From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape
Abstract
1. Introduction
2. The Role of Fluid Biomarkers in Early Diagnosis
2.1. Classical Neurodegenerative Biomarkers
2.2. Genetic Biomarkers
2.3. The Utility of Memory and Executive Function Tests in Predicting Disease Progression
2.4. The Relationship Between Cognitive Performance and Neuroimaging Biomarkers
2.5. Challenges and Limitations of Using Neuropsychological Testing in Biomarker Research
2.6. The Future of Biomarkers in AD
3. The Amyloid Hypothesis Is Receding
4. Molecular Mechanisms
4.1. BACE
4.2. GSK3β: Glycogen Synthase Kinase 3-β
4.3. PP2A
4.4. p38 MAPK
4.5. Cdk5
4.6. CRMP2
4.7. DKK1 and the Wnt Pathway
5. The Delivery of Therapeutics Across the BBB
5.1. Intranasal Brain Delivery
5.2. Focused Ultrasound
5.2.1. With Microbubbles
5.2.2. Without Microbubbles
5.3. Cell-Mediated Transport
5.3.1. T Cells
5.3.2. Stem Cells for Brain Drug Delivery
5.3.3. Exosomes for Brain Drug Delivery
5.4. Receptor-Mediated Transporters at the BBB
5.4.1. Insulin Receptor
5.4.2. Transferrin Receptor
5.4.3. LDL Receptor
5.4.4. Nicotinic Acetylcholine Receptor
5.4.5. Leptin Receptor
5.4.6. Scavenger Receptor
5.4.7. Glutathione Transporters
5.4.8. Diphtheria Toxin Receptor
5.4.9. Efflux Pumps
5.5. Nanoparticles
5.5.1. Polymer-Based Nanoparticles
5.5.2. Lipid-Based Nanoparticles
5.5.3. Metallic Nanoparticles
5.5.4. Quantum Dots
5.5.5. Nanogels
5.6. Antibodies
6. Developing Therapeutic Approaches
6.1. Epigenetics and Histone Modifications
6.2. Mitophagy and Autophagy
6.3. Targeting ApoE
6.4. Stem Cells
7. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Mendez, M.F.; Mastri, A.R.; Sung, J.H.; Frey, W.H. Clinically Diagnosed Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 1992, 6, 35–43. [Google Scholar] [CrossRef]
- Galasko, D.; Hansen, L.A.; Katzman, R.; Wiederholt, W.; Masliah, E.; Terry, R.; Hill, L.R.; Lessin, P.; Thal, L.J. Clinical-Neuropathological Correlations in Alzheimer’s Disease and Related Dementias. Arch. Neurol. 1994, 51, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.T.; Head, E.; Schmitt, F.A.; Davis, P.R.; Neltner, J.H.; Jicha, G.A.; Abner, E.L.; Smith, C.D.; Van Eldik, L.J.; Kryscio, R.J.; et al. Alzheimer’s Disease Is Not “Brain Aging”: Neuropathological, Genetic, and Epidemiological Human Studies. Acta Neuropathol. 2011, 121, 571–587. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization: Geneva, Switzerland, 2017; p. 27. [Google Scholar]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The Importance of Tau Phosphorylation for Neurodegenerative Diseases. Front. Neurol. 2013, 4, 83. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The Clinical Use of Structural MRI in Alzheimer Disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef]
- Seppälä, T.T.; Nerg, O.; Koivisto, A.M.; Rummukainen, J.; Puli, L.; Zetterberg, H.; Pyykkö, O.T.; Helisalmi, S.; Alafuzoff, I.; Hiltunen, M.; et al. CSF Biomarkers for Alzheimer Disease Correlate with Cortical Brain Biopsy Findings. Neurology 2012, 78, 1568–1575. [Google Scholar] [CrossRef]
- Pais, M.V.; Forlenza, O.V.; Diniz, B.S. Plasma Biomarkers of Alzheimer’s Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J. Alzheimer’s Dis. Rep. 2023, 7, 355–380. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Graf, A.; Burnham, S.C.; Doty, E.G.; Moebius, H.J.; Montenigro, P.; Siemers, E.; Sink, K.M.; Shaw, L.M.; Hansen, C.T.; et al. Application of the Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Drug Development and Clinical Practice. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2024, 10, e70013. [Google Scholar] [CrossRef]
- Tan, M.-S.; Ji, X.; Li, J.-Q.; Xu, W.; Wang, H.-F.; Tan, C.-C.; Dong, Q.; Zuo, C.-T.; Tan, L.; Suckling, J.; et al. Longitudinal Trajectories of Alzheimer’s ATN Biomarkers in Elderly Persons without Dementia. Alzheimer’s Res. Ther. 2020, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K.; et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease–Related β-Amyloid Status. JAMA Neurol. 2019, 76, 1060. [Google Scholar] [CrossRef]
- Janelidze, S.; Stomrud, E.; Smith, R.; Palmqvist, S.; Mattsson, N.; Airey, D.C.; Proctor, N.K.; Chai, X.; Shcherbinin, S.; Sims, J.R.; et al. Cerebrospinal Fluid P-Tau217 Performs Better than p-Tau181 as a Biomarker of Alzheimer’s Disease. Nat. Commun. 2020, 11, 1683. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-Tau181 in Alzheimer’s Disease: Relationship to Other Biomarkers, Differential Diagnosis, Neuropathology and Longitudinal Progression to Alzheimer’s Dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Karikari, T.K.; Benedet, A.L.; Ashton, N.J.; Lantero Rodriguez, J.; Snellman, A.; Suárez-Calvet, M.; Saha-Chaudhuri, P.; Lussier, F.; Kvartsberg, H.; Rial, A.M.; et al. Diagnostic Performance and Prediction of Clinical Progression of Plasma Phospho-Tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol. Psychiatry 2021, 26, 429–442. [Google Scholar] [CrossRef]
- Mattsson-Carlgren, N.; Janelidze, S.; Palmqvist, S.; Cullen, N.; Svenningsson, A.L.; Strandberg, O.; Mengel, D.; Walsh, D.M.; Stomrud, E.; Dage, J.L.; et al. Longitudinal Plasma P-Tau217 Is Increased in Early Stages of Alzheimer’s Disease. Brain 2020, 143, 3234–3241. [Google Scholar] [CrossRef]
- Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Schöll, M.; Troakes, C.; Hye, A.; et al. Plasma P-Tau231: A New Biomarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathol. 2021, 141, 709–724. [Google Scholar] [CrossRef]
- Suárez-Calvet, M. CSF P-Tau231: A Biomarker for Early Preclinical Alzheimer? eBioMedicine 2022, 77, 103936. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease. JAMA 2023, 330, 512. [Google Scholar] [CrossRef]
- Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021, 384, 1691–1704. [Google Scholar] [CrossRef]
- Bateman, R.J.; Smith, J.; Donohue, M.C.; Delmar, P.; Abbas, R.; Salloway, S.; Wojtowicz, J.; Blennow, K.; Bittner, T.; Black, S.E.; et al. Two Phase 3 Trials of Gantenerumab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1862–1876. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.J.; Arnold, S.E.; Maxfield, E.; Koenig, A.; Toth, M.E.; Fortin, B.; Mast, N.; Trombetta, B.A.; Denker, J.; Pieper, A.A.; et al. CYP46A1 Activation by Low-Dose Efavirenz Enhances Brain Cholesterol Metabolism in Subjects with Early Alzheimer’s Disease. Alzheimer’s Res. Ther. 2022, 14, 198. [Google Scholar] [CrossRef]
- Vissers, M.F.J.M.; Heuberger, J.A.A.C.; Groeneveld, G.J.; Oude Nijhuis, J.; De Deyn, P.P.; Hadi, S.; Harris, J.; Tsai, R.M.; Cruz-Herranz, A.; Huang, F.; et al. Safety, Pharmacokinetics and Target Engagement of Novel RIPK1 Inhibitor SAR443060 (DNL747) for Neurodegenerative Disorders: Randomized, placebo-controlled, double-blind Phase I/Ib Studies in Healthy Subjects and Patients. Clin. Transl. Sci. 2022, 15, 2010–2023. [Google Scholar] [CrossRef] [PubMed]
- Prins, N.D.; Harrison, J.E.; Chu, H.-M.; Blackburn, K.; Alam, J.J.; Scheltens, P. A Phase 2 Double-Blind Placebo-Controlled 24-Week Treatment Clinical Study of the P38 Alpha Kinase Inhibitor Neflamapimod in Mild Alzheimer’s Disease. Alzheimer’s Res. Ther. 2021, 13, 106. [Google Scholar] [CrossRef]
- Shulman, M.; Kong, J.; O’Gorman, J.; Ratti, E.; Rajagovindan, R.; Viollet, L.; Huang, E.; Sharma, S.; Racine, A.M.; Czerkowicz, J.; et al. TANGO: A Placebo-Controlled Randomized Phase 2 Study of Efficacy and Safety of the Anti-Tau Monoclonal Antibody Gosuranemab in Early Alzheimer’s Disease. Nat. Aging 2023, 3, 1591–1601. [Google Scholar] [CrossRef]
- Monteiro, C.; Toth, B.; Brunstein, F.; Bobbala, A.; Datta, S.; Ceniceros, R.; Sanabria Bohorquez, S.M.; Anania, V.G.; Wildsmith, K.R.; Schauer, S.P.; et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants With Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology 2023, 101, e1391–e1401. [Google Scholar] [CrossRef]
- Florian, H.; Wang, D.; Arnold, S.E.; Boada, M.; Guo, Q.; Jin, Z.; Zheng, H.; Fisseha, N.; Kalluri, H.V.; Rendenbach-Mueller, B.; et al. Tilavonemab in Early Alzheimer’s Disease: Results from a Phase 2, Randomized, Double-Blind Study. Brain 2023, 146, 2275–2284. [Google Scholar] [CrossRef]
- Jun, G.R.; Chung, J.; Mez, J.; Barber, R.; Beecham, G.W.; Bennett, D.A.; Buxbaum, J.D.; Byrd, G.S.; Carrasquillo, M.M.; Crane, P.K.; et al. Transethnic Genome-wide Scan Identifies Novel Alzheimer’s Disease Loci. Alzheimer’s Dement. 2017, 13, 727–738. [Google Scholar] [CrossRef]
- Elangovan, A.; Babu, H.W.S.; Iyer, M.; Gopalakrishnan, A.V.; Vellingiri, B. Untangle the Mystery behind DS-Associated AD—Is APP the Main Protagonist? Ageing Res. Rev. 2023, 87, 101930. [Google Scholar] [CrossRef]
- Parra, M.A.; Abrahams, S.; Logie, R.H.; Della Sala, S. Visual Short-Term Memory Binding in Alzheimer’s Disease and Depression. J. Neurol. 2010, 257, 1160–1169. [Google Scholar] [CrossRef]
- Grober, E.; Lipton, R.B.; Hall, C.; Crystal, H. Memory Impairment on Free and Cued Selective Reminding Predicts Dementia. Neurology 2000, 54, 827–832. [Google Scholar] [CrossRef]
- Parra, M.A.; Calia, C.; García, A.F.; Olazarán-Rodríguez, J.; Hernandez-Tamames, J.A.; Alvarez-Linera, J.; Della Sala, S.; Fernandez Guinea, S. Refining Memory Assessment of Elderly People with Cognitive Impairment: Insights from the Short-Term Memory Binding Test. Arch. Gerontol. Geriatr. 2019, 83, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, K.; Zhao, Q.; Li, F.; Guo, Q. Short-Term Delayed Recall of Auditory Verbal Learning Test Provides Equivalent Value to Long-Term Delayed Recall in Predicting MCI Clinical Outcomes: A Longitudinal Follow-up Study. Appl. Neuropsychol. Adult 2020, 27, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Belleville, S.; Fouquet, C.; Hudon, C.; Zomahoun, H.T.V.; Croteau, J. Neuropsychological Measures That Predict Progression from Mild Cognitive Impairment to Alzheimer’s Type Dementia in Older Adults: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 328–353. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Kobayashi, K.; Itoh, S.; Kasuga, K.; Miyashita, A.; Ikeuchi, T.; Yumoto, E.; Kosaka, Y.; Fushimi, Y.; Takeda, T.; et al. Identification of Mild Cognitive Impairment Subtypes Predicting Conversion to Alzheimer’s Disease Using Multimodal Data. Comput. Struct. Biotechnol. J. 2022, 20, 5296–5308. [Google Scholar] [CrossRef]
- Persson, K.; Eldholm, R.S.; Barca, M.L.; Cavallin, L.; Ferreira, D.; Knapskog, A.-B.; Selbæk, G.; Brækhus, A.; Saltvedt, I.; Westman, E.; et al. MRI-Assessed Atrophy Subtypes in Alzheimer’s Disease and the Cognitive Reserve Hypothesis. PLoS ONE 2017, 12, e0186595. [Google Scholar] [CrossRef] [PubMed]
