Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = acceleration noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4329 KB  
Review
Advanced Sensor Technologies in Cutting Applications: A Review
by Motaz Hassan, Roan Kirwin, Chandra Sekhar Rakurty and Ajay Mahajan
Sensors 2026, 26(3), 762; https://doi.org/10.3390/s26030762 (registering DOI) - 23 Jan 2026
Abstract
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force [...] Read more.
Advances in sensing technologies are increasingly transforming cutting operations by enabling data-driven condition monitoring, predictive maintenance, and process optimization. This review surveys recent developments in sensing modalities for cutting systems, including vibration sensors, acoustic emission sensors, optical and vision-based systems, eddy-current sensors, force sensors, and emerging hybrid/multi-modal sensing frameworks. Each sensing approach offers unique advantages in capturing mechanical, acoustic, geometric, or electromagnetic signatures related to tool wear, process instability, and fault development, while also showing modality-specific limitations such as noise sensitivity, environmental robustness, and integration complexity. Recent trends show a growing shift toward hybrid and multi-modal sensor fusion, where data from multiple sensors are combined using advanced data analytics and machine learning to improve diagnostic accuracy and reliability under changing cutting conditions. The review also discusses how artificial intelligence, Internet of Things connectivity, and edge computing enable scalable, real-time monitoring solutions, along with the challenges related to data needs, computational costs, and system integration. Future directions highlight the importance of robust fusion architectures, physics-informed and explainable models, digital twin integration, and cost-effective sensor deployment to accelerate adoption across various manufacturing environments. Overall, these advancements position advanced sensing and hybrid monitoring strategies as key drivers of intelligent, Industry 4.0-oriented cutting processes. Full article
Show Figures

Figure 1

28 pages, 9471 KB  
Article
Shaking Table Test-Based Verification of PDEM for Random Seismic Response of Anchored Rock Slopes
by Xuegang Pan, Jinqing Jia and Lihua Zhang
Appl. Sci. 2026, 16(2), 1146; https://doi.org/10.3390/app16021146 - 22 Jan 2026
Abstract
This study systematically verified the applicability and accuracy of the Probability Density Evolution Method (PDEM) in the probabilistic modeling of the dynamic response of anchored rock slopes under random seismic action through large-scale shaking table model tests. Across 144 sets of non-stationary random [...] Read more.
This study systematically verified the applicability and accuracy of the Probability Density Evolution Method (PDEM) in the probabilistic modeling of the dynamic response of anchored rock slopes under random seismic action through large-scale shaking table model tests. Across 144 sets of non-stationary random ground motions and 7 sets of white noise excitations, key response data such as acceleration, displacement, and changes in anchor axial force were collected. The PDEM was used to model the instantaneous probability density function (PDF) and cumulative distribution function (CDF), which were then compared with the results of normal distribution, Gumbel distribution, and direct sample statistics from multiple dimensions. The results show that the PDEM does not require a preset distribution form and can accurately reproduce the non-Gaussian, multi-modal, and time evolution characteristics of the response; in the reliability assessment of peak responses, its prediction deviation is much smaller than that of traditional parametric models; the three-dimensional probability density evolution cloud map further reveals the law governing the entire process of the response PDF from “narrow and high” in the early stage of the earthquake, “wide and flat” in the main shock stage, to “re-convergence” after the earthquake. The study confirms that the PDEM has significant advantages and engineering application value in the analysis of random seismic responses and the dynamic reliability assessment of anchored slopes. Full article
Show Figures

