilson’s disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD. Full article
Show Figures

Figure 1

9 pages, 610 KiB  
Case Report
Dropped Head Syndrome: The Importance of Neurophysiology in Distinguishing Myasthenia Gravis from Parkinson’s Disease
by Marilena Mangiardi, Alessandro Magliozzi, Carlo Colosimo and Luca Marsili
Biomedicines 2024, 12(8), 1833; https://doi.org/10.3390/biomedicines12081833 - 12 Aug 2024
Cited by 1 | Viewed by 2601
Abstract
Dropped head syndrome (DHS) is characterized by severe forward flexion of the cervical spine due to an imbalance in neck muscle tone. This condition can be linked to various neuromuscular diseases, including myasthenia gravis (MG). On the other hand, Parkinson’s disease (PD) patients [...] Read more.
Dropped head syndrome (DHS) is characterized by severe forward flexion of the cervical spine due to an imbalance in neck muscle tone. This condition can be linked to various neuromuscular diseases, including myasthenia gravis (MG). On the other hand, Parkinson’s disease (PD) patients may show a clinically indistinguishable picture named antecollis, which is caused by increased axial tone, but without muscle weakness. Differentiating between DHS and antecollis is crucial due to their distinct treatment requirements. We present the case of a 71-year-old White male with a one-month history of severe neck flexion, mild dysphagia, and dysphonia. His medical history included diabetes mellitus, coronary artery disease, arterial hypertension, and mild cervical spondylosis. Neurological examination revealed features of Parkinsonism, including hypomimia, asymmetric rigidity, and reduced arm swing. There was significant weakness in his neck extensor muscles, with no signs of ptosis or diplopia. Brain/spine MRI scans were unremarkable, but electromyography showed a reduced compound muscle action potentials amplitude in repetitive nerve stimulation, consistent with MG. High-titer acetylcholine receptor antibodies confirmed the diagnosis. Treatment with pyridostigmine (60 to 120 mg/day) and plasma exchange (daily, for five consecutive days) improved the patient’s general condition and neck posture. Concurrently, the patient was diagnosed with PD based on established clinical criteria and improved with carbidopa/levodopa therapy (up to 150/600 mg/daily). This case highlights the rare co-occurrence of MG and PD, emphasizing the need for thorough clinical, neurophysiological, and laboratory evaluations in complex DHS presentations. Managing MG’s life-threatening aspects and addressing PD symptoms requires a tailored approach, showcasing the critical role of neurophysiology in accurate diagnosis and effective treatment. Full article
Show Figures

Figure 1

8 pages, 769 KiB  
Communication
A Bead-Based Nonradioactive Immunoassay for Autoantibody Testing in a Mouse Model of Myasthenia Gravis
by Afrin Bahauddin, Kyra Curtis, Jutatip Guptarak and Ruksana Huda
Antibodies 2024, 13(3), 53; https://doi.org/10.3390/antib13030053 - 1 Jul 2024
Viewed by 1675
Abstract
Serological testing for anti-acetylcholine receptor (AChR) autoantibodies is not only crucial for the diagnosing, disease monitoring, and treatment management of patients with myasthenia gravis (MG) but also for preclinical studies utilizing MG disease models. However, there are no specific guidelines on which methods [...] Read more.
Serological testing for anti-acetylcholine receptor (AChR) autoantibodies is not only crucial for the diagnosing, disease monitoring, and treatment management of patients with myasthenia gravis (MG) but also for preclinical studies utilizing MG disease models. However, there are no specific guidelines on which methods to use in clinical diagnostic or research laboratories to detect or quantify any MG-specific autoantibodies. Conventional autoantibody assays, particularly those for anti-AChR antibodies, are varied and mostly laboratory-specific. Here, we report our new nonradioactive immunoprecipitation–immunoblotting method for assessing autoantibodies (anti-AChR antibodies) in a mouse model of MG. This simple, efficient, reproducible, and cost-effective assay appears superior to the enzyme-linked immunosorbent assay but comparable to the radioimmunoprecipitation or cell-based assay in specificity and sensitivity. Thus, the newly developed assay can serve as a valuable alternative to classical assays and is suitable for routine testing of AChR-specific autoantibodies in preclinical studies. The further optimization of our assay may facilitate its application in the diagnosis and therapeutic management of patients with MG. Full article
(This article belongs to the Section Antibody-Based Diagnostics)
Show Figures