- Moradi, E.; Hallikainen, I.; Hänninen, T.; Tohka, J. Rey’s Auditory Verbal Learning Test Scores Can Be Predicted from Whole Brain MRI in Alzheimer’s Disease. Neuroimage Clin. 2017, 13, 415–427. [Google Scholar] [CrossRef]
- Selkoe, D.J. Biochemistry and Molecular Biology of Amyloid Β-Protein and the Mechanism of Alzheimer’s Disease. Handb. Clin. Neurol. 2008, 89, 245–260. [Google Scholar]
- d‘Errico, P.; Meyer-Luehmann, M. Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 265. [Google Scholar] [CrossRef]
- Arroyo-Pacheco, N.; Sarmiento-Blanco, S.; Vergara-Cadavid, G.; Castro-Leones, M.; Contreras-Puentes, N. Monoclonal Therapy with Lecanemab in the Treatment of Mild Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2025, 104, 102620. [Google Scholar] [CrossRef]
- Daly, T.; Olluri, A.; Kurkinen, M. Anti-Amyloid Treatments in Alzheimer’s Disease: Elegance, Evidence and Ethics. Adv. Clin. Exp. Med. 2024, 33, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Pikus, P.; Turner, R.S.; Rebeck, G.W. Mouse Models of Anti-Aβ Immunotherapies. Mol. Neurodegener. 2025, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Glass, A.D.; Wisniewski, T.; Wolozin, B.; Gomolin, I.H.; Pinkhasov, A.; De Leon, J.; Stecker, M.M. Alzheimer’s Disease: Many Failed Trials, So Where Do We Go from Here? J. Investig. Med. 2020, 68, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Elhage, A.; Cohen, S.; Cummings, J.; van der Flier, W.M.; Aisen, P.; Cho, M.; Bell, J.; Hampel, H. Defining Benefit: Clinically and Biologically Meaningful Outcomes in the Next-generation Alzheimer’s Disease Clinical Care Pathway. Alzheimer’s Dement. 2025, 21, e14425. [Google Scholar] [CrossRef]
- Polis, B.; Samson, A.O. Addressing the Discrepancies Between Animal Models and Human Alzheimer’s Disease Pathology: Implications for Translational Research. J. Alzheimer’s Dis. 2024, 98, 1199–1218. [Google Scholar] [CrossRef]
- Xiao, B.; Tan, E. Amyloid-beta (Aβ)-targeting Monoclonal Antibody Trials in Early Alzheimer’s Disease—Clinical Outcome with Gantenerumab. Clin. Transl. Med. 2024, 14, e1559. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Karlawish, J.; Grill, J.D. The Approval of Aduhelm Risks Eroding Public Trust in Alzheimer Research and the FDA. Nat. Rev. Neurol. 2021, 17, 523–524. [Google Scholar] [CrossRef]
- Morris, G.P.; Clark, I.A.; Vissel, B. Inconsistencies and Controversies Surrounding the Amyloid Hypothesis of Alzheimer’s Disease. Acta Neuropathol. Commun. 2014, 2, 135. [Google Scholar] [CrossRef]
- Wicker, A.; Shriram, J.; Decourt, B.; Sabbagh, M.N. Passive Anti-Amyloid Beta Monoclonal Antibodies: Lessons Learned over Past 20 Years. Neurol. Ther. 2024, 13, 1571–1595. [Google Scholar] [CrossRef]
- Forlenza, O.V.; Barbosa, B.J.A.P. What Are the Reasons for the Repeated Failures of Clinical Trials with Anti-Amyloid Drugs for AD Treatment? Dement. Neuropsychol. 2025, 19, e2025E001. [Google Scholar] [CrossRef]
- Aathira, N.S.; Kaur, A.; Kumar, A.; Dar, G.M.; Nimisha; Sharma, A.K.; Bera, P.; Mahajan, B.; Chatterjee, A.; Saluja, S.S. The Genetic Risk Factors, Molecular Pathways, MicroRNAs, and the Gut Microbiome in Alzheimer’s Disease. Neuroscience 2025, 577, 217–227. [Google Scholar] [CrossRef]
- Acosta-Uribe, J.; Escudero, S.D.P.; Cochran, J.N.; Taylor, J.W.; Castruita, P.A.; Jonson, C.; Barinaga, E.A.; Roberts, K.; Levine, A.R.; George, D.S.; et al. Genetic Contributions to Alzheimer’s Disease and Frontotemporal Dementia in Admixed Latin American Populations. medRxiv 2025. medRxiv:2024.10.29.24315197. [Google Scholar]
- Hunter, P. The Controversy around Anti-Amyloid Antibodies for Treating Alzheimer’s Disease. EMBO Rep. 2024, 25, 5227–5231. [Google Scholar] [CrossRef]
- Granzotto, A.; Sensi, S.L. Once upon a Time, the Amyloid Cascade Hypothesis. Ageing Res. Rev. 2024, 93, 102161. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, G.; Holtzman, D.M. Amyloid-β and Tau at the Crossroads of Alzheimer’s Disease. Adv. Exp. Med. Biol. 2019, 1184, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Custodia, A.; Ouro, A.; Romaus-Sanjurjo, D.; Pías-Peleteiro, J.M.; de Vries, H.E.; Castillo, J.; Sobrino, T. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front. Aging Neurosci. 2022, 13, 811210. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519. [Google Scholar] [CrossRef]
- Custodia, A.; Romaus-Sanjurjo, D.; Aramburu-Núñez, M.; Álvarez-Rafael, D.; Vázquez-Vázquez, L.; Camino-Castiñeiras, J.; Leira, Y.; Pías-Peleteiro, J.M.; Aldrey, J.M.; Sobrino, T.; et al. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer’s Disease and Other Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 8082. [Google Scholar] [CrossRef]
- Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; et al. Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science 1999, 286, 735–741. [Google Scholar] [CrossRef]
- Yan, R. Stepping Closer to Treating Alzheimer’s Disease Patients with BACE1 Inhibitor Drugs. Transl. Neurodegener. 2016, 5, 13. [Google Scholar] [CrossRef]
- Holsinger, R.M.D.; McLean, C.A.; Beyreuther, K.; Masters, C.L.; Evin, G. Increased Expression of the Amyloid Precursor Beta-Secretase in Alzheimer’s Disease. Ann. Neurol. 2002, 51, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, D.; Tournoy, J.; Hartmann, D.; Huth, T.; Cryns, K.; Deforce, S.; Serneels, L.; Camacho, I.E.; Marjaux, E.; Craessaerts, K.; et al. Phenotypic and Biochemical Analyses of BACE1- and BACE2-Deficient Mice. J. Biol. Chem. 2005, 280, 30797–30806. [Google Scholar] [CrossRef]
- Tamagno, E.; Bardini, P.; Obbili, A.; Vitali, A.; Borghi, R.; Zaccheo, D.; Pronzato, M.A.; Danni, O.; Smith, M.A.; Perry, G.; et al. Oxidative Stress Increases Expression and Activity of BACE in NT2 Neurons. Neurobiol. Dis. 2002, 10, 279–288. [Google Scholar] [CrossRef]
- Tan, J.Z.A.; Gleeson, P.A. The Role of Membrane Trafficking in the Processing of Amyloid Precursor Protein and Production of Amyloid Peptides in Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Biomembr. 2019, 1861, 697–712. [Google Scholar] [CrossRef]
- Hooper, N.M.; Rushworth, J.V. Lipid Rafts: Linking Alzheimer’s Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes. Int. J. Alzheimer’s Dis. 2011, 2011, 603052. [Google Scholar] [CrossRef]
- Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2018, 378, 1691–1703. [Google Scholar] [CrossRef]
- Conti Filho, C.E.; Loss, L.B.; Marcolongo-Pereira, C.; Rossoni Junior, J.V.; Barcelos, R.M.; Chiarelli-Neto, O.; Silva, B.S.; Passamani Ambrosio, R.; de Abreu Quintela Castro, F.C.; Teixeira, S.F.; et al. Advances in Alzheimer’s Disease’s Pharmacological Treatment. Front. Pharmacol. 2023, 14, 1101452. [Google Scholar] [CrossRef]
- Watkins, E.A.; Vassar, R. BACE Inhibitor Clinical Trials for Alzheimer’s Disease. J. Alzheimer’s Dis. 2024, 101, S41–S52. [Google Scholar] [CrossRef]
- Cole, S.L.; Vassar, R. The Alzheimer’s Disease β-Secretase Enzyme, BACE1. Mol. Neurodegener. 2007, 2, 22. [Google Scholar] [CrossRef]
- Hooper, C.; Killick, R.; Lovestone, S. The GSK3 Hypothesis of Alzheimer’s Disease. J. Neurochem. 2008, 104, 1433–1439. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, M.; Guo, M.; Wang, M.; Niu, H.; Xu, T.; Zhou, Y. GSK3: A Potential Target and Pending Issues for Treatment of Alzheimer’s Disease. CNS Neurosci. Ther. 2024, 30, e14818. [Google Scholar] [CrossRef]
- Albrecht, L.V.; Tejeda-Muñoz, N.; De Robertis, E.M. Cell Biology of Canonical Wnt Signaling. Annu. Rev. Cell Dev. Biol. 2021, 37, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Sontag, E.; Nunbhakdi-Craig, V.; Lee, G.; Bloom, G.S.; Mumby, M.C. Regulation of the Phosphorylation State and Microtubule-Binding Activity of Tau by Protein Phosphatase 2A. Neuron 1996, 17, 1201–1207. [Google Scholar] [CrossRef]
- Gong, C.-X.; Singh, T.J.; Grundke-Iqbal, I.; Iqbal, K. Phosphoprotein Phosphatase Activities in Alzheimer Disease Brain. J. Neurochem. 1993, 61, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Vogelsberg-Ragaglia, V.; Schuck, T.; Trojanowski, J.Q.; Lee, V.M.Y. PP2A MRNA Expression Is Quantitatively Decreased in Alzheimer’s Disease Hippocampus. Exp. Neurol. 2001, 168, 402–412. [Google Scholar] [CrossRef]
- Pei, J.J.; Tanaka, T.; Tung, Y.C.; Braak, E.; Iqbal, K.; Grundke-Iqbal, I. Distribution, Levels, and Activity of Glycogen Synthase Kinase-3 in the Alzheimer Disease Brain. J. Neuropathol. Exp. Neurol. 1997, 56, 70–78. [Google Scholar] [CrossRef]
- Rankin, C.A.; Sun, Q.; Gamblin, T.C. Tau Phosphorylation by GSK-3ß Promotes Tangle-like Filament Morphology. Mol. Neurodegener. 2007, 2, 12. [Google Scholar] [CrossRef]
- Hanger, D.P.; Anderton, B.H.; Noble, W. Tau Phosphorylation: The Therapeutic Challenge for Neurodegenerative Disease. Trends Mol. Med. 2009, 15, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Lauretti, E.; Dincer, O.; Praticò, D. Glycogen Synthase Kinase-3 Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118664. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, H.; Wang, C.; Cheng, Y.; Zou, Z.; Li, Y.; Wu, J.; Xu, J. C-Reactive Protein Induces Tau Hyperphosphorylation via GSK3β Signaling Pathway in SH-SY5Y Cells. J. Mol. Neurosci. 2015, 56, 519–527. [Google Scholar] [CrossRef]
- Giovinazzo, D.; Bursac, B.; Sbodio, J.I.; Nalluru, S.; Vignane, T.; Snowman, A.M.; Albacarys, L.M.; Sedlak, T.W.; Torregrossa, R.; Whiteman, M.; et al. Hydrogen Sulfide Is Neuroprotective in Alzheimer’s Disease by Sulfhydrating GSK3β and Inhibiting Tau Hyperphosphorylation. Proc. Natl. Acad. Sci. USA 2021, 118, e2017225118. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Lauretti, E.; Praticò, D. Caspase-3-Dependent Cleavage of Akt Modulates Tau Phosphorylation via GSK3β Kinase: Implications for Alzheimer’s Disease. Mol. Psychiatry 2017, 22, 1002–1008. [Google Scholar] [CrossRef]
- Moussaed, M.; Huc-Brandt, S.; Cubedo, N.; Silhol, M.; Murat, S.; Lebart, M.C.; Kovacs, G.; Verdier, J.M.; Trousse, F.; Rossel, M.; et al. Regenerating Islet-Derived 1α (REG-1α) Protein Increases Tau Phosphorylation in Cell and Animal Models of Tauopathies. Neurobiol. Dis. 2018, 119, 136–148. [Google Scholar] [CrossRef]
- Wang, W.Z.; Li, M.W.; Chen, Y.; Liu, L.Y.; Xu, Y.; Xia, Z.H.; Yu, Y.; Wang, X.D.; Chen, W.; Zhang, F.; et al. 3×Tg-AD Mice Overexpressing Phospholipid Transfer Protein Improves Cognition Through Decreasing Amyloid-β Production and Tau Hyperphosphorylation. J. Alzheimer’s Dis. 2021, 82, 1635–1649. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, C.; Zhu, X. Isoform-Specific Roles of AMPK Catalytic α Subunits in Alzheimer’s Disease. J. Clin. Investig. 2020, 130, 3403–3405. [Google Scholar] [CrossRef]