Figure 1

27 pages, 5002 KB  
Article
A Robust Meta-Learning-Based Map-Matching Method for Vehicle Navigation in Complex Environments
by Fei Meng and Jiale Zhao
Symmetry 2026, 18(1), 210; https://doi.org/10.3390/sym18010210 - 22 Jan 2026
Abstract
Map matching is a fundamental technique for aligning noisy GPS trajectory data with digital road networks and constitutes a key component of Intelligent Transportation Systems (ITS) and Location-Based Services (LBS). Nevertheless, existing approaches still suffer from notable limitations in complex environments, particularly urban [...] Read more.
Map matching is a fundamental technique for aligning noisy GPS trajectory data with digital road networks and constitutes a key component of Intelligent Transportation Systems (ITS) and Location-Based Services (LBS). Nevertheless, existing approaches still suffer from notable limitations in complex environments, particularly urban and urban-like scenarios characterized by heterogeneous GPS noise and sparse observations, including inadequate adaptability to dynamically varying noise, unavoidable trade-offs between real-time efficiency and matching accuracy, and limited generalization capability across heterogeneous driving behaviors. To overcome these challenges, this paper presents a Meta-learning-driven Progressive map-Matching (MPM) method with a symmetry-aware design, which integrates a two-layer pattern-mining-based noise-robust meta-learning mechanism with a dynamic weight adjustment strategy. By explicitly modeling topological symmetry in road networks, symmetric trajectory patterns, and symmetric noise variation characteristics, the proposed method effectively enhances prior knowledge utilization, accelerates online adaptation, and achieves a more favorable balance between accuracy and computational efficiency. Extensive experiments on two real-world datasets demonstrate that MPM consistently outperforms state-of-the-art methods, achieving up to 10–15% improvement in matching accuracy while reducing online matching latency by over 30% in complex urban environments. Furthermore, the symmetry-aware design significantly improves robustness against asymmetric interference, thereby providing a reliable and scalable solution for high-precision map matching in complex and dynamic traffic environments. Full article
28 pages, 20318 KB  
Article
Hyper-ISTA-GHD: An Adaptive Hyperparameter Selection Framework for Highly Squinted Mode Sparse SAR Imaging
by Tiancheng Chen, Bailing Ding, Heli Gao, Lei Liu, Bingchen Zhang and Yirong Wu
Remote Sens. 2026, 18(2), 369; https://doi.org/10.3390/rs18020369 - 22 Jan 2026
Abstract
The highly squinted mode, as an operational configuration of synthetic aperture radar (SAR), fulfills specific remote sensing demands. Under equivalent conditions, it necessitates a higher pulse repetition frequency (PRF) than the side-looking mode but produces inferior imaging quality, thereby constraining its widespread application. [...] Read more.
The highly squinted mode, as an operational configuration of synthetic aperture radar (SAR), fulfills specific remote sensing demands. Under equivalent conditions, it necessitates a higher pulse repetition frequency (PRF) than the side-looking mode but produces inferior imaging quality, thereby constraining its widespread application. By applying the sparse SAR imaging method to highly squinted SAR systems, imaging quality can be enhanced while simultaneously reducing PRF requirements and expanding swath. Hyperparameters in sparse SAR imaging critically influence reconstruction quality and computational efficiency, making hyperparameter optimization (HPO) a persistent research focus. Inspired by HPO techniques in the deep unfolding network (DUN), we modified the iterative soft-thresholding algorithm (ISTA) employed in fast sparse SAR reconstruction based on approximate observation operators. Our adaptation enables adaptive regularization parameter tuning during iterations while accelerating convergence. To improve the robustness of this enhanced algorithm under realistic SAR echoes with noise, we integrated hypergradient descent (HD) to automatically adjust the ISTA step size after regularization parameter convergence, thereby mitigating overfitting. The proposed method, named Hyper-ISTA-GHD, adaptively selects regularization parameters and step sizes. It achieves high-precision, rapid imaging for highly squinted SAR. Owing to its training-free iterative minimization framework, this approach exhibits superior generalization capabilities compared to existing DUN methods and demonstrates broad applicability across diverse SAR imaging modes and scene characteristics. Simulations show that the hyperparameter selection and reconstruction results of the proposed method are almost consistent with the optimal values of traditional methods under different signal-to-noise ratios and sampling rates, but the time consumption is only one-tenth of that of traditional methods. Comparative experiments on the generalization performance with DUN show that the generalization performance of the proposed method is significantly better than DUN in extremely sparse scenarios. Full article
Show Figures