Figure 1

11 pages, 1051 KiB  
Case Report
Real-World Case Series of Efgartigimod for Japanese Generalized Myasthenia Gravis: Well-Tailored Treatment Cycle Intervals Contribute to Sustained Symptom Control
by Shingo Konno, Takafumi Uchi, Hideo Kihara and Hideki Sugimoto
Biomedicines 2024, 12(6), 1214; https://doi.org/10.3390/biomedicines12061214 - 30 May 2024
Cited by 6 | Viewed by 2801
Abstract
Introduction: Myasthenia gravis (MG), an immune disorder affecting nerve-muscle transmission, often necessitates tailored therapies to alleviate longitudinal symptom fluctuations. Here, we aimed to examine and compare the treatment cycle intervals and efficacy of efgartigimod in four patients. This case series mainly offers insights [...] Read more.
Introduction: Myasthenia gravis (MG), an immune disorder affecting nerve-muscle transmission, often necessitates tailored therapies to alleviate longitudinal symptom fluctuations. Here, we aimed to examine and compare the treatment cycle intervals and efficacy of efgartigimod in four patients. This case series mainly offers insights into personalized treatment cycle intervals and the efficacy of efgartigimod for patients with MG in our facility in Japan. Methods: We retrospectively analyzed four patients with MG (2 patients with early-onset, 1 with late-onset, and 1 with seronegative MG, mainly managed with oral immunosuppressants as prior treatments) who completed four or more cycles of efgartigimod treatment from January 2022 to September 2023. We focused on changes in serum immunoglobulin (IgG) level, acetylcholine receptor antibody (AChR-Ab) titer, and quantitative MG (QMG) score. Results: Efgartigimod, administered at a median of 5.0 [IQR 5.0, 7.5] weeks between cycles, led to decreased serum IgG levels in all patients and reduced AChR-Ab titers in seropositive patients. All patients showed sustained MG symptom improvement, with considerably reduced QMG scores before efgartigimod treatment. None of the patients required rescue medications or developed treatment-related adverse events. Conclusions: Customized efgartigimod administration intervals effectively enhanced clinical outcomes in patients with MG without notable symptom fluctuations, demonstrating the benefits of individualized treatment approaches and validating the safety of efgartigimod during the study period. Full article
Show Figures

Figure 1

10 pages, 251 KiB  
Article
The Presence of Ganglionic Acetylcholine Receptor Antibodies in Sera from Patients with Functional Gastrointestinal Disorders: A Preliminary Study
by Shunya Nakane, Akihiro Mukaino, Yoshiaki Okumura, Hiroaki Hirosawa, Osamu Higuchi, Hidenori Matsuo, Mosaburo Kainuma and Yuji Nakatsuji
J. Pers. Med. 2024, 14(5), 485; https://doi.org/10.3390/jpm14050485 - 30 Apr 2024
Viewed by 2455
Abstract
Background: Functional gastrointestinal disorders (FGIDs), including functional dyspepsia (FD) and irritable bowel syndrome (IBS), are characterized by chronic and recurrent gastrointestinal symptoms. Clinically, FD and IBS often resemble gastrointestinal dysmotility caused by autoimmune autonomic neuropathy. We examined the seropositive frequency of autoantibodies against [...] Read more.
Background: Functional gastrointestinal disorders (FGIDs), including functional dyspepsia (FD) and irritable bowel syndrome (IBS), are characterized by chronic and recurrent gastrointestinal symptoms. Clinically, FD and IBS often resemble gastrointestinal dysmotility caused by autoimmune autonomic neuropathy. We examined the seropositive frequency of autoantibodies against ganglionic nicotinic acetylcholine receptors (gnAChRs) in patients presenting with FGIDs. Objective: To elucidate the seropositivity of gnAChR antibodies and the clinical features of seropositive FD and IBS. Materials and Methods: We measured autoantibodies against the gnAChR α3 and β4subunits using luciferase immunoprecipitation systems. Serum samples from patients with any autonomic symptoms were obtained from hospitals in Japan between January 2012 and August 2018 (1787 serum samples of 1381 patients). We selected FD and IBS patients and compared the clinical characteristics and prevalence of autonomic symptoms between those with seropositive and seronegative IBS and FD. Results: Nine IBS and two FD cases (one comorbid case with IBS) were found. We found four patients (36.4%) in whom gnAChR antibodies were positive in these eleven patients. Sicca symptoms were observed in three of four cases (75%) of seropositive FGID compared with zero of seven cases (0%) of seronegative FGID. Conclusions: We found patients with gnAChR antibodies in FD and IBS patients. These data will be valuable for elucidating the pathophysiology of these FGIDs and developing new treatment strategies. Full article
(This article belongs to the Special Issue New Challenges and Perspectives in Neurology and Autonomic Disorders)
16 pages, 3181 KiB  
Article
Recombinant Acetylcholine Receptor Immunization Induces a Robust Model of Experimental Autoimmune Myasthenia Gravis in Mice
by Lukas Theissen, Christina B. Schroeter, Niklas Huntemann, Saskia Räuber, Vera Dobelmann, Derya Cengiz, Alexander Herrmann, Kathrin Koch-Hölsken, Norbert Gerdes, Hao Hu, Philipp Mourikis, Amin Polzin, Malte Kelm, Hans-Peter Hartung, Sven G. Meuth, Christopher Nelke and Tobias Ruck
Cells 2024, 13(6), 508; https://doi.org/10.3390/cells13060508 - 14 Mar 2024
Cited by 7 | Viewed by 3383
Abstract
Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, [...] Read more.
Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

