Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = accumulation of toxic substances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3228 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 288
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
18 pages, 25244 KiB  
Article
The Procaine-Based ProcCluster® Impedes the Second Envelopment Process of Herpes Simplex Virus Type 1
by Johannes Jungwirth, Lisa Siegert, Lena Gauthier, Andreas Henke, Oliver H. Krämer, Beatrice Engert and Christina Ehrhardt
Int. J. Mol. Sci. 2025, 26(15), 7185; https://doi.org/10.3390/ijms26157185 - 25 Jul 2025
Viewed by 145
Abstract
Herpes simplex virus type 1 (HSV-1) has a global prevalence of 64%. Established antiviral drugs, such as acyclovir (ACV), have been successfully used over the past decades. However, due to growing viral resistance against approved antivirals and the lack of effective vaccines, new [...] Read more.
Herpes simplex virus type 1 (HSV-1) has a global prevalence of 64%. Established antiviral drugs, such as acyclovir (ACV), have been successfully used over the past decades. However, due to growing viral resistance against approved antivirals and the lack of effective vaccines, new concepts are essential to target HSV-1 infections. Here, we present data on the inhibitory effect of the procaine-based substance ProcCluster® (PC) in reducing HSV-1 replication in vitro. Non-toxic PC concentrations significantly decreased HSV-1 replication in infected cells. Immunofluorescence microscopy revealed an accumulation of viral proteins in early and recycling endosomes, resulting in reduced viral release. The combination of PC with ACV resulted in an enhanced antiviral effect. Based on these results, PC alone, as well as in combination with ACV, appears to be a promising substance with antiviral potential against HSV-1 infections. Full article
Show Figures

Graphical abstract

17 pages, 1066 KiB  
Article
Comparative Study of the Microalgae-Based Wastewater Treatment, in an Oil Refining Industry Cogeneration Concept
by Ena Pritišanac, Maja Fafanđel, Ines Haberle, Sunčana Geček, Marinko Markić, Nenad Bolf, Jela Vukadin, Goranka Crnković, Tin Klanjšček, Luka Žilić and Maria Blažina
Water 2025, 17(15), 2217; https://doi.org/10.3390/w17152217 - 24 Jul 2025
Viewed by 284
Abstract
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. [...] Read more.
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. MK568070 were examined for cultivation potential in oil refinery WW. Their performance was evaluated in terms of growth dynamics, lipid productivity, and toxicity reduction, with a focus on their suitability for largescale industrial use. N. gaditana demonstrated the highest growth rate and lipid content (37% d.w.) as well as lipid productivity (29.45 mg/(Lday)) with the N-uptake rate of 0.698 mmol/(gday). The highest specific DIN uptake rate was observed inn P. wilhelmii (0.895 mmol/(gday) along with the highest volumetric productivity (93.9 mg/L/day) and WW toxicity removal (76.5%), while Synechococcus sp. MK568070 demonstrated lower performance metrics. A simple numerical model was applied to calculate continuous operation based on empirical results of batch experiments. Sustainability of the microalgae-based WW remediation under the conditions of optimized lipid biomass production was estimated, regarding 2019–2022–2025 cost dynamics. Parameters for optimum open raceway pond cultivation were calculated, and the biomass production accumulation was estimated, with the highest biomass production noted in P. wilhelmii (171.38 t/year). Comparison of treatment costs, production costs and revenue showed that the best candidate for WW remediation is N. gaditana. Full article
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 440
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

26 pages, 1894 KiB  
Article
Illegal Waste Dumps and Water Quality: Environmental and Logistical Challenges for Sustainable Development—A Case Study of the Ružín Reservoir (Slovakia)
by Oľga Glova Végsöová and Martin Straka
Environments 2025, 12(8), 251; https://doi.org/10.3390/environments12080251 - 22 Jul 2025
Viewed by 409
Abstract
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO [...] Read more.
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO3) reaching 5.8 mg/L compared to the set limit of 2.5 mg/L and phosphorus concentrations exceeding the permissible values by a factor of five, thereby escalating the risk of eutrophication and loss of ecological stability of the aquatic ecosystem. The accumulation of heavy metals is also a problem—lead (Pb) concentrations reach up to 9.7 μg/L, which exceeds the safe limit by a factor of ten. Despite the measures implemented, such as scum barriers, there is continuous contamination of the aquatic environment, with illegal waste dumps and uncontrolled runoff of agrochemicals playing a significant role. The research results underline the critical need for a more effective environmental policy and more rigorous monitoring of toxic substances in real time. These findings highlight not only the urgency of more effective environmental policy and stricter real-time monitoring of toxic substances, but also the necessity of integrating environmental logistics into the design of sustainable solutions. Logistical approaches including the optimization of waste collection, coordination of stakeholders and creation of infrastructural conditions can significantly contribute to reducing environmental burdens and ensure the continuity of environmental management in ecologically sensitive areas. Full article
Show Figures