Figure 1

16 pages, 3906 KB  
Article
S3PM: Entropy-Regularized Path Planning for Autonomous Mobile Robots in Dense 3D Point Clouds of Unstructured Environments
by Artem Sazonov, Oleksii Kuchkin, Irina Cherepanska and Arūnas Lipnickas
Sensors 2026, 26(2), 731; https://doi.org/10.3390/s26020731 (registering DOI) - 21 Jan 2026
Viewed by 86
Abstract
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). [...] Read more.
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). These limitations seriously undermine long-term reliability and safety compliance—both essential for Industry 4.0 applications. This paper introduces S3PM, a lightweight entropy-regularized framework for simultaneous mapping and path planning that operates directly on dense 3D point clouds. Its key innovation is a dynamics-aware entropy field that fuses per-voxel occupancy probabilities with motion cues derived from residual optical flow. Each voxel is assigned a risk-weighted entropy score that accounts for both geometric uncertainty and predicted object dynamics. This representation enables (i) robust differentiation between reliable free space and ambiguous/hazardous regions, (ii) proactive collision avoidance, and (iii) real-time trajectory replanning. The resulting multi-objective cost function effectively balances path length, smoothness, safety margins, and expected information gain, while maintaining high computational efficiency through voxel hashing and incremental distance transforms. Extensive experiments in both real-world and simulated settings, conducted on a Raspberry Pi 5 (with and without the Hailo-8 NPU), show that S3PM achieves 18–27% higher IoU in static/dynamic segmentation, 0.94–0.97 AUC in motion detection, and 30–45% fewer collisions compared to OctoMap + RRT* and standard probabilistic baselines. The full pipeline runs at 12–15 Hz on the bare Pi 5 and 25–30 Hz with NPU acceleration, making S3PM highly suitable for deployment on resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing—2nd Edition)
Show Figures

Figure 1

32 pages, 1500 KB  
Article
Communication-Efficient Asynchronous Fusion for Multi-Radar Systems via State and Covariance Projection
by Wenhui Xue, Peng Chen, Chunguo Li, Zhenxin Cao and Shuqin Zhang
Electronics 2026, 15(2), 458; https://doi.org/10.3390/electronics15020458 - 21 Jan 2026
Viewed by 36
Abstract
Multi-radar systems can significantly improve tracking robustness and accuracy, but practical deployments are challenged by asynchronous sensing timestamps across distributed platforms and by limited communication bandwidth. This paper proposes a communication-efficient asynchronous track fusion framework based on state and covariance projection. Each radar [...] Read more.
Multi-radar systems can significantly improve tracking robustness and accuracy, but practical deployments are challenged by asynchronous sensing timestamps across distributed platforms and by limited communication bandwidth. This paper proposes a communication-efficient asynchronous track fusion framework based on state and covariance projection. Each radar performs local Kalman filtering and transmits only a compact track message consisting of the posterior state estimate, the associated error covariance, and a timestamp. At the fusion center, a causal reference time is chosen as the latest received timestamp, and all tracks are projected to this common time using a hybrid constant-acceleration (CA)/constant-velocity (CV) motion model with appropriately discretized process noise, followed by information-form (inverse-covariance) fusion. Under standard linear-Gaussian assumptions, the fusion rule is minimum mean square error (MMSE)-optimal when the projected estimation errors are approximately independent. We also analyze the computational complexity and the communication payload of the proposed procedure. Monte Carlo simulations with five heterogeneous radars and random inter-radar time offsets up to 37.5 ms over 100 runs show that the proposed fusion reduces the steady-state range root mean square error (RMSE) by about 66% and the radial-velocity RMSE by about 31% relative to the average single-radar tracker, while maintaining statistical consistency as verified by the normalized estimation error squared (NEES). These results indicate that projection-based track fusion provides an effective accuracy–communication trade-off for asynchronous multi-radar tracking. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Internet of Vehicles)
Show Figures