- Wang, L.; Liu, B.J.; Cao, Y.; Xu, W.Q.; Sun, D.S.; Li, M.Z.; Shi, F.X.; Li, M.; Tian, Q.; Wang, J.Z.; et al. Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer’s Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway. Mol. Neurobiol. 2018, 55, 4731–4744. [Google Scholar] [CrossRef]
- Ng, R.C.L.; Cheng, O.Y.; Jian, M.; Kwan, J.S.C.; Ho, P.W.L.; Cheng, K.K.Y.; Yeung, P.K.K.; Zhou, L.L.; Hoo, R.L.C.; Chung, S.K.; et al. Chronic Adiponectin Deficiency Leads to Alzheimer’s Disease-like Cognitive Impairments and Pathologies through AMPK Inactivation and Cerebral Insulin Resistance in Aged Mice. Mol. Neurodegener. 2016, 11, 71. [Google Scholar] [CrossRef]
- Suo, W.Z. GRK5 Deficiency Causes Mild Cognitive Impairment Due to Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 85, 1399–1410. [Google Scholar] [CrossRef]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s Disease a Type 3 Diabetes? A Critical Appraisal. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, W.; Yi, Y.; Tong, Q. MiR-219-5p Inhibits Tau Phosphorylation by Targeting TTBK1 and GSK-3β in Alzheimer’s Disease. J. Cell Biochem. 2019, 120, 9936–9946. [Google Scholar] [CrossRef] [PubMed]
- Vossel, K.A.; Xu, J.C.; Fomenko, V.; Miyamoto, T.; Suberbielle, E.; Knox, J.A.; Ho, K.; Kim, D.H.; Yu, G.Q.; Mucke, L. Tau Reduction Prevents Aβ-Induced Axonal Transport Deficits by Blocking Activation of GSK3β. J. Cell Biol. 2015, 209, 419–433. [Google Scholar] [CrossRef]
- Zhang, F.; Gannon, M.; Chen, Y.; Yan, S.; Zhang, S.; Feng, W.; Tao, J.; Sha, B.; Liu, Z.; Saito, T.; et al. β-Amyloid Redirects Norepinephrine Signaling to Activate the Pathogenic GSK3β/Tau Cascade. Sci. Transl. Med. 2020, 12, eaay6931. [Google Scholar] [CrossRef]
- Terrill-Usery, S.E.; Mohan, M.J.; Nichols, M.R. Amyloid-β(1-42) Protofibrils Stimulate a Quantum of Secreted IL-1β despite Significant Intracellular IL-1β Accumulation in Microglia. Biochim. Biophys. Acta 2014, 1842, 2276–2285. [Google Scholar] [CrossRef]
- Gratuze, M.; Leyns, C.E.G.; Holtzman, D.M. New Insights into the Role of TREM2 in Alzheimer’s Disease. Mol. Neurodegener. 2018, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alvarez, J.F.; Uribe-Arias, A.; Cardona-Gómez, G.P. Cyclin-Dependent Kinase 5 Targeting Prevents β-Amyloid Aggregation Involving Glycogen Synthase Kinase 3β and Phosphatases. J. Neurosci. Res. 2015, 93, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, V.; Ganesh, S.; Singhal, N.K.; Sandhir, R. SiRNA Mediated GSK3β Knockdown Targets Insulin Signaling Pathway and Rescues Alzheimer’s Disease Pathology: Evidence from In Vitro and In Vivo Studies. ACS Appl. Mater. Interfaces 2022, 14, 69–93. [Google Scholar] [CrossRef]
- Israel, M.A.; Yuan, S.H.; Bardy, C.; Reyna, S.M.; Mu, Y.; Herrera, C.; Hefferan, M.P.; Van Gorp, S.; Nazor, K.L.; Boscolo, F.S.; et al. Probing Sporadic and Familial Alzheimer’s Disease Using Induced Pluripotent Stem Cells. Nature 2012, 482, 216–220. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Wu, T.; Shao, Y.; Luo, L.; Zhou, L.; Ou, S.; Tang, H.; Huang, W.; Guo, K.; et al. Abnormal Platelet Amyloid-β Precursor Protein Metabolism in SAMP8 Mice: Evidence for Peripheral Marker in Alzheimer’s Disease. J. Cell Physiol. 2019, 234, 23528–23536. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Yu, Q.; Arancio, O.; Chen, D.; Gore, S.S.; Yan, S.S.; Yan, S.F. RAGE Mediates Aβ Accumulation in a Mouse Model of Alzheimer’s Disease via Modulation of β- and γ-Secretase Activity. Hum. Mol. Genet. 2018, 27, 1002–1014. [Google Scholar] [CrossRef]
- Parr, C.; Mirzaei, N.; Christian, M.; Sastre, M. Activation of the Wnt/β-catenin Pathway Represses the Transcription of the β-amyloid Precursor Protein Cleaving Enzyme (BACE1) via Binding of T-cell Factor-4 to BACE1 Promoter. FASEB J. 2015, 29, 623–635. [Google Scholar] [CrossRef]
- Readhead, B.; Haure-Mirande, J.V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018, 99, 64–82.e7. [Google Scholar] [CrossRef]
- Li, Z.; Moniruzzaman, M.; Dastgheyb, R.M.; Yoo, S.W.; Wang, M.; Hao, H.; Liu, J.; Casaccia, P.; Nogueras-Ortiz, C.; Kapogiannis, D.; et al. Astrocytes Deliver CK1 to Neurons via Extracellular Vesicles in Response to Inflammation Promoting the Translation and Amyloidogenic Processing of APP. J. Extracell. Vesicles 2020, 10, e12035. [Google Scholar] [CrossRef]
- Rockenstein, E.; Torrance, M.; Adame, A.; Mante, M.; Bar-on, P.; Rose, J.B.; Crews, L.; Masliah, E. Neuroprotective Effects of Regulators of the Glycogen Synthase Kinase-3beta Signaling Pathway in a Transgenic Model of Alzheimer’s Disease Are Associated with Reduced Amyloid Precursor Protein Phosphorylation. J. Neurosci. 2007, 27, 1981–1991. [Google Scholar] [CrossRef]
- Triaca, V.; Sposato, V.; Bolasco, G.; Ciotti, M.T.; Pelicci, P.; Bruni, A.C.; Cupidi, C.; Maletta, R.; Feligioni, M.; Nisticò, R.; et al. NGF Controls APP Cleavage by Downregulating APP Phosphorylation at Thr668: Relevance for Alzheimer’s Disease. Aging Cell 2016, 15, 661–672. [Google Scholar] [CrossRef]
- Isla, A.G.; Vázquez-Cuevas, F.G.; Peña-Ortega, F. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation. J. Alzheimer’s Dis. 2016, 52, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Silva-Palacios, A.; Ostolga-Chavarría, M.; Zazueta, C.; Königsberg, M. Nrf2: Molecular and Epigenetic Regulation during Aging. Ageing Res. Rev. 2018, 47, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Wang, Y.; Xu, W.; Liu, Y.; Chen, H.; Yu, Z. KCa3.1 Deficiency Attenuates Neuroinflammation by Regulating an Astrocyte Phenotype Switch Involving the PI3K/AKT/GSK3β Pathway. Neurobiol. Dis. 2019, 132, 104588. [Google Scholar] [CrossRef]
- Zhou, Y.; Men, L.; Sun, Y.; Wei, M.; Fan, X. Pharmacodynamic Effects and Molecular Mechanisms of Lignans from Schisandra Chinensis Turcz. (Baill.), a Current Review. Eur. J. Pharmacol. 2021, 892, 173796. [Google Scholar] [CrossRef]
- Zu, H.; Liu, X.; Yao, K. DHCR24 Overexpression Modulates Microglia Polarization and Inflammatory Response via Akt/GSK3β Signaling in Aβ25-35 Treated BV-2 Cells. Life Sci. 2020, 260, 118470. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, Y.; Yao, K.; Zhang, M.; Xu, Y.; Zhang, J.; Bai, X.; Zu, H. DHCR24 Knockdown Lead to Hyperphosphorylation of Tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites by Membrane Lipid-Raft Dependent PP2A Signaling in SH-SY5Y Cells. Neurochem. Res. 2021, 46, 1627–1640. [Google Scholar] [CrossRef]
- Davoody, S.; Asgari Taei, A.; Khodabakhsh, P.; Dargahi, L. MTOR Signaling and Alzheimer’s Disease: What We Know and Where We Are? CNS Neurosci. Ther. 2024, 30, e14463. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Wu, J.; Zhang, M.; Xu, Y.; Duan, L.; Yao, K.; Zhang, J.; Bo, J.; Zhao, Y.; Xu, G.; et al. DHCR24 Knock-Down Induced Tau Hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, Ser396 Epitopes and Inhibition of Autophagy by Overactivation of GSK3β/MTOR Signaling. Front. Aging Neurosci. 2021, 13, 513605. [Google Scholar] [CrossRef] [PubMed]
- Dewachter, I.; Ris, L.; Jaworski, T.; Seymour, C.M.; Kremer, A.; Borghgraef, P.; De Vijver, H.; Godaux, E.; Van Leuven, F. GSK3beta, a Centre-Staged Kinase in Neuropsychiatric Disorders, Modulates Long Term Memory by Inhibitory Phosphorylation at Serine-9. Neurobiol. Dis. 2009, 35, 193–200. [Google Scholar] [CrossRef]
- Pláteník, J.; Fišar, Z.; Buchal, R.; Jirák, R.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. GSK3β, CREB, and BDNF in Peripheral Blood of Patients with Alzheimer’s Disease and Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 50, 83–93. [Google Scholar] [CrossRef]
- Cuesto, G.; Jordán-Álvarez, S.; Enriquez-Barreto, L.; Ferrús, A.; Morales, M.; Acebes, Á. GSK3β Inhibition Promotes Synaptogenesis in Drosophila and Mammalian Neurons. PLoS ONE 2015, 10, e0118475. [Google Scholar] [CrossRef] [PubMed]
- DaRocha-Souto, B.; Coma, M.; Pérez-Nievas, B.G.; Scotton, T.C.; Siao, M.; Sánchez-Ferrer, P.; Hashimoto, T.; Fan, Z.; Hudry, E.; Barroeta, I.; et al. Activation of Glycogen Synthase Kinase-3 Beta Mediates β-Amyloid Induced Neuritic Damage in Alzheimer’s Disease. Neurobiol. Dis. 2012, 45, 425–437. [Google Scholar] [CrossRef]
- Narvaes, R.F.; Furini, C.R.G. Role of Wnt Signaling in Synaptic Plasticity and Memory. Neurobiol. Learn. Mem. 2022, 187, 107558. [Google Scholar] [CrossRef]
- Sontag, J.M.; Sontag, E. Protein Phosphatase 2A Dysfunction in Alzheimer’s Disease. Front. Mol. Neurosci. 2014, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Torrent, L.; Ferrer, I. PP2A and Alzheimer Disease. Curr. Alzheimer Res. 2012, 9, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, R.; Velmurugan, B.K. Protein Phosphatase 2A as Therapeutic Targets in Various Disease Models. Life Sci. 2018, 210, 40–46. [Google Scholar] [CrossRef]
- Taleski, G.; Sontag, E. Protein Phosphatase 2A and Tau: An Orchestrated ‘Pas de Deux’. FEBS Lett. 2018, 592, 1079–1095. [Google Scholar] [CrossRef]
- Saura, C.A.; Valero, J. The Role of CREB Signaling in Alzheimer’s Disease and Other Cognitive Disorders. Rev. Neurosci. 2011, 22, 153–169. [Google Scholar] [CrossRef]
- Liu, Z.; Li, T.; Li, P.; Wei, N.; Zhao, Z.; Liang, H.; Ji, X.; Chen, W.; Xue, M.; Wei, J. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxid. Med. Cell Longev. 2015, 2015, 352723. [Google Scholar] [CrossRef]
- Qian, W.; Shi, J.; Yin, X.; Iqbal, K.; Grundke-Iqbal, I.; Gong, C.X.; Liu, F. PP2A Regulates Tau Phosphorylation Directly and Also Indirectly via Activating GSK-3beta. J. Alzheimer’s Dis. 2010, 19, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.R.; Ohlmeyer, M. Protein Phosphatase 2A as a Therapeutic Target in Inflammation and Neurodegeneration. Pharmacol. Ther. 2019, 201, 181. [Google Scholar] [CrossRef]
- Kamat, P.K.; Rai, S.; Nath, C. Okadaic Acid Induced Neurotoxicity: An Emerging Tool to Study Alzheimer’s Disease Pathology. Neurotoxicology 2013, 37, 163–172. [Google Scholar] [CrossRef]
- Voronkov, M.; Braithwaite, S.P.; Stock, J.B. Phosphoprotein Phosphatase 2A: A Novel Druggable Target for Alzheimer’s Disease. Future Med. Chem. 2011, 3, 821–833. [Google Scholar] [CrossRef]
- Bose, A.; Mouton-Liger, F.; Paquet, C.; Mazot, P.; Vigny, M.; Gray, F.; Hugon, J. Modulation of Tau Phosphorylation by the Kinase PKR: Implications in Alzheimer’s Disease. Brain Pathol. 2011, 21, 189–200. [Google Scholar] [CrossRef]