Figure 1

24 pages, 336 KiB  
Review
Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
by Charalampos Voros, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Charalampos Tsimpoukelis, Sofia Ivanidou, Anahit J. Stepanyan, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradi and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6604; https://doi.org/10.3390/ijms26146604 - 10 Jul 2025
Viewed by 494
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial concerns regarding their impact on female reproductive health. Epidemiological studies have demonstrated associations between PFAS exposure and reduced fertility; nevertheless, the underlying molecular pathways remain inadequately understood. This narrative review investigates the multifaceted effects of PFASs on ovarian physiology, including its disruption of the hypothalamic–pituitary–ovarian (HPO) axis, alteration of anti-Müllerian hormone (AMH) levels, folliculogenesis, and gonadotropin receptor signalling. Significant attention is directed towards the emerging association between PFASs and polycystic ovarian syndrome (PCOS), wherein PFAS-induced hormonal disruption may exacerbate metabolic issues and elevated androgen levels. Furthermore, we analyse the current data regarding PFAS exposure in women undergoing treatment based on assisted reproductive technologies (ARTs), specifically in vitro fertilisation (IVF), highlighting possible associations with diminished oocyte quality, suboptimal embryo development, and implantation failure. We examine potential epigenetic and transgenerational alterations that may influence women’s reproductive capabilities over time. This study underscores the urgent need for further research and regulatory actions to tackle PFAS-related reproductive toxicity, particularly in vulnerable populations, such as women of reproductive age and those receiving fertility treatments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
30 pages, 3838 KiB  
Article
Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers
by Wojciech Flieger, Przemysław Niedzielski, Zofia Wojciechowska, Aleksandra Proch, Jędrzej Proch, Alicja Forma, Andrzej Torbicz, Dariusz Majerek, Grzegorz Teresiński, Jacek Baj, Ryszard Maciejewski and Jolanta Flieger
Int. J. Mol. Sci. 2025, 26(13), 6368; https://doi.org/10.3390/ijms26136368 - 2 Jul 2025
Viewed by 351
Abstract
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the [...] Read more.
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the lungs, and the liver in smokers (n = 11) and non-smokers (n = 17). Elemental composition was determined by ICP-MS after wet digestion in a microwave system. The following toxic elements were detected at levels of µg/g w.w.: Al, Cd, Pb, Ba, As, Ni, and Tl. Significantly higher concentrations of Al were detected in bronchial and lung, and more Pb, Tl, and rare earth elements were detected in the liver of smokers compared to non-smokers. In addition, smokers had significantly lower concentrations of essential elements involved in antioxidant defense, such as Cu, in liver tissue (p = 0.033). The brain and spinal cord in smokers and non-smokers were similar in terms of chemical composition, except the insula, where smokers had greater Al accumulation (p = 0.030), the precentral gyrus, where higher amounts of As, Cd, and Mn were detected, and the septal nucleus accumbens, which preferentially accumulated Cd in smokers; however, the p-values indicate that these differences were not statistically significant. Most brain areas of smokers were characterized by higher Na content (p < 0.05). These findings prove the long-term effects of smoking, demonstrating the bioaccumulation of toxic elements, the increased levels of rare earth elements in the liver, decreased levels of elements involved in the body’s antioxidant defense, and disruption of sodium homeostasis in the brain of smokers. Full article
Show Figures

Figure 1

19 pages, 3491 KiB  
Article
Study on Toxic Substances in Astragalus adsurgens Infected with Alternaria gansuense
by Huaqi Liu and Yanzhong Li
Agriculture 2025, 15(13), 1401; https://doi.org/10.3390/agriculture15131401 - 29 Jun 2025
Viewed by 308
Abstract
Yellow stunt and root rot causes premature degradation of Astragalus adsurgens grasslands in China. However, the etiological factors underlying livestock poisoning following the ingestion of diseased plants remain elusive. The present study aimed to comprehensively characterize the alterations in toxic substances such as [...] Read more.
Yellow stunt and root rot causes premature degradation of Astragalus adsurgens grasslands in China. However, the etiological factors underlying livestock poisoning following the ingestion of diseased plants remain elusive. The present study aimed to comprehensively characterize the alterations in toxic substances such as swainsonine and trace element profiles in A. adsurgens after infection with Alternaria gansuense, thereby elucidating the underlying mechanisms of livestock toxicity. Using ELISA and regression analyses, we found that diseased plants had higher selenium levels than the healthy ones, with varietal differences. Selenium in the Zahua variety was higher in healthy plants, while diseased plants of the Henan variety had the highest levels. Moreover, the diseased plants demonstrated decreased levels of iron, zinc, sodium, and magnesium, while manganese and calcium concentrations remained unchanged. Swainsonine was detected in both the healthy and infected specimens of Zhongsha No.1 and Henan varieties, with a marked post-infection increase. In conclusion, swainsonine is the primary toxin causing livestock poisoning, and it is unlikely that soil-accumulated selenium poisons animals. However, potential correlations might exist among the contents of selenium, sodium, and swainsonine. We recommend the cautious use of diseased A. adsurgens as livestock feed. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