Figure 1

22 pages, 7096 KB  
Article
An Improved ORB-KNN-Ratio Test Algorithm for Robust Underwater Image Stitching on Low-Cost Robotic Platforms
by Guanhua Yi, Tianxiang Zhang, Yunfei Chen and Dapeng Yu
J. Mar. Sci. Eng. 2026, 14(2), 218; https://doi.org/10.3390/jmse14020218 - 21 Jan 2026
Viewed by 56
Abstract
Underwater optical images often exhibit severe color distortion, weak texture, and uneven illumination due to light absorption and scattering in water. These issues result in unstable feature detection and inaccurate image registration. To address these challenges, this paper proposes an underwater image stitching [...] Read more.
Underwater optical images often exhibit severe color distortion, weak texture, and uneven illumination due to light absorption and scattering in water. These issues result in unstable feature detection and inaccurate image registration. To address these challenges, this paper proposes an underwater image stitching method that integrates ORB (Oriented FAST and Rotated BRIEF) feature extraction with a fixed-ratio constraint matching strategy. First, lightweight color and contrast enhancement techniques are employed to restore color balance and improve local texture visibility. Then, ORB descriptors are extracted and matched via a KNN (K-Nearest Neighbors) nearest-neighbor search, and Lowe’s ratio test is applied to eliminate false matches caused by weak texture similarity. Finally, the geometric transformation between image frames is estimated by incorporating robust optimization, ensuring stable homography computation. Experimental results on real underwater datasets show that the proposed method significantly improves stitching continuity and structural consistency, achieving 40–120% improvements in SSIM (Structural Similarity Index) and PSNR (peak signal-to-noise ratio) over conventional Harris–ORB + KNN, SIFT (scale-invariant feature transform) + BF (brute force), SIFT + KNN, and AKAZE (accelerated KAZE) + BF methods while maintaining processing times within one second. These results indicate that the proposed method is well-suited for real-time underwater environment perception and panoramic mapping on low-cost, micro-sized underwater robotic platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 8612 KB  
Article
Multi-Objective Hierarchical Optimization for Suppressing Zero-Order Radial Force Waves and Enhancing Acoustic-Vibration Performance of Permanent Magnet Synchronous Motors
by Tianze Xu, Yanhui Zhang, Weiguang Zheng, Chengtao Zhang and Huawei Wu
Energies 2026, 19(2), 475; https://doi.org/10.3390/en19020475 - 17 Jan 2026
Viewed by 215
Abstract
To address the significant vibration and noise problems caused by the zero-order radial electromagnetic force (REF) in integer-slot permanent magnet synchronous motors (PMSMs), while simultaneously improving the motor’s overall electromagnetic performance, this paper proposes a hierarchical iterative optimization strategy integrating Taguchi methods and [...] Read more.
To address the significant vibration and noise problems caused by the zero-order radial electromagnetic force (REF) in integer-slot permanent magnet synchronous motors (PMSMs), while simultaneously improving the motor’s overall electromagnetic performance, this paper proposes a hierarchical iterative optimization strategy integrating Taguchi methods and genetic algorithms. The optimization objectives include minimizing the zero-order REF amplitude, cogging torque, and torque ripple, while maximizing the average torque, with efficiency and back electromotive force total harmonic distortion (back-EMF THD) treated as constraints. First, an 8-pole 48-slot double-layer embedded PMSM model is constructed. An innovative parameter selection strategy, combining theoretical analysis with finite-element analysis, is employed to investigate the spatial order and frequency characteristics of the electromagnetic force. Subsequently, a sensitivity analysis is performed to stratify parameters: highly sensitive parameters undergo first-round optimization via the Taguchi method, followed by second-round optimization using a multi-objective genetic algorithm. The results demonstrate significant reductions in both the zero-order REF amplitude and cogging torque. Specifically, the motor’s peak vibration acceleration is reduced by 32.96%, and the peak sound pressure level (SPL) drops by 9.036 dB. Vibration acceleration and sound pressure across all frequency bands are significantly reduced to varying extents, validating the effectiveness of the proposed optimization approach. Full article
Show Figures

Figure 1

12 pages, 2475 KB  
Proceeding Paper
Effect of Temperature Variations on Brake Squeal Characteristics in Disc Brake Systems
by Akif Yavuz, Osman Taha Sen, Mustafa Enes Kırmacı and Tolga Gündoğdu
Eng. Proc. 2026, 121(1), 11; https://doi.org/10.3390/engproc2025121011 - 13 Jan 2026
Viewed by 143
Abstract
Brake squeal is an undesirable high-frequency noise caused by vibrations induced by friction in disc brake systems. The noise is strongly affected by temperature, as this influences the material properties of the friction pair and the dynamic behaviour of the brake components. This [...] Read more.
Brake squeal is an undesirable high-frequency noise caused by vibrations induced by friction in disc brake systems. The noise is strongly affected by temperature, as this influences the material properties of the friction pair and the dynamic behaviour of the brake components. This study investigates the effect of temperature changes on the squeal characteristics of a disc brake system under different operating conditions. Experiments are carried out using a laboratory-scale test setup comprising a rotating disc, pneumatically actuated callipers, and precise measurement equipment. A series of test combinations is performed by systematically varying three parameters: disc surface temperature (40, 55, 70, 85, 100 °C), brake pressure (4.0 bar), and disc rotational speed (50, 100, 150, 200 rpm). Acceleration data are acquired using an accelerometer mounted directly on the calliper, while sound pressure data are measured with a fixed-position microphone located 0.5 m from the disc surface. The collected data are analyzed in the time and frequency domain to identify squeal events and their dominant frequencies. The effect of temperature on brake squeal noise and vibration varies with operating conditions, showing different patterns at low and high disc speed at constant brake pressure. This highlights the importance of considering both thermal and mechanical factors together when addressing brake squeal. Full article
Show Figures