- Kelleher, I.; Garwood, C.; Hanger, D.P.; Anderton, B.H.; Noble, W. Kinase Activities Increase during the Development of Tauopathy in Htau Mice. J. Neurochem. 2007, 103, 2256–2267. [Google Scholar] [CrossRef]
- Pei, J.-J.; Braak, E.; Braak, H.; Grundke-Iqbal, I.; Iqbal, K.; Winblad, B.; Cowburn, R.F. Localization of Active Forms of C-Jun Kinase (JNK) and P38 Kinase in Alzheimer’s Disease Brains at Different Stages of Neurofibrillary Degeneration. J. Alzheimer’s Dis. 2001, 3, 41–48. [Google Scholar] [CrossRef]
- Bodles, A.M.; Barger, S.W. Secreted β-Amyloid Precursor Protein Activates Microglia via JNK and P38-MAPK. Neurobiol. Aging 2005, 26, 9–16. [Google Scholar] [CrossRef]
- Kim, S.H.; Smith, C.J.; Van Eldik, L.J. Importance of MAPK Pathways for Microglial Pro-Inflammatory Cytokine IL-1β Production. Neurobiol. Aging 2004, 25, 431–439. [Google Scholar] [CrossRef]
- Jiang, W.; Luo, T.; Li, S.; Zhou, Y.; Shen, X.-Y.; He, F.; Xu, J.; Wang, H.-Q. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons. PLoS ONE 2016, 11, e0152371. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.G.; Jones, R.A.; Zhou, X.Q.; McGinness, J.M.; Van Eldik, L.J.; Mrak, R.E.; Griffin, W.S.T. Interleukin-1 Promotion of MAPK-P38 Overexpression in Experimental Animals and in Alzheimer’s Disease: Potential Significance for Tau Protein Phosphorylation. Neurochem. Int. 2001, 39, 341–348. [Google Scholar] [CrossRef]
- Raingeaud, J.; Whitmarsh, A.J.; Barrett, T.; Dérijard, B.; Davis, R.J. MKK3- and MKK6-Regulated Gene Expression Is Mediated by the P38 Mitogen-Activated Protein Kinase Signal Transduction Pathway. Mol. Cell Biol. 1996, 16, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.C.; Suen, K.; Ma, C.; Elyaman, W.; Ng, H.; Hugon, J. Involvement of Double-stranded RNA-dependent Protein Kinase and Phosphorylation of Eukaryotic Initiation Factor-2α in Neuronal Degeneration. J. Neurochem. 2002, 83, 1215–1225. [Google Scholar] [CrossRef]
- Mouton-Liger, F.; Paquet, C.; Dumurgier, J.; Lapalus, P.; Gray, F.; Laplanche, J.-L.; Hugon, J. Increased Cerebrospinal Fluid Levels of Double-Stranded RNA-Dependant Protein Kinase in Alzheimer’s Disease. Biol. Psychiatry 2012, 71, 829–835. [Google Scholar] [CrossRef]
- Paquet, C.; Mouton-Liger, F.; Meurs, E.F.; Mazot, P.; Bouras, C.; Pradier, L.; Gray, F.; Hugon, J. The PKR Activator PACT Is Induced by Aβ: Involvement in Alzheimer’s Disease. Brain Pathol. 2012, 22, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Tible, M.; Mouton Liger, F.; Schmitt, J.; Giralt, A.; Farid, K.; Thomasseau, S.; Gourmaud, S.; Paquet, C.; Rondi Reig, L.; Meurs, E.; et al. PKR Knockout in the 5xFAD Model of Alzheimer’s Disease Reveals Beneficial Effects on Spatial Memory and Brain Lesions. Aging Cell 2019, 18, e12887. [Google Scholar] [CrossRef]
- Shah, K.; Lahiri, D.K. Cdk5 Activity in the Brain—Multiple Paths of Regulation. J. Cell Sci. 2014, 127, 2391–2400. [Google Scholar] [CrossRef]
- Pao, P.-C.; Tsai, L.-H. Three Decades of Cdk5. J. Biomed. Sci. 2021, 28, 79. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Wu, X.; Tian, Y.; Wang, Y.; Li, C.; Li, H. Overexpression of CDK5 in Neural Stem Cells Facilitates Maturation of Embryonic Neurocytes Derived from Rats In Vitro. Cell Biochem. Biophys. 2014, 69, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Petrik, D.; Yun, S.; Latchney, S.E.; Kamrudin, S.; LeBlanc, J.A.; Bibb, J.A.; Eisch, A.J. Early Postnatal In Vivo Gliogenesis From Nestin-Lineage Progenitors Requires Cdk5. PLoS ONE 2013, 8, e72819. [Google Scholar] [CrossRef]
- He, X.; Ishizeki, M.; Mita, N.; Wada, S.; Araki, Y.; Ogura, H.; Abe, M.; Yamazaki, M.; Sakimura, K.; Mikoshiba, K.; et al. Cdk5/P35 Is Required for Motor Coordination and Cerebellar Plasticity. J. Neurochem. 2014, 131, 53–64. [Google Scholar] [CrossRef]
- Nishimura, Y.V.; Sekine, K.; Chihama, K.; Nakajima, K.; Hoshino, M.; Nabeshima, Y.; Kawauchi, T. Dissecting the Factors Involved in the Locomotion Mode of Neuronal Migration in the Developing Cerebral Cortex. J. Biol. Chem. 2010, 285, 5878–5887. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-C.; Zhou, Y.; Shen, Y.; Tsai, L.-H. A Survey of Cdk5 Activator P35 and P25 Levels in Alzheimer’s Disease Brains. FEBS Lett. 2002, 523, 58–62. [Google Scholar] [CrossRef]
- Fischer, A.; Sananbenesi, F.; Pang, P.T.; Lu, B.; Tsai, L.-H. Opposing Roles of Transient and Prolonged Expression of P25 in Synaptic Plasticity and Hippocampus-Dependent Memory. Neuron 2005, 48, 825–838. [Google Scholar] [CrossRef]
- Currais, A.; Prior, M.; Dargusch, R.; Armando, A.; Ehren, J.; Schubert, D.; Quehenberger, O.; Maher, P. Modulation of P25 and Inflammatory Pathways by Fisetin Maintains Cognitive Function in Alzheimer’s Disease Transgenic Mice. Aging Cell 2014, 13, 379–390. [Google Scholar] [CrossRef]
- Shukla, V.; Skuntz, S.; Pant, H.C. Deregulated Cdk5 Activity Is Involved in Inducing Alzheimer’s Disease. Arch. Med. Res. 2012, 43, 655–662. [Google Scholar] [CrossRef]
- Liu, F.; Su, Y.; Li, B.; Zhou, Y.; Ryder, J.; Gonzalez-DeWhitt, P.; May, P.C.; Ni, B. Regulation of Amyloid Precursor Protein (APP) Phosphorylation and Processing by P35/Cdk5 and P25/Cdk5. FEBS Lett. 2003, 547, 193–196. [Google Scholar] [CrossRef]
- Lau, K.-F.; Howlett, D.R.; Kesavapany, S.; Standen, C.L.; Dingwall, C.; McLoughlin, D.M.; Miller, C.C.J. Cyclin-Dependent Kinase-5/P35 Phosphorylates Presenilin 1 to Regulate Carboxy-Terminal Fragment Stability. Mol. Cell. Neurosci. 2002, 20, 13–20. [Google Scholar] [CrossRef]
- Zempel, H.; Thies, E.; Mandelkow, E.; Mandelkow, E.-M. Aβ Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines. J. Neurosci. 2010, 30, 11938–11950. [Google Scholar] [CrossRef]
- Kimura, T.; Tsutsumi, K.; Taoka, M.; Saito, T.; Masuda-Suzukake, M.; Ishiguro, K.; Plattner, F.; Uchida, T.; Isobe, T.; Hasegawa, M.; et al. Isomerase Pin1 Stimulates Dephosphorylation of Tau Protein at Cyclin-Dependent Kinase (Cdk5)-Dependent Alzheimer Phosphorylation Sites. J. Biol. Chem. 2013, 288, 7968–7977. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Ishiguro, K.; Hisanaga, S. Physiological and Pathological Phosphorylation of Tau by Cdk5. Front. Mol. Neurosci. 2014, 7, 65. [Google Scholar] [CrossRef]
- Zhang, J.; Johnson, G.V.W. Tau Protein Is Hyperphosphorylated in a Site-Specific Manner in Apoptotic Neuronal PC12 Cells. J. Neurochem. 2000, 75, 2346–2357. [Google Scholar] [CrossRef]
- Piedrahita, D.; Hernández, I.; López-Tobón, A.; Fedorov, D.; Obara, B.; Manjunath, B.S.; Boudreau, R.L.; Davidson, B.; LaFerla, F.; Gallego-Gómez, J.C.; et al. Silencing of CDK5 Reduces Neurofibrillary Tangles in Transgenic Alzheimer’s Mice. J. Neurosci. 2010, 30, 13966–13976. [Google Scholar] [CrossRef]
- Lopes, J.P.; Oliveira, C.R.; Agostinho, P. Neurodegeneration in an Aβ-induced Model of Alzheimer’s Disease: The Role of Cdk5. Aging Cell 2010, 9, 64–77. [Google Scholar] [CrossRef]
- Guan, J.-S.; Su, S.C.; Gao, J.; Joseph, N.; Xie, Z.; Zhou, Y.; Durak, O.; Zhang, L.; Zhu, J.J.; Clauser, K.R.; et al. Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the CAMP Signaling Pathway. PLoS ONE 2011, 6, e25735. [Google Scholar] [CrossRef]
- Hensley, K.; Venkova, K.; Christov, A.; Gunning, W.; Park, J. Collapsin Response Mediator Protein-2: An Emerging Pathologic Feature and Therapeutic Target for Neurodisease Indications. Mol. Neurobiol. 2011, 43, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.R.; Knebel, A.; Morrice, N.A.; Robertson, L.A.; Irving, A.J.; Connolly, C.N.; Sutherland, C. GSK-3 Phosphorylation of the Alzheimer Epitope within Collapsin Response Mediator Proteins Regulates Axon Elongation in Primary Neurons. J. Biol. Chem. 2004, 279, 50176–50180. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hawkes, C.; Qureshi, H.Y.; Kar, S.; Paudel, H.K. Cyclin-Dependent Protein Kinase 5 Primes Microtubule-Associated Protein Tau Site-Specifically for Glycogen Synthase Kinase 3β. Biochemistry 2006, 45, 3134–3145. [Google Scholar] [CrossRef]
- Brustovetsky, T.; Khanna, R.; Brustovetsky, N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer’s Disease. Cells 2023, 12, 1287. [Google Scholar] [CrossRef]
- Gu, Y.; Hamajima, N.; Ihara, Y. Neurofibrillary Tangle-Associated Collapsin Response Mediator Protein-2 (CRMP-2) Is Highly Phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 2000, 39, 4267–4275. [Google Scholar] [CrossRef]
- Watamura, N.; Toba, J.; Yoshii, A.; Nikkuni, M.; Ohshima, T. Colocalization of Phosphorylated Forms of WAVE1, CRMP2, and Tau in Alzheimer’s Disease Model Mice: Involvement of Cdk5 Phosphorylation and the Effect of ATRA Treatment. J. Neurosci. Res. 2016, 94, 15–26. [Google Scholar] [CrossRef]
- Cole, A.R.; Noble, W.; Aalten, L.V.; Plattner, F.; Meimaridou, R.; Hogan, D.; Taylor, M.; LaFrancois, J.; Gunn-Moore, F.; Verkhratsky, A.; et al. Collapsin Response Mediator Protein-2 Hyperphosphorylation Is an Early Event in Alzheimer’s Disease Progression. J. Neurochem. 2007, 103, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, D.; Watamura, N.; Nikkuni, M.; Saido, T.C.; Goshima, Y.; Ohshima, T. Involvement of CRMP2 Phosphorylation in Amyloid Beta-Induced Tau Phosphorylation of Hippocampal Neurons in Alzheimer’s Disease Mouse Model. Mol. Neurobiol. 2025, 62, 7413–7420. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Wilson, S.M.; Brittain, J.M.; Weimer, J.; Sultana, R.; Butterfield, A.; Hensley, K. Opening Pandora‘s Jar: A Primer on the Putative Roles of Crmp2 In A Panoply of Neurodegenerative, Sensory and Motor Neuron, and Central Disorders. Future Neurol. 2012, 7, 749–771. [Google Scholar] [CrossRef] [PubMed]
- Caricasole, A.; Copani, A.; Caraci, F.; Aronica, E.; Rozemuller, A.J.; Caruso, A.; Storto, M.; Gaviraghi, G.; Terstappen, G.C.; Nicoletti, F. Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Associated with Neuronal Degeneration in Alzheimer’s Brain. J. Neurosci. 2004, 24, 6021–6027. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Tello, P.; Hernández-Ortega, K.; Arias, C. Susceptibility to GSK3β-Induced Tau Phosphorylation Differs Between the Young and Aged Hippocampus after Wnt Signaling Inhibition. J. Alzheimer’s Dis. 2014, 39, 775–785. [Google Scholar] [CrossRef]
- Tapia-Rojas, C.; Burgos, P.V.; Inestrosa, N.C. Inhibition of Wnt Signaling Induces Amyloidogenic Processing of Amyloid Precursor Protein and the Production and Aggregation of Amyloid-β (Aβ)42 Peptides. J. Neurochem. 2016, 139, 1175–1191. [Google Scholar] [CrossRef]