20 pages, 5010 KiB  
Article
Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials
by Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Albena Bachvarova-Nedelcheva, Yoanna Kostova, Stela Atanasova-Vladimirova, Elena Nenova, Iliana Ivanova, Lyubomira Yocheva and Elitsa Pavlova
Pharmaceuticals 2025, 18(7), 976; https://doi.org/10.3390/ph18070976 - 28 Jun 2025
Viewed by 438
Abstract
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples [...] Read more.
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples were denoted as Si/Cu (gel) and Si/Cu/500 (500 °C heat-treated). Their phase formation and morphology were studied by XRD and SEM. The antibacterial activity was tested by two Gram-positive bacteria, three Gram-negative bacteria, and two types of eukaryotic species. Most bacteria were more sensitive to Si/Cu/500 materials than to Si/Cu (gel). The yeasts were more sensitive to Si/Cu (gel). The new nanomaterials were tested for oxidant activity at pH 7.4 (physiological) and pH 8.5 (optimal) in three model systems by the chemiluminescent method. They significantly inhibited the generation of free radicals and ROS. This result underlines their potential as regulators of the free radical processes in living systems. The epithelial tumor cell lines appeared more sensitive than the non-transformed fibroblasts, likely due to their metabolic activity and proliferation rates, leading to greater accumulation of the substances. Using Daphnia magna, the ecotoxicity study showed that the LC50 was reached at 1 mg/L of Si/Cu/500. Si/Cu (gel) was more toxic. Conclusions: Our results reveal the potential of these nanohybrids to be applied in living, eukaryotic systems. The cytotoxicity evaluation showed higher tolerance of normal, non-transformed cells, in concurrence with the oxidation tests. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

15 pages, 1499 KiB  
Article
Effects of Diet on Mercury Bioaccumulation in Farmed Gilthead Seabream (Sparus aurata)
by Antonio Bellante, Maria Bonsignore, Giulia Maricchiolo, Martina Meola, Simone Mirto, Grazia Marina Quero, Enza Maria Quinci, Vincenzo Tancredi and Mario Sprovieri
Appl. Sci. 2025, 15(13), 7151; https://doi.org/10.3390/app15137151 - 25 Jun 2025
Viewed by 311
Abstract
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing [...] Read more.
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing metal accumulation in tissues. This study evaluates, for the first time, the effect of nutraceutical substances on bioaccumulation mechanisms of mercury (Hg) in tissues and organs of farmed gilthead seabream (Sparus aurata) by mesocosm experimentation. The kinetics of bioaccumulation in muscle, gills, gut, liver and kidney and the detoxification efficiency were also assessed. Fish were fed with three different diets: a commercial diet used as control (CD); a diet enriched with short chain fatty acids (SCFA) and extract of Castanea sativa (D1); a diet enriched with yeast Saccharomyces cerevisiae and extract of Schinopsis balansae (D2). All groups were exposed to sub-lethal concentrations of mercury. After 20 days of exposure, mercury levels in different organs and tissues clearly revealed the effectiveness of yeast and plant extracts in limiting the metal bioaccumulation in fish fed with D2 through mercury absorption and then elimination by feces. In contrast, the D1 seems to not reduce the Hg bioaccumulation in fish tissues. This can be attributed to the high affinity of SCFA for mercury, leading to the formation of organometallic compounds absorbed by the fish tissues. This mechanism potentially counteracts the efficiency of tannins contained in the extract plant on mercury removal. This study clearly demonstrates that the use of diets enriched with yeast and/or plant extracts rich in tannins are a useful bioremediation strategy to reduce trace metals bioaccumulation in farmed fish, thus preserving their health status from intoxication, their commercial values, and consequently the health of consumers. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