Figure 1

20 pages, 17352 KB  
Article
Microwave Radar-Based Cable Displacement Measurement for Tension, Vibration, and Damping Assessment
by Guanxu Long, Gongfeng Xin, Zhiqiang Shang, Limin Sun and Lin Chen
Sensors 2026, 26(2), 494; https://doi.org/10.3390/s26020494 - 12 Jan 2026
Viewed by 233
Abstract
Cables in cable-supported bridges are critical structural components with exceptional tensile capacity, and their assessment is essential for the safety of both the cables themselves and the entire bridge. Microwave radar, a non-contact and efficient measurement technique, has emerged as a promising tool [...] Read more.
Cables in cable-supported bridges are critical structural components with exceptional tensile capacity, and their assessment is essential for the safety of both the cables themselves and the entire bridge. Microwave radar, a non-contact and efficient measurement technique, has emerged as a promising tool for bridge cable evaluation. This study demonstrates the deployment of microwave radar on bridge decks to efficiently measure the displacements of multiple cables, enabling coverage of all cables while effectively eliminating low-frequency components caused by deck deformation and radar motion using the LOWESS method. The measured cable displacements can be directly used to characterize vibrations, particularly for detecting vortex-induced vibrations (VIVs), without the need for numerical integration of accelerations. Furthermore, microwave radar is applied to free-decay testing for cable damping evaluation, providing an improved signal-to-noise ratio and eliminating the need for sensors installed via elevated platforms, thereby enhancing the reliability of damping assessments. The effectiveness of these approaches is validated through field testing on two cable-stayed bridges. Full article
Show Figures

Figure 1

35 pages, 7433 KB  
Article
Post-Fire Forest Pulse Recovery: Superiority of Generalized Additive Models (GAM) in Long-Term Landsat Time-Series Analysis
by Nima Arij, Shirin Malihi and Abbas Kiani
Sensors 2026, 26(2), 493; https://doi.org/10.3390/s26020493 - 12 Jan 2026
Viewed by 155
Abstract
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) [...] Read more.
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) with Otsu thresholding. Recovery to pre-fire baseline levels was modeled using linear, logistic, locally estimated scatterplot smoothing (LOESS), and generalized additive models (GAM), and their performance was compared using multiple metrics. The results indicated rapid recovery of Australian forests to baseline levels, whereas this was not the case for forests in the United States. Among climatic factors, temperature was the dominant parameter in Australia (Spearman ρ = 0.513, p < 10−8), while no climatic variable significantly influenced recovery in California. Methodologically, GAM consistently performed best in both regions due to its success in capturing multiphase and heterogeneous recovery patterns, yielding the lowest values of AIC (United States: 142.89; Australia: 46.70) and RMSE_cv (United States: 112.86; Australia: 2.26). Linear and logistic models failed to capture complex recovery dynamics, whereas LOESS was highly sensitive to noise and unstable for long-term prediction. These findings indicate that post-fire recovery is inherently nonlinear and ecosystem-specific and that simple models are insufficient for accurate estimation, with GAM emerging as an appropriate method for assessing vegetation recovery using remote sensing data. This study provides a transferable approach using remote sensing and GAM to monitor forest resilience under accelerating global fire regimes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