- Wu, J.R.; Hernandez, Y.; Miyasaki, K.F.; Kwon, E.J. Engineered Nanomaterials That Exploit Blood-Brain Barrier Dysfunction for Delivery to the Brain. Adv. Drug Deliv. Rev. 2023, 197, 114820. [Google Scholar] [CrossRef]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for Delivering Therapeutics across the Blood–Brain Barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383. [Google Scholar] [CrossRef]
- Pardridge, W.M. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022, 14, 1283. [Google Scholar] [CrossRef]
- Meyer, A.H.; Feldsien, T.M.; Mezler, M.; Untucht, C.; Venugopalan, R.; Lefebvre, D.R. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics 2023, 15, 1100. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; et al. Stimuli-Responsive In Situ Gelling System for Nose-to-Brain Drug Delivery. J. Control. Release 2020, 327, 235–265. [Google Scholar] [CrossRef]
- Formica, M.L.; Real, D.A.; Picchio, M.L.; Catlin, E.; Donnelly, R.F.; Paredes, A.J. On a Highway to the Brain: A Review on Nose-to-Brain Drug Delivery Using Nanoparticles. Appl. Mater. Today 2022, 29, 101631. [Google Scholar] [CrossRef]
- Wen, J.; Huang, Y.; Crowe, T.P.; Hsu, W.H. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022, 14, 629. [Google Scholar] [CrossRef] [PubMed]
- Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal Delivery of High Molecular Weight Drugs. Molecules 2009, 14, 3754–3779. [Google Scholar] [CrossRef]
- Selvaraj, K.; Gowthamarajan, K.; Karri, V.V.S.R. Nose to Brain Transport Pathways an Overview: Potential of Nanostructured Lipid Carriers in Nose to Brain Targeting. Artif. Cells Nanomed. Biotechnol. 2018, 46, 2088–2095. [Google Scholar] [CrossRef]
- Agu, R.U. Challenges in Nasal Drug Absorption: How Far Have We Come? Ther. Deliv. 2016, 7, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, L.C.; Vacacela, M.; Clares, B.; Garcia, M.L.; Fabrega, M.-J.; Calpena, A.C. Development of a Nasal Donepezil-Loaded Microemulsion for the Treatment of Alzheimer’s Disease: In Vitro and Ex Vivo Characterization. CNS Neurol. Disord. Drug Targets 2018, 17, 43–53. [Google Scholar] [CrossRef]
- Trevino, J.T.; Quispe, R.C.; Khan, F.; Novak, V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J. Clin. Trials 2020, 10, 439. [Google Scholar] [PubMed]
- Abouhussein, D.M.N.; Khattab, A.; Bayoumi, N.A.; Mahmoud, A.F.; Sakr, T.M. Brain Targeted Rivastigmine Mucoadhesive Thermosensitive In Situ Gel: Optimization, in Vitro Evaluation, Radiolabeling, in Vivo Pharmacokinetics and Biodistribution. J. Drug Deliv. Sci. Technol. 2018, 43, 129–140. [Google Scholar] [CrossRef]
- Awad, R.; Avital, A.; Sosnik, A. Polymeric Nanocarriers for Nose-to-Brain Drug Delivery in Neurodegenerative Diseases and Neurodevelopmental Disorders. Acta Pharm. Sin. B 2023, 13, 1866–1886. [Google Scholar] [CrossRef]
- Fonseca, L.C.; Lopes, J.A.; Vieira, J.; Viegas, C.; Oliveira, C.S.; Hartmann, R.P.; Fonte, P. Intranasal Drug Delivery for Treatment of Alzheimer’s Disease. Drug Deliv. Transl. Res. 2021, 11, 411–425. [Google Scholar] [CrossRef]
- Sonwani, A.; Pathak, A.; Jain, K. Nanocarriers-Mediated Nose-to-Brain Drug Delivery: A Novel Approach for the Management of Alzheimer’s Disease. J. Drug Deliv. Sci. Technol. 2024, 98, 105855. [Google Scholar] [CrossRef]
- Khunt, D.; Misra, M. An Overview of Anatomical and Physiological Aspects of the Nose and the Brain. In Direct Nose-to-Brain Drug Delivery; Mechanism, Technological Advances, Applications and Regulatory Updates; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–14. ISBN 9780128225226. [Google Scholar] [CrossRef]
- Mishra, V.; Yadav, N.; Saraogi, G.K. Targeting Aspects for Bioactive Drugs. In Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Elsevier: Amsterdam, The Netherlands, 2020; pp. 423–449. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Li, R.Q.; Qiu, W.X.; Zhuang, Z.N.; Cheng, S.X.; Zhang, X.Z. Peptide-Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv. Funct. Mater. 2018, 28, 1804492. [Google Scholar] [CrossRef]
- Durham, P.G.; Butnariu, A.; Alghorazi, R.; Pinton, G.; Krishna, V.; Dayton, P.A. Current Clinical Investigations of Focused Ultrasound Blood-Brain Barrier Disruption: A Review. Neurotherapeutics 2024, 21, e00352. [Google Scholar] [CrossRef]
- Wu, C.H.; Liu, H.L.; Ho, C.T.; Hsu, P.H.; Fan, C.H.; Yeh, C.K.; Kang, S.T.; Chen, W.S.; Wang, F.N.; Peng, H.H. Monitoring of Acoustic Cavitation in Microbubble-Presented Focused Ultrasound Exposure Using Gradient-Echo MRI. J. Magn. Reson. Imaging 2020, 51, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Jones, R.M.; Davidson, B.; Huang, Y.; Pople, C.B.; Surendrakumar, S.; Hamani, C.; Hynynen, K.; Lipsman, N. Technical Principles and Clinical Workflow of Transcranial MR-Guided Focused Ultrasound. Stereotact. Funct. Neurosurg. 2021, 99, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Kalia, L.V.; Kalia, S.K.; Hamani, C.; Huang, Y.; Hynynen, K.; Lipsman, N.; Davidson, B. Current Progress in Magnetic Resonance-Guided Focused Ultrasound to Facilitate Drug Delivery across the Blood-Brain Barrier. Pharmaceutics 2024, 16, 719. [Google Scholar] [CrossRef] [PubMed]
- Blais, S.; Poree, J.; Ramos-Palacios, G.; Desmarais, S.; Perrot, V.; Sadikot, A.; Provost, J. Equivalent Time Active Cavitation Imaging. Phys. Med. Biol. 2023, 66, 195010. [Google Scholar] [CrossRef] [PubMed]
- Cummins, D.D.; Bernabei, J.M.; Wang, D.D. Focused Ultrasound for Treatment of Movement Disorders: A Review of Non-Food and Drug Administration Approved Indications. Stereotact. Funct. Neurosurg. 2024, 102, 93–108. [Google Scholar] [CrossRef]
- Krishna, V.; Mindel, J.; Sammartino, F.; Block, C.; Dwivedi, A.K.; Van Gompel, J.J.; Fountain, N.; Fisher, R. A Phase 1 Open-Label Trial Evaluating Focused Ultrasound Unilateral Anterior Thalamotomy for Focal Onset Epilepsy. Epilepsia 2023, 64, 831–842. [Google Scholar] [CrossRef]
- Di Biase, L.; Falato, E.; Caminiti, M.L.; Pecoraro, P.M.; Narducci, F.; Di Lazzaro, V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol. Res. Int. 2021, 2021, 8438498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, C.; Ahn, J.W.; Kim, S.; Park, J.Y.; Na, Y.C.; Chang, J.W.; Chung, S.; Chang, W.S. Long-Lasting Restoration of Memory Function and Hippocampal Synaptic Plasticity by Focused Ultrasound in Alzheimer’s Disease. Brain Stimul. 2023, 16, 857–866. [Google Scholar] [CrossRef]
- Rezai, A.R.; D’Haese, P.-F.; Finomore, V.; Carpenter, J.; Ranjan, M.; Wilhelmsen, K.; Mehta, R.I.; Wang, P.; Najib, U.; Vieira Ligo Teixeira, C.; et al. Ultrasound Blood–Brain Barrier Opening and Aducanumab in Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Noel, R.L.; Batts, A.J.; Ji, R.; Pouliopoulos, A.N.; Bae, S.; Kline-Schoder, A.R.; Konofagou, E.E. Natural Aging and Alzheimer’s Disease Pathology Increase Susceptibility to Focused Ultrasound-Induced Blood-Brain Barrier Opening. Sci. Rep. 2023, 13, 6757. [Google Scholar] [CrossRef]
- Antoniou, A.; Stavrou, M.; Evripidou, N.; Georgiou, E.; Kousiappa, I.; Koupparis, A.; Papacostas, S.S.; Kleopa, K.A.; Damianou, C. FUS-Mediated Blood-Brain Barrier Disruption for Delivering Anti-Aβ Antibodies in 5XFAD Alzheimer’s Disease Mice. J. Ultrasound 2024, 27, 251–262. [Google Scholar] [CrossRef]
- Dubey, S.; Heinen, S.; Krantic, S.; McLaurin, J.; Branch, D.R.; Hynynen, K.; Aubert, I. Clinically Approved IVIg Delivered to the Hippocampus with Focused Ultrasound Promotes Neurogenesis in a Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 32691–32700. [Google Scholar] [CrossRef]
- Xhima, K.; Markham-Coultes, K.; Hahn Kofoed, R.; Saragovi, H.U.; Hynynen, K.; Aubert, I. Ultrasound Delivery of a TrkA Agonist Confers Neuroprotection to Alzheimer-Associated Pathologies. Brain 2022, 145, 2806–2822. [Google Scholar] [CrossRef]
- Kuhn, T.; Spivak, N.M.; Dang, B.H.; Becerra, S.; Halavi, S.E.; Rotstein, N.; Rosenberg, B.M.; Hiller, S.; Swenson, A.; Cvijanovic, L.; et al. Transcranial Focused Ultrasound Selectively Increases Perfusion and Modulates Functional Connectivity of Deep Brain Regions in Humans. Front. Neural Circuits 2023, 17, 1120410. [Google Scholar] [CrossRef]
- Nicodemus, N.E.; Becerra, S.; Kuhn, T.P.; Packham, H.R.; Duncan, J.; Mahdavi, K.; Iovine, J.; Kesari, S.; Pereles, S.; Whitney, M.; et al. Focused Transcranial Ultrasound for Treatment of Neurodegenerative Dementia. Alzheimer’s Dement 2019, 5, 374–381. [Google Scholar] [CrossRef]
- Morsut, L.; Roybal, K.T.; Xiong, X.; Gordley, R.M.; Coyle, S.M.; Thomson, M.; Lim, W.A. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 2016, 164, 780–791. [Google Scholar] [CrossRef]
- Simic, M.S.; Watchmaker, P.B.; Gupta, S.; Wang, Y.; Sagan, S.A.; Duecker, J.; Shepherd, C.; Diebold, D.; Pineo-Cavanaugh, P.; Haegelin, J.; et al. Programming Tissue-Sensing T Cells That Deliver Therapies to the Brain. Science 2024, 386, eadl4237. [Google Scholar] [CrossRef]
- Tashima, T. Mesenchymal Stem Cell (MSC)-Based Drug Delivery into the Brain across the Blood-Brain Barrier. Pharmaceutics 2024, 16, 289. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.U.; Liu, Y.; Zheng, M.; Shi, B. Exosomes Based Strategies for Brain Drug Delivery. Biomaterials 2023, 293, 121949. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and Function of the Blood-Brain Barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Rhea, E.M.; Rask-Madsen, C.; Banks, W.A. Insulin Transport across the Blood-Brain Barrier Can Occur Independently of the Insulin Receptor. J. Physiol. 2018, 596, 4753–4765. [Google Scholar] [CrossRef] [PubMed]
- Bickel, U.; Yoshikawa, T.; Pardridge, W.M. Delivery of Peptides and Proteins through the Blood-Brain Barrier. Adv. Drug Deliv. Rev. 2001, 46, 247–279. [Google Scholar] [CrossRef]
- Ohshima-Hosoyama, S.; Simmons, H.A.; Goecks, N.; Joers, V.; Swanson, C.R.; Bondarenko, V.; Velotta, R.; Brunner, K.; Wood, L.D.; Hruban, R.H.; et al. A Monoclonal Antibody-GDNF Fusion Protein Is Not Neuroprotective and Is Associated with Proliferative Pancreatic Lesions in Parkinsonian Monkeys. PLoS ONE 2012, 7, e39036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pardridge, W.M.; Boado, R.J.; Patrick, D.J.; Hui, E.K.W.; Lu, J.Z. Blood-Brain Barrier Transport, Plasma Pharmacokinetics, and Neuropathology Following Chronic Treatment of the Rhesus Monkey with a Brain Penetrating Humanized Monoclonal Antibody Against the Human Transferrin Receptor. Mol. Pharm. 2018, 15, 5207–5216. [Google Scholar] [CrossRef]