18 pages, 1896 KiB  
Review
Fashion to Dysfunction: The Role of Plastic Pollution in Interconnected Systems of the Environment and Human Health
by Adelaide Parks Lovett, Leslie Browning-Samoni and Charles Freeman
Textiles 2025, 5(2), 21; https://doi.org/10.3390/textiles5020021 - 10 Jun 2025
Viewed by 1189
Abstract
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called [...] Read more.
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called microplastics, and anthropogenic microfibers (MFs) which degrade into nanoplastics (NPs) through mechanical stress, heat, and UV radiation. These particles bypass wastewater treatment and accumulate in human organs, including the liver, lungs, and brain. This review highlights the limitations of current waste management systems, the role of textile design in particle release, and the need for further research on airborne emissions and environmental interactions. Mitigating textile-derived plastic pollution will require biodegradable finishes, pre-consumer filtration systems, and circular consumption models supported by interdisciplinary collaboration. Full article
Show Figures

Figure 1

19 pages, 3090 KiB  
Article
Effect of Forest Species Canopy on the Accumulation of Toxic Metals in the Soil Within and Around Macedonia Airport, Northern Greece
by Ioannis Mousios, Marianthi Tsakaldimi, Evangelia Gkini, Theocharis Chatzistathis and Petros Ganatsas
Urban Sci. 2025, 9(6), 191; https://doi.org/10.3390/urbansci9060191 - 27 May 2025
Viewed by 598
Abstract
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and [...] Read more.
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and lubricants, as well as waste from aircraft and ground vehicles. These substances often seep into the soil, leading to the accumulation of toxic elements. However, due to security reasons, there is a great scarcity of real data on the impact of airport operations on ecosystems and the role trees could play in pollutant limitation. Thus, the aim of this study was to determine whether airport operations have toxic effects on soils within and around Macedonia Airport, Thessaloniki, Northern Greece, by determining the concentrations of potentially toxic elements (Cu, Ni, Pb, Mn, Fe, Co, Cr, Cd, and Zn) in soil samples taken within the airport and near the airport. Furthermore, this study aimed to investigate the effect of the canopies of forest species on the accumulation of toxic metals in the soil inside the airport and in the peripheral zone. The results show that, overall, no important pollution was detected in the soil of the Thessaloniki Airport, Northern Greece, both inside and outside the airport area. Some differences were observed in the content of toxic metals studied between the samples taken inside and outside the airport, and some effects of tree canopy were noted. However, all values were lower than the defined permissible limits according to international standards (except for iron). It is important, however, to perform regular re-checking of soil quality with new samples in order to prevent soil contamination and mitigate any contamination found. Full article
Show Figures

Figure 1

28 pages, 4148 KiB  
Article
Energy Potential of Zea mays Grown in Cadmium-Contaminated Soil
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Energies 2025, 18(9), 2402; https://doi.org/10.3390/en18092402 - 7 May 2025
Viewed by 432
Abstract
Cadmium is a non-essential element for proper plant growth and development and is highly toxic to humans and animals, in part because it inters with calcium-dependent processes in living organisms. For this reason, a study was conducted to assess the potential for producing [...] Read more.
Cadmium is a non-essential element for proper plant growth and development and is highly toxic to humans and animals, in part because it inters with calcium-dependent processes in living organisms. For this reason, a study was conducted to assess the potential for producing maize (Zea mays) biomass in cadmium-contaminated soil for energy purposes. The energy potential of Zea mays was evaluated by determining the heat of combustion (Q), heating value (Hv), and the amount of energy produced from the biomass. Starch, compost, fermented bark, humic acids, molecular sieve, zeolite, sepiolite, expanded clay, and calcium carbonate were assessed as substances supporting biomass production from Zea mays. The accumulation and redistribution of cadmium in the plant were also investigated. The study was conducted in a vegetation hall as part of a pot experiment. Zea mays was grown in uncontaminated soil and in soil contaminated with 15 mg Cd2+ kg−1. A strong toxic effect of cadmium on the cultivated plants was observed, causing a 62% reduction in the biomass of aerial parts and 61% in the roots. However, it did not alter the heat of combustion and heating value of the aerial part biomass, which were 18.55 and 14.98 MJ kg−1 d.m., respectively. Of the nine substances tested to support biomass production, only four (molecular sieve, compost, HumiAgra, and expanded clay) increased the yield of Zea mays grown in cadmium-contaminated soil. The molecular sieve increased aerial part biomass production by 74%, compost by 67%, expanded clay by 19%, and HumiAgra by 15%, but none of these substances completely eliminated the toxic effects of cadmium on the plant. At the same time, the bioaccumulation factor (BAF) of cadmium was higher in the roots (0.21–0.23) than in the aerial parts (0.04–0.03), with the roots showing greater bioaccumulation. Full article
Show Figures