16 pages, 283 KiB  
Review
Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis
by Paul Salahoru, Cristina Grigorescu, Marius Valeriu Hinganu, Tiberiu Lunguleac, Alina Ioana Halip and Delia Hinganu
J. Pers. Med. 2024, 14(3), 241; https://doi.org/10.3390/jpm14030241 - 23 Feb 2024
Cited by 6 | Viewed by 3182
Abstract
The thymus is a lymphoid organ involved in the differentiation of T cells, and has a central role in the physiopathogenesis of Myasthenia Gravis (MG). This connection is proved by a series of changes in the level of neuromuscular junctions, which leads to [...] Read more.
The thymus is a lymphoid organ involved in the differentiation of T cells, and has a central role in the physiopathogenesis of Myasthenia Gravis (MG). This connection is proved by a series of changes in the level of neuromuscular junctions, which leads to a decrease in the amplitude of the action potential in the post-synaptic membrane. Because of this, the presence of anti-cholinergic receptor antibodies (AChR), characteristic of MG, is found, which causes the progressive regression of the effect of acetylcholine at the level of neuromuscular junctions, with the appearance of muscle weakness. The thymectomy is a surgical variant of drug therapy administered to patients with MG. In the case of patients with nonthymomatous MG, thymectomy has become a therapeutic standard, despite the fact that there is no solid scientific evidence to explain its positive effect. Videothoracoscopic surgery or robotic surgery led to a decrease in the length of hospital stay for these patients. This paper aims to synthesize the information presented in the literature in order to create a background for the perspectives of thymectomy. Full article
20 pages, 9180 KiB  
Article
Efficient Expression in Leishmania tarentolae (LEXSY) of the Receptor-Binding Domain of the SARS-CoV-2 S-Protein and the Acetylcholine-Binding Protein from Lymnaea stagnalis
by Lina Son, Vladimir Kost, Valery Maiorov, Dmitry Sukhov, Polina Arkhangelskaya, Igor Ivanov, Denis Kudryavtsev, Andrei Siniavin, Yuri Utkin and Igor Kasheverov
Molecules 2024, 29(5), 943; https://doi.org/10.3390/molecules29050943 - 21 Feb 2024
Viewed by 2555
Abstract
Leishmania tarentolae (LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a [...] Read more.
Leishmania tarentolae (LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a full range of post-translational modifications (including uniform glycosylation), and the possibility of expressing multi-subunit proteins. In this paper, a LEXSY expression system has been employed for obtaining the receptor binding domain (RBD) of the spike-protein of the SARS-CoV-2 virus and the homopentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis. RBD is actively used to obtain antibodies against the virus and in various scientific studies on the molecular mechanisms of the interaction of the virus with host cell targets. AChBP represents an excellent structural model of the ligand-binding extracellular domain of all subtypes of nicotinic acetylcholine receptors (nAChRs). Both products were obtained in a soluble glycosylated form, and their structural and functional characteristics were compared with those previously described. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

Back to TopTop