- Bourassa, P.; Alata, W.; Tremblay, C.; Paris-Robidas, S.; Calon, F. Transferrin Receptor-Mediated Uptake at the Blood-Brain Barrier Is Not Impaired by Alzheimer’s Disease Neuropathology. Mol. Pharm. 2019, 16, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Dehouck, B.; Dehouck, M.P.; Fruchart, J.C.; Cecchelli, R. Upregulation of the Low Density Lipoprotein Receptor at the Blood-Brain Barrier: Intercommunications between Brain Capillary Endothelial Cells and Astrocytes. J. Cell Biol. 1994, 126, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Régina, A.; Demeule, M.; Ché, C.; Lavallée, I.; Poirier, J.; Gabathuler, R.; Béliveau, R.; Castaigne, J.P. Antitumour Activity of ANG1005, a Conjugate between Paclitaxel and the New Brain Delivery Vector Angiopep-2. Br. J. Pharmacol. 2008, 155, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, N.C.; D’Orsi, L.; Sambri, I.; Nusco, E.; Monaco, C.; Spampanato, C.; Polishchuk, E.; Saccone, P.; De Leonibus, E.; Ballabio, A.; et al. A Highly Secreted Sulphamidase Engineered to Cross the Blood-Brain Barrier Corrects Brain Lesions of Mice with Mucopolysaccharidoses Type IIIA. EMBO Mol. Med. 2013, 5, 675–690. [Google Scholar] [CrossRef]
- Wang, D.; El-Amouri, S.S.; Dai, M.; Kuan, C.Y.; Hui, D.Y.; Brady, R.O.; Pan, D. Engineering a Lysosomal Enzyme with a Derivative of Receptor-Binding Domain of ApoE Enables Delivery across the Blood-Brain Barrier. Proc. Natl. Acad. Sci. USA 2013, 110, 2999–3004. [Google Scholar] [CrossRef]
- Alkondon, M.; Albuquerque, E.X. The Nicotinic Acetylcholine Receptor Subtypes and Their Function in the Hippocampus and Cerebral Cortex. Prog. Brain Res. 2004, 145, 109–120. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Wei, X.; Zhan, C.; Shen, Q.; Fu, W.; Xie, C.; Gao, J.; Peng, C.; Zheng, P.; Lu, W. A D-Peptide Ligand of Nicotine Acetylcholine Receptors for Brain-Targeted Drug Delivery. Angew. Chem. Int. Ed. Engl. 2015, 54, 3023–3027. [Google Scholar] [CrossRef]
- Moura, R.P.; Martins, C.; Pinto, S.; Sousa, F.; Sarmento, B. Blood-Brain Barrier Receptors and Transporters: An Insight on Their Function and How to Exploit Them through Nanotechnology. Expert. Opin. Drug Deliv. 2019, 16, 271–285. [Google Scholar] [CrossRef]
- Gaillard, P.J.; Appeldoorn, C.C.M.; Dorland, R.; Van Kregten, J.; Manca, F.; Vugts, D.J.; Windhorst, B.; Van Dongen, G.A.M.S.; De Vries, H.E.; Maussang, D.; et al. Pharmacokinetics, Brain Delivery, and Efficacy in Brain Tumor-Bearing Mice of Glutathione Pegylated Liposomal Doxorubicin (2B3-101). PLoS ONE 2014, 9, e82331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, H.; Pang, Z.; Jiang, X. Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System. Pharm. Res. 2013, 30, 2485–2498. [Google Scholar] [CrossRef]
- Gaillard, P.J. Case Study: To-BBB’s G-Technology, Getting the Best from Drug-Delivery Research with Industry-Academia Partnerships. Ther. Deliv. 2011, 2, 1391–1394. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, P.J.; Brink, A.; de Boer, A.G. Diphtheria Toxin Receptor-Targeted Brain Drug Delivery. Int. Congr. Ser. 2005, 1277, 185–198. [Google Scholar] [CrossRef]
- Gabathuler, R. Approaches to Transport Therapeutic Drugs across the Blood-Brain Barrier to Treat Brain Diseases. Neurobiol. Dis. 2010, 37, 48–57. [Google Scholar] [CrossRef]
- Naqvi, S.; Panghal, A.; Flora, S.J.S. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front. Neurosci. 2020, 14, 494. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, J.; Li, G.; Yin, Z.; Fu, B.M. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood–Brain Barrier. Cardiovasc. Eng. Technol. 2020, 11, 607–620. [Google Scholar] [CrossRef]
- Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci. 2022, 23, 4153. [Google Scholar] [CrossRef]
- Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging Blood-Brain-Barrier-Crossing Nanotechnology for Brain Cancer Theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lee, H.; Fang, Z.; Velalopoulou, A.; Kim, J.; Thomas, M.B.; Liu, J.; Abramowitz, R.G.; Kim, Y.T.; Coskun, A.F.; et al. Single-Cell Analysis Reveals Effective SiRNA Delivery in Brain Tumors with Microbubble-Enhanced Ultrasound and Cationic Nanoparticles. Sci. Adv. 2021, 7, eabf7390. [Google Scholar] [CrossRef] [PubMed]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.T.; Nguyen, T.N.Q.; Cao, V.D.; Hoang, D.T.; Ngo, V.C.; Thi, T.T.H. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019, 11, 591. [Google Scholar] [CrossRef]
- Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv. Sci. 2021, 8, 2003937. [Google Scholar] [CrossRef]
- Wu, Y.; Angelova, A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. Nanomaterials 2023, 13, 3004. [Google Scholar] [CrossRef]
- Han, E.L.; Tang, S.; Kim, D.; Murray, A.M.; Swingle, K.L.; Hamilton, A.G.; Mrksich, K.; Padilla, M.S.; Palanki, R.; Li, J.J.; et al. Peptide-Functionalized Lipid Nanoparticles for Targeted Systemic MRNA Delivery to the Brain. Nano Lett. 2024, 25, 800–810. [Google Scholar] [CrossRef]
- Zarrabi, A.; Zarepour, A.; Khosravi, A.; Alimohammadi, Z.; Thakur, V.K.; Zarrabi, A.; Zarepour, A.; Khosravi, A.; Alimohammadi, Z.; Bhattarai, N. Synthesis of Curcumin Loaded Smart PH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. Fibers 2021, 9, 19. [Google Scholar] [CrossRef]
- Yan, W.; Leung, S.S.Y.; To, K.K.W. Updates on The Use of Liposomes for Active Tumor Targeting in Cancer Therapy. Nanomedicine 2020, 15, 303–318. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K. Stimuli-Responsive Smart Liposomes in Cancer Targeting. Curr. Drug Targets 2018, 19, 259–270. [Google Scholar] [CrossRef]
- Witika, B.A.; Bassey, K.E.; Demana, P.H.; Siwe-Noundou, X.; Poka, M.S. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int. J. Mol. Sci. 2022, 23, 9668. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Khan, R.A.; Singh, V.; Yusuf, M.; Akhtar, N.; Sulaiman, G.M.; Albukhaty, S.; Abdellatif, A.A.H.; Khan, M.; Mohammed, S.A.A.; et al. Solid Lipid Nanoparticles for Targeted Natural and Synthetic Drugs Delivery in High-Incidence Cancers, and Other Diseases: Roles of Preparation Methods, Lipid Composition, Transitional Stability, and Release Profiles in Nanocarriers’ Development. Nanotechnol. Rev. 2023, 12, 20220517. [Google Scholar] [CrossRef]
- Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as Pharmaceutical Carrier for Dermal and Transdermal Drug Delivery: Formulation Development, Stability Issues, Basic Considerations and Applications. J. Control. Release 2018, 270, 203–225. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Hasannejad-Asl, B.; Pooresmaeil, F.; Choupani, E.; Dabiri, M.; Behmardi, A.; Fadaie, M.; Fathi, M.; Moosavi, S.A.; Takamoli, S.; Hemati, E.; et al. Nanoparticles as Powerful Tools for Crossing the Blood-Brain Barrier. CNS Neurol. Disord. Drug Targets 2023, 22, 18–26. [Google Scholar] [CrossRef]
- Al Tamimi, S.; Ashraf, S.; Abdulrehman, T.; Parray, A.; Mansour, S.A.; Haik, Y.; Qadri, S. Synthesis and Analysis of Silver–Copper Alloy Nanoparticles of Different Ratios Manifest Anticancer Activity in Breast Cancer Cells. Cancer Nanotechnol. 2020, 11, 13. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2020, 20, 101–124. [Google Scholar] [CrossRef]
- Grauer, O.; Jaber, M.; Hess, K.; Weckesser, M.; Schwindt, W.; Maring, S.; Wölfer, J.; Stummer, W. Combined Intracavitary Thermotherapy with Iron Oxide Nanoparticles and Radiotherapy as Local Treatment Modality in Recurrent Glioblastoma Patients. J. Neurooncol. 2019, 141, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Shyu, M.K.; Jhan, C.; Cheng, Y.W.; Tsai, C.H.; Liu, C.W.; Lee, C.C.; Chen, R.M.; Kang, J.J. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice. Toxicol. Sci. 2015, 148, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qian, W.; Scott, P.; Shao, X. Towards the Development of Brain-Penetrating Gold Nanoparticle-Transactivator of Transcription (TAT) Peptide Conjugates. J. Nucl. Med. 2018, 59, 1034. [Google Scholar]
- Jensen, S.A.; Day, E.S.; Ko, C.H.; Hurley, L.A.; Luciano, J.P.; Kouri, F.M.; Merkel, T.J.; Luthi, A.C.; Patel, P.C.; Cutler, J.I.; et al. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, Q.; Morshed, R.A.; Fan, X.; Wegscheid, M.L.; Wainwright, D.A.; Han, Y.; Zhang, L.; Auffinger, B.; Tobias, A.L.; et al. Blood-Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging. Small 2014, 10, 5137–5150. [Google Scholar] [CrossRef]
- Li, S.; Amat, D.; Peng, Z.; Vanni, S.; Raskin, S.; De Angulo, G.; Othman, A.M.; Graham, R.M.; Leblanc, R.M. Transferrin Conjugated Nontoxic Carbon Dots for Doxorubicin Delivery to Target Pediatric Brain Tumor Cells. Nanoscale 2016, 8, 16662–16669. [Google Scholar] [CrossRef]
- Zhang, M.; Bishop, B.P.; Thompson, N.L.; Hildahl, K.; Dang, B.; Mironchuk, O.; Chen, N.; Aoki, R.; Holmberg, V.C.; Nance, E. Quantum Dot Cellular Uptake and Toxicity in the Developing Brain: Implications for Use as Imaging Probes. Nanoscale Adv. 2019, 1, 3424–3442. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Chen, J.; Wu, B.; Chen, H.; Jiang, X. Quantum Dots Bearing Lectin-Functionalized Nanoparticles as a Platform for in Vivo Brain Imaging. Bioconjug Chem. 2008, 19, 2189–2195. [Google Scholar] [CrossRef]
- Mansur, A.A.P.; Caires, A.J.; Carvalho, S.M.; Capanema, N.S.V.; Carvalho, I.C.; Mansur, H.S. Dual-Functional Supramolecular Nanohybrids of Quantum Dot/Biopolymer/Chemotherapeutic Drug for Bioimaging and Killing Brain Cancer Cells in Vitro. Colloids Surf. B Biointerfaces 2019, 184, 110507. [Google Scholar] [CrossRef]
- Seven, E.S.; Seven, Y.B.; Zhou, Y.; Poudel-Sharma, S.; Diaz-Rucco, J.J.; Kirbas Cilingir, E.; Mitchell, G.S.; David, J.; Dyken, V.; Leblanc, R.M. Crossing the Blood–Brain Barrier with Carbon Dots: Uptake Mechanism and in Vivo Cargo Delivery. Nanoscale Adv. 2021, 3, 3942–3953. [Google Scholar] [CrossRef]
- Utkin, Y.N. Brain and Quantum Dots: Benefits of Nanotechnology for Healthy and Diseased Brain. Cent. Nerv. Syst. Agents Med. Chem. 2018, 18, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Stawicki, B.; Schacher, T.; Cho, H. Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.; Miranda, A.; Nunes, S.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018, 4, 62. [Google Scholar] [CrossRef]