Figure 1

12 pages, 1695 KiB  
Communication
Mercury Bioaccumulation in Female Breast Cancer Is Associated to CXCR4 Expression
by Francesca Servadei, Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Erica Giacobbi, Maria Paola Scioli, Valeria Palumbo, Claudio Oreste Buonomo, Gerry Melino, Alessandro Mauriello and Manuel Scimeca
Int. J. Mol. Sci. 2025, 26(9), 4427; https://doi.org/10.3390/ijms26094427 - 7 May 2025
Viewed by 646
Abstract
The growing incidence of breast cancer over time suggests that environmental factors might contribute to the underlying causes of the disease. Mercury, a toxic metal classified as a Substance of Very High Concern, accumulates in the body through contaminated food, air, water, and [...] Read more.
The growing incidence of breast cancer over time suggests that environmental factors might contribute to the underlying causes of the disease. Mercury, a toxic metal classified as a Substance of Very High Concern, accumulates in the body through contaminated food, air, water, and soil, raising concerns about its role in tumor biology. The main aim of this study was to identify the possible associations between in situ mercury bioaccumulation and the molecular features of breast cancer. To achieve this, a total of 26 breast cancer cases were analyzed using an integrated approach that combined DNA and RNA sequencing, histological analysis, and inductively coupled plasma mass spectrometry (ICP-MS) to assess mercury bioaccumulation. Mercury was detected in 72% of the cases. A significant positive correlation was found between mercury bioaccumulation and CXCR4 expression in breast cancer tissues. Bioinformatic analysis further revealed that CXCR4 expression was significantly higher in metastatic tissues compared to primary tumors. These findings suggest that mercury accumulation may influence tumor biology through the CXCR4-CXCL12 signaling pathway, highlighting a potential mechanism by which mercury contributes to breast cancer progression. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 2657 KiB  
Review
Exploring the Classic and Novel Pathogenetic Insights of Plastic Exposure in the Genesis and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Mario Romeo, Marcello Dallio, Fiammetta Di Nardo, Giuseppina Martinelli, Claudio Basile, Alessia Silvestrin, Giusy Senese, Annachiara Coppola, Carmine Napolitano, Angela Amoresano, Carlo Altucci and Alessandro Federico
Livers 2025, 5(2), 21; https://doi.org/10.3390/livers5020021 - 2 May 2025
Viewed by 1434
Abstract
The term “plastics” is an umbrella term generally referring to any material containing a high level of polymer content as an essential ingredient. Micro(nano)plastics (MNPs) are derived from the degradation of plastics, representing exogenous substances whose exposure can potentially interfere with different physiological [...] Read more.
The term “plastics” is an umbrella term generally referring to any material containing a high level of polymer content as an essential ingredient. Micro(nano)plastics (MNPs) are derived from the degradation of plastics, representing exogenous substances whose exposure can potentially interfere with different physiological processes. In this scenario, even considering the relative paramount detoxification role, the liver emerges as a key active organ in the relationship between plastic exposure and human disease. In industrialized countries, where plastics constitute largely diffused components of objects routinely adopted in daily/social life, including food packaging, Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) represents the predominant hepatopathy and is progressively becoming the leading cause of cirrhosis and liver cancer, with an incompletely elucidated multifactorial pathogenesis. Notably, oral exposure to MNPs has been revealed to impact the gut–liver axis by influencing gut microbiota composition, gastrointestinal absorption, and, ultimately, determining hepatic accumulation. At the hepatic level, MNPs can contribute to the onset and worsening of steatosis by inducing metabolic dysfunction and inflammation. Plastics can also serve as vectors for different potentially toxic additives, with specific MNPs constituting a persistent source of release of bisphenol A (BPA), a well-recognized exogenous etiological factor contributing to MASLD genesis and worsening. Recently, exposure to MNPs and additives has demonstrated significant impacts on the immune system, oxidative stress, and metabolism. In particular, polystyrene-derived MNPs impair the mechanisms regulating hepatic lipid metabolism, simultaneously acting as antigens abnormally triggering the innate immune response. At the same time, environmental BPA exposure has been revealed to trigger trained immunity-related pathways, configuring novel pathogenetic drivers potentially promoting the progression of MASLD. The present review, after rapidly overviewing the main sources and toxicological properties of MNPs and related additives, explores plastic-related exposure’s potential implications in the genesis and progression of hepatic steatosis, highlighting the urgent need for further clarification of relative pathogenetic mechanisms. Full article
Show Figures

Figure 1

Back to TopTop