- Turabee, M.H.; Jeong, T.H.; Ramalingam, P.; Kang, J.H.; Ko, Y.T. N,N,N-Trimethyl Chitosan Embedded in Situ Pluronic F127 Hydrogel for the Treatment of Brain Tumor. Carbohydr. Polym. 2019, 203, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, K.B.; Burkhart, A.; Thomsen, L.B.; Andresen, T.L.; Moos, T. Targeting the Transferrin Receptor for Brain Drug Delivery. Prog. Neurobiol. 2019, 181, 101665. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Alov, P.; Stoimenov, H.; Lessigiarska, I.; Pencheva, T.; Tzvetkov, N.T.; Pajeva, I.; Tsakovska, I. In Silico Identification of Multi-Target Ligands as Promising Hit Compounds for Neurodegenerative Diseases Drug Development. Int. J. Mol. Sci. 2022, 23, 13650. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, J.; Ahn, B.; Han, J.; Lim, M.H. Multi-Target-Directed Therapeutic Strategies for Alzheimer’s Disease: Controlling Amyloid-β Aggregation, Metal Ion Homeostasis, and Enzyme Inhibition. Chem. Sci. 2025, 16, 2105. [Google Scholar] [CrossRef]
- İş, Ö.; Min, Y.; Wang, X.; Oatman, S.R.; Abraham Daniel, A.; Ertekin-Taner, N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer’s Disease: A Systematic Review and Future Prospects. Glia 2024, 73, 539–573. [Google Scholar] [CrossRef]
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Guerrero, A.; Pallàs, M. Advancing Personalized Medicine in Neurodegenerative Diseases: The Role of Epigenetics and Pharmacoepigenomics in Pharmacotherapy. Pharmacol. Res. 2024, 205, 107247. [Google Scholar] [CrossRef]
- De Plano, L.M.; Saitta, A.; Oddo, S.; Caccamo, A. Epigenetic Changes in Alzheimer’s Disease: DNA Methylation and Histone Modification. Cells 2024, 13, 719. [Google Scholar] [CrossRef] [PubMed]
- van Zundert, B.; Montecino, M. Epigenetics in Neurodegenerative Diseases. Subcell. Biochem. 2025, 108, 73–109. [Google Scholar] [CrossRef] [PubMed]
- Rabaneda-Bueno, R.; Mena-Montes, B.; Torres-Castro, S.; Torres-Carrillo, N.; Torres-Carrillo, N.M. Advances in Genetics and Epigenetic Alterations in Alzheimer’s Disease: A Notion for Therapeutic Treatment. Genes 2021, 12, 1959. [Google Scholar] [CrossRef]
- Ruan, T.; Ling, Y.; Wu, C.; Niu, Y.; Liu, G.; Xu, C.; Lv, Z.; Yuan, Y.; Zhou, X.; Wang, Q.; et al. Abnormal Epigenetic Modification of Lysosome and Lipid Regulating Genes in Alzheimer’s Disease. J. Alzheimer’s Dis. 2025, 104, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Schueller, E.; Paiva, I.; Blanc, F.; Wang, X.L.; Cassel, J.C.; Boutillier, A.L.; Bousiges, O. Dysregulation of Histone Acetylation Pathways in Hippocampus and Frontal Cortex of Alzheimer’s Disease Patients. Eur. Neuropsychopharmacol. 2020, 33, 101–116. [Google Scholar] [CrossRef]
- De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; et al. Alzheimer’s Disease: Early Alterations in Brain DNA Methylation at ANK1, BIN1, RHBDF2 and Other Loci. Nat. Neurosci. 2014, 17, 1156–1163. [Google Scholar] [CrossRef]
- Lunnon, K.; Smith, R.; Hannon, E.; De Jager, P.L.; Srivastava, G.; Volta, M.; Troakes, C.; Al-Sarraj, S.; Burrage, J.; Macdonald, R.; et al. Methylomic Profiling Implicates Cortical Deregulation of ANK1 in Alzheimer’s Disease. Nat. Neurosci. 2014, 17, 1164–1170. [Google Scholar] [CrossRef]
- Smith, A.R.; Smith, R.G.; Macdonald, R.; Marzi, S.J.; Burrage, J.; Troakes, C.; Al-Sarraj, S.; Mill, J.; Lunnon, K. The Histone Modification H3K4me3 Is Altered at the ANK1 Locus in Alzheimer’s Disease Brain. Future Sci. OA 2021, 7, FSO665. [Google Scholar] [CrossRef]
- Wang, H.; Helin, K. Roles of H3K4 Methylation in Biology and Disease. Trends Cell Biol. 2024, 35, 115–128. [Google Scholar] [CrossRef]
- Sung, Y.M.; Lee, T.; Yoon, H.; DiBattista, A.M.; Song, J.M.; Sohn, Y.; Moffat, E.I.; Turner, R.S.; Jung, M.; Kim, J.; et al. Mercaptoacetamide-Based Class II HDAC Inhibitor Lowers Aβ Levels and Improves Learning and Memory in a Mouse Model of Alzheimer’s Disease. Exp. Neurol. 2013, 239, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.C.; Hsu, W.L.; Ma, Y.L.; Cheng, S.J.; Lee, E.H. Epigenetic Regulation of HDAC1 SUMOylation as an Endogenous Neuroprotection against Aβ Toxicity in a Mouse Model of Alzheimer’s Disease. Cell Death Differ. 2017, 24, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Pulya, S.; Mahale, A.; Bobde, Y.; Routholla, G.; Patel, T.; Swati; Biswas, S.; Sharma, V.; Kulkarni, O.P.; Ghosh, B. PT3: A Novel Benzamide Class Histone Deacetylase 3 Inhibitor Improves Learning and Memory in Novel Object Recognition Mouse Model. ACS Chem. Neurosci. 2021, 12, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.M.; Farinelli-Scharly, M.; Hugues-Ascery, S.; Sanchez-Mut, J.V.; Santoni, G.; Gräff, J. The HDAC Inhibitor CI-994 Acts as a Molecular Memory Aid by Facilitating Synaptic and Intracellular Communication after Learning. Proc. Natl. Acad. Sci. USA 2022, 119, e2116797119. [Google Scholar] [CrossRef]
- Cao, T.; Zhou, X.; Zheng, X.; Cui, Y.; Tsien, J.Z.; Li, C.; Wang, H. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice. Front. Aging Neurosci. 2018, 10, 137. [Google Scholar] [CrossRef]
- Li, Y.; Sang, S.; Ren, W.; Pei, Y.; Bian, Y.; Chen, Y.; Sun, H. Inhibition of Histone Deacetylase 6 (HDAC6) as a Therapeutic Strategy for Alzheimer’s Disease: A Review (2010–2020). Eur. J. Med. Chem. 2021, 226, 113874. [Google Scholar] [CrossRef] [PubMed]
- Hempen, B.; Brion, J.P. Reduction of Acetylated α-Tubulin Immunoreactivity in Neurofibrillary Tangle-Bearing Neurons in Alzheimer’s Disease. J. Neuropathol. Exp. Neurol. 1996, 55, 964–972. [Google Scholar] [CrossRef]
- Govindarajan, N.; Rao, P.; Burkhardt, S.; Sananbenesi, F.; Schlüter, O.M.; Bradke, F.; Lu, J.; Fischer, A. Reducing HDAC6 Ameliorates Cognitive Deficits in a Mouse Model for Alzheimer’s Disease. EMBO Mol. Med. 2013, 5, 52–63. [Google Scholar] [CrossRef]
- Trzeciakiewicz, H.; Ajit, D.; Tseng, J.H.; Chen, Y.; Ajit, A.; Tabassum, Z.; Lobrovich, R.; Peterson, C.; Riddick, N.V.; Itano, M.S.; et al. An HDAC6-Dependent Surveillance Mechanism Suppresses Tau-Mediated Neurodegeneration and Cognitive Decline. Nat. Commun. 2020, 11, 5522. [Google Scholar] [CrossRef]
- Cheng, K.C.; Hwang, Y.L.; Chiang, H.C. The Double-Edged Sword Effect of HDAC6 in Aβ Toxicities. FASEB J. 2022, 36, e22072. [Google Scholar] [CrossRef]
- Arnold, S.E.; Hendrix, S.; Nicodemus-Johnson, J.; Knowlton, N.; Williams, V.J.; Burns, J.M.; Crane, M.; McManus, A.J.; Vaishnavi, S.N.; Arvanitakis, Z.; et al. Biological Effects of Sodium Phenylbutyrate and Taurursodiol in Alzheimer’s Disease. Alzheimer’s Dement 2024, 10, e12487. [Google Scholar] [CrossRef]
- Khalaf, K.; Tornese, P.; Cocco, A.; Albanese, A. Tauroursodeoxycholic Acid: A Potential Therapeutic Tool in Neurodegenerative Diseases. Transl. Neurodegener. 2022, 11, 33. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Li, S.; Fan, J.; Zhou, F.; Li, X.; Li, S.; Li, Y. Enhancing Rab7 Activity by Inhibiting TBC1D5 Expression Improves Mitophagy in Alzheimer’s Disease Models. J. Alzheimer’s Dis. 2024, 100, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zou, Y.; Wu, W.; Jiang, W.; Zhang, X.; Song, S.; Yao, Z. TBC1D15 Inhibits Autophagy of Microglia through Maintaining the Damaged Swelling Lysosome in Alzheimer’s Disease. Aging Dis. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, M.; Narasimhappagari, J.; Liu, L.; Ganne, A.; Ayyadevara, S.; Atluri, R.; Ayyadevara, H.; Caldwell, G.; Reis, R.J.S.; Barger, S.W.; et al. Rescue of ApoE4-Related Lysosomal Autophagic Failure in Alzheimer’s Disease by Targeted Small Molecules. Commun. Biol. 2024, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Painter, M.M.; Bu, G.; Kanekiyo, T. Apolipoprotein E as a Therapeutic Target in Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016, 30, 773–789. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s Disease: Advances in Genetics, Pathophysiology, and Therapeutic Approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Gratuze, M.; Jiang, H.; Wang, C.; Xiong, M.; Bao, X.; Holtzman, D.M. APOE Antibody Inhibits Aβ-Associated Tau Seeding and Spreading in a Mouse Model. Ann. Neurol. 2022, 91, 847–852. [Google Scholar] [CrossRef]
- Xiong, M.; Jiang, H.; Serrano, J.R.; Gonzales, E.R.; Wang, C.; Gratuze, M.; Hoyle, R.; Bien-Ly, N.; Silverman, A.P.; Sullivan, P.M.; et al. APOE Immunotherapy Reduces Cerebral Amyloid Angiopathy and Amyloid Plaques While Improving Cerebrovascular Function. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Rahimi, A.; Sameei, P.; Mousavi, S.; Ghaderi, K.; Hassani, A.; Hassani, S.; Alipour, S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer’s Disease and Neurodegenerative Diseases. Mol. Neurobiol. 2024, 61, 9416–9431. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, K.; Amirfazli, M.; Moghimi, P.; Safari, F.; Takhshid, M.A. The Role of Neuron-like Cell Lines and Primary Neuron Cell Models in Unraveling the Complexity of Neurodegenerative Diseases: A Comprehensive Review. Mol. Biol. Rep. 2024, 51, 1024. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Kong, F.; Ding, J.; Chen, C.; He, F.; Deng, W. Promoting Alzheimer’s Disease Research and Therapy with Stem Cell Technology. Stem Cell Res. Ther. 2024, 15, 136. [Google Scholar] [CrossRef]
- Penney, J.; Ralvenius, W.T.; Tsai, L.H. Modeling Alzheimer’s Disease with IPSC-Derived Brain Cells. Mol. Psychiatry 2019, 25, 148–167. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, Z.T.; Sun, Y.; Tan, L.; Yu, J.T. The Future of Stem Cell Therapies of Alzheimer’s Disease. Ageing Res. Rev. 2022, 80, 101655. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, X.; Wang, Z.; Meek, C.J.; McLean, J.L.; Yang, Y.; Yuan, C.; Rochet, J.C.; Liu, F.; Xu, R. Alzheimer’s Disease Patient Brain Extracts Induce Multiple Pathologies in Novel Vascularized Neuroimmune Organoids for Disease Modeling and Drug Discovery. Mol. Psychiatry 2025, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kanupriya, K.; Pal Verma, S.; Sharma, V.; Mishra, I.; Mishra, R. Advances in Human Brain Organoids: Methodological Innovations and Future Directions for Drug Discovery. Curr. Drug Res. Rev. 2025, 17, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Kjar, A.; Haschert, M.R.; Zepeda, J.C.; Simmons, A.J.; Yates, A.; Chavarria, D.; Fernandez, M.; Robertson, G.; Abdulrahman, A.M.; Kim, H.; et al. Biofunctionalized Gelatin Hydrogels Support Development and Maturation of IPSC-Derived Cortical Organoids. Cell Rep. 2024, 43, 114874. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Morshed, N.; Sidhu, S.B.; Kinoshita, C.; Stevens, B.; Jayadev, S.; Young, J.E. The Alzheimer’s Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025, 73, 1329–1348. [Google Scholar] [CrossRef] [PubMed]
- Study Details|Stem Cell Therapy for Early Alzheimer’s Disease|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06775964?term=paul%20schulz&rank=1#study-overview (accessed on 20 May 2025).
- Regeneration Biomedical to Present Updated Phase 1 Trial. Available online: https://www.globenewswire.com/news-release/2025/05/05/3073944/0/en/Regeneration-Biomedical-to-Present-Updated-Phase-1-Trial-Data-on-Autologous-Stem-Cell-Therapy-Injected-Directly-into-the-Brain-for-Alzheimer-s-Disease-in-Podium-Presentation-at-the.html (accessed on 20 May 2025).
- Khan, M.I.; Jeong, E.S.; Khan, M.Z.; Shin, J.H.; Kim, J.D. Stem Cells-Derived Exosomes Alleviate Neurodegeneration and Alzheimer’s Pathogenesis by Ameliorating Neuroinflamation, and Regulating the Associated Molecular Pathways. Sci. Rep. 2023, 13, 15731. [Google Scholar] [CrossRef]
- Abdi, S.; Javanmehr, N.; Ghasemi-Kasman, M.; Bali, H.Y.; Pirzadeh, M. Stem Cell-Based Therapeutic and Diagnostic Approaches in Alzheimer’s Disease. Curr. Neuropharmacol. 2021, 20, 1093–1115. [Google Scholar] [CrossRef]
- Du, B.; Zou, Q.; Wang, X.; Wang, H.; Yang, X.; Wang, Q.; Wang, K. Multi-Targeted Engineered Hybrid Exosomes as Aβ Nanoscavengers and Inflammatory Modulators for Multi-Pathway Intervention in Alzheimer’s Disease. Biomaterials 2025, 322, 123403. [Google Scholar] [CrossRef]
- Sun, C.; Sha, S.; Shan, Y.; Gao, X.; Li, L.; Xing, C.; Guo, Z.; Du, H. Intranasal Delivery of BACE1 SiRNA and Berberine via Engineered Stem Cell Exosomes for the Treatment of Alzheimer’s Disease. Int. J. Nanomed. 2025, 20, 5873–5891. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, S.; Wang, T.; Zhang, G. Efficacy of Stem Cell-Derived Extracellular Vesicles in the Treatment of Alzheimer’s Disease Model Mice: A Systematic Review and Meta-Analysis. Curr. Stem Cell Res. Ther. 2025, 20, 728–747. [Google Scholar] [CrossRef]
Ref | Drug | Study Characteristics (Phase, Duration, n, Age Range) | Tools (Clinical Scales, Neuroimaging) | Biomarker Changes | Clinical/Neuropsychological Outcomes | Potential Relevance Both from Clinical and Biological Perspective |
---|---|---|---|---|---|---|
[23] | Donanemab (Amyloid-β) | Phase 3 76 w N = 1800 60–85 | Gradual and progressive change in memory; tau PET and amyloid PET | Plasma pTau217: decreased (Log10−0.2) vs. placebo | iADRS: Better score compared to placebo | Donanemab significantly slowed clinical progression at 76 weeks in those with low/medium tau and in the combined low/medium and high tau pathology group according to PET biomarkers |
[24] | Donanemab (Amyloid-β) | Phase 2 72 w N = 266 60–85 | Gradual and progressive change in memory; positive amyloid and tau PET | Decreased plasma pTau217 (Log10−0.14) and GFAP: vs. placebo PlasmaAβ42/40, NFL: NS vs. placebo | iADRS: Better score vs. to placebo ADAS-Cog13: Inconclusive CDR-SB/ADCS-iADL/MMSE: NS vs. placebo | Plasma biomarkers pTau217 and glial fibrillary acidic protein levels were lower than in the placebo following donanemab, might provide additional evidence of early symptomatic AD pathology change through anti-amyloid therapy |
[25] | Gantenerumab (Amyloid-β) | Phase 3 116 w N = 982 50–90 | CSF tau/Aβ42, amyloid PET scan | Decreased CSF tTau, pTau181, Aβ40 vs. placebo CSF Aβ42: increased compared to placebo CSF NRGN: decreased vs. placebo CSF NFL: decreased vs. placebo Plasma pTau181: decreased vs. placebo Increased plasma Aβ42 vs. placebo CSF pTau181: −23.8% Plasma pTau181: −21% | CDR-SB: NS compared to placebo ADAS-Cog13: NS compared to placebo ADCS-ADL: NS compared to placebo | Gantenerumab led to a lower amyloid plaque burden than placebo at 116 weeks without clinical improvement |
[26] | Lecanemab (Amyloid-β) | Phase 3 78 w N = 1766 50–90 | Positive biomarker amyloid | Increased CSF Aβ42: vs. placebo Decreased CSF tTau and pTau181 vs. placebo Decreased CSF NRGN vs. placebo CSF Aβ40: NS vs. placebo CSF NFL: NS vs. placebo Increased plasma Aβ42/40 vs. placebo Decreased plasma pTau181, NFL, GFAP vs. placebo CSF pTau181: ~30 pg/mL compared to placebo −16 pg/mL compared to baseline Plasma pTau181: ~0.8 pg/mL | CDR-SB: Better score vs. placebo ADAS-Co14: Better score vs. placebo ADCOMS: Better score vs. placebo ADCS_MCI-ADL: Better score vs. placebo | Lecanemab reduced markers of amyloid in early AD and lowered cognitive decline |
[27] | Efavirenz (ApoE, Lipids and Lipoprotein Receptors) | Phase 1 52 w N = 5 55–85 | MMSE CDR | Increased plasma 24-OHC vs. baseline CSF Aβ40: NS compared to baseline CSF Aβ42: NS compared to baseline CSF tTau: NS compared to baseline CSF pTau181: NS compared to baseline | MoCA: NS compared to baseline | CYP46A1 activation by low-dose efavirenz increased brain cholesterol metabolism (as measured by high HC levels) in early AD |
[28] | DNL747 (Anti-Inflammatory) | Phase 1 12 w N = 16 55–85 | CSF Ab42 Amyloid PET | Decreased plasma PBMC pRIPK1 vs. placebo | No clinical endpoints included | RIPK1 in the CNS as a potential therapeutic tool for AD |
[29] | Neflamapimod (Anti-Inflammatory) | Phase 2 24 w N = 161 55–85 | CDR, MMSE; CSF Ab1–42, p-Tau, CT, MRI compatible with AD | Decreased CSF tTau, pTau181 vs. placebo CSF NRGN: NS compared to placebo CSF NFL: NS compared to placebo CSF Aβ40: NS compared to placebo CSF Aβ42: NS compared to placebo CSF pTau181: −2.1 pg/mL | HVLT-R/WMS immediate and delayed recall/CDR-SB/MMSE: NS compared to placebo | Neflamapimod treatment lowered CSF biomarkers of synaptic dysfunction but did not improve the cognitive scores |
[30] | Gosuranemab(Anti-Tau) | Phase 2 238 w N = 654 50–80 | Positive for amyloid beta | CSF Unbound N-terminal tau: Decreased in treatment compared to placebo CSF pTau181: Decreased in high dose treatment compared to placebo CSF tTau: Decreased in treatment compared to placebo CSF Aβ42: NS compared to placebo −7.1 pg/mL compared to baseline CSF pTau181: ~−25 pg/mL compared to placebo | CDR-SB/MMSE/ADCS-ADL/FAQ: NS compared to placebo group ADAS-Cog13: Significantly worse in treatment compared to placebo | No significant effects in cognitive and functional scores but reduced levels of CSF unbound N-terminal tau in gosuranemab group |
[31] | Semorinemab(Anti-Tau) | Phase 2 72 w N = 273 50–85 | MMSE CSF Ab42 amyloid PET | Increased plasma, tTau, pTau217 vs. placebo Decreased CSF tTau, pTau217, pTau181 vs. placebo CSF N-term Tau: NS compared to placebo Plasma pTau217: ~+88 pg/mL CSF pTau217: ~−50% CSF pTau181: ~−12% | ADAS-Cog11: Better score compared to placebo ADCS-ADL/CDR-SB/MMSE: NS compared to placebo | No treatment effects on functional scales nor on amyloid biomarkers |
[32] | Tilavonemab (Anti-Tau) | Phase 2 96 w N = 453 55–85 | MMSE CDR amyloid PET | NA | Worse score from baseline up to Week 96 in the Clinical Dementia Rating–Sum of Boxes (CDR-SB) score | No efficacy in treating patients with early AD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougea, A.; Debasa-Mouce, M.; Gulkarov, S.; Castro-Mosquera, M.; Reiss, A.B.; Ouro, A. From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape. Medicina 2025, 61, 1462. https://doi.org/10.3390/medicina61081462
Bougea A, Debasa-Mouce M, Gulkarov S, Castro-Mosquera M, Reiss AB, Ouro A. From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape. Medicina. 2025; 61(8):1462. https://doi.org/10.3390/medicina61081462
Chicago/Turabian StyleBougea, Anastasia, Manuel Debasa-Mouce, Shelly Gulkarov, Mónica Castro-Mosquera, Allison B. Reiss, and Alberto Ouro. 2025. "From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape" Medicina 61, no. 8: 1462. https://doi.org/10.3390/medicina61081462
APA StyleBougea, A., Debasa-Mouce, M., Gulkarov, S., Castro-Mosquera, M., Reiss, A. B., & Ouro, A. (2025). From Better Diagnostics to Earlier Treatment: The Rapidly Evolving Alzheimer’s Disease Landscape. Medicina, 61(8), 1462. https://doi.org/10.3390/medicina61081462