21 pages, 7038 KB  
Review
Advances in Near-Infrared Organic Photodetectors: Molecular Design, Exciton Dynamics, and Device Integration
by Hyosun Lee and Jongho Kim
Polymers 2026, 18(2), 201; https://doi.org/10.3390/polym18020201 - 11 Jan 2026
Viewed by 470
Abstract
Near-infrared organic photodetectors (NIR-OPDs) are emerging as versatile platforms for flexible and low-cost optical sensing, yet achieving high-performance in the NIR region remains difficult remains challenging due to intrinsic trade-offs at both the material and device levels, due to the inherent balance required [...] Read more.
Near-infrared organic photodetectors (NIR-OPDs) are emerging as versatile platforms for flexible and low-cost optical sensing, yet achieving high-performance in the NIR region remains difficult remains challenging due to intrinsic trade-offs at both the material and device levels, due to the inherent balance required among bandgap narrowing, exciton dissociation, charge transport, and dark-current suppression. This review provides a concise overview of OPD operating mechanisms and the performance metrics governing sensitivity and noise. We highlight recent molecular-engineering strategies—core fluorination, asymmetric π-bridge design, fused-ring rigidification, and polymer backbone/side-chain tuning—that effectively enhance intermolecular ordering, reduce energetic disorder, and extend NIR absorption. Progress in all-polymer detectors and ambipolar phototransistors further demonstrates improved stability and broadened detection capability. Additionally, emerging applications, including NIR communication, biosignal monitoring, flexible imaging, and biometric recognition, showcase the expanding utility of NIR-OPDs. Remaining challenges include pushing detection beyond 1200 nm, simplifying synthesis, and improving long-term stability. Overall, advances in low-bandgap molecular design and device engineering continue to accelerate the practical adoption of NIR-OPDs. Full article
Show Figures

Figure 1

18 pages, 3663 KB  
Article
Trajectory Tracking Control of a Six-Axis Robotic Manipulator Based on an Extended Kalman Filter-Based State Observer
by Jianxuan Liu, Tao Chen, Zhen Dou, Xiaojuan Li and Xiangjun Zou
Machines 2026, 14(1), 78; https://doi.org/10.3390/machines14010078 - 8 Jan 2026
Viewed by 223
Abstract
To achieve high-precision trajectory tracking for multi-joint robotic manipulators in the presence of model uncertainties, external disturbances, and strong coupling effects, this paper proposes a nonsingular fast terminal sliding mode control (NFTSMC) scheme incorporating an extended Kalman filter-based disturbance observer. First, the Kalman [...] Read more.
To achieve high-precision trajectory tracking for multi-joint robotic manipulators in the presence of model uncertainties, external disturbances, and strong coupling effects, this paper proposes a nonsingular fast terminal sliding mode control (NFTSMC) scheme incorporating an extended Kalman filter-based disturbance observer. First, the Kalman filter is combined with an extended state observer to perform the real-time observation of both internal and external disturbances in the system, accurately estimating system uncertainty and external disturbances. This approach reduces noise interference while significantly improving the correction accuracy of position and tracking errors. Second, an improved nonsingular fast terminal sliding mode controller with an optimized convergence law is introduced to ensure stability during the tracking process, effectively mitigate oscillation phenomena, and accelerate the system’s convergence speed. Finally, the convergence of the proposed method is analyzed by constructing an appropriate Lyapunov function. Simulation and experimental results strongly validate the superior performance of the proposed control strategy, demonstrating that the system can achieve high-precision trajectory tracking under the complex coupled effects of a six-axis robotic manipulator, and exhibits significant advantages in terms of accuracy and robustness. Full article
(This article belongs to the Special Issue Sensing to Cognition: The Evolution of Robotic Vision)
Show Figures

Figure 1

24 pages, 7136 KB  
Article
Extended Kalman Filter-Enhanced LQR for Balance Control of Wheeled Bipedal Robots
by Renyi Zhou, Yisheng Guan, Tie Zhang, Shouyan Chen, Jingfu Zheng and Xingyu Zhou
Machines 2026, 14(1), 77; https://doi.org/10.3390/machines14010077 - 8 Jan 2026
Viewed by 203
Abstract
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing [...] Read more.
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing the influence of noise on control performance, this paper proposes a balance control framework based on a Linear Quadratic Regulator integrated with an Extended Kalman Filter (KLQR). Specifically, a baseline LQR controller is designed using the robot’s dynamic model, where the control input is generated in the form of wheel-hub motor torques. To mitigate measurement noise and suppress oscillatory behavior, an Extended Kalman Filter is applied to smooth the LQR torque output, which is then used as the final control command. Filtering experiments demonstrate that, compared with median filtering and other baseline methods, the proposed EKF-based approach significantly reduces high-frequency torque fluctuations. In particular, the peak-to-peak torque variation is reduced by more than 60%, and large-amplitude torque spikes observed in the baseline LQR controller are effectively eliminated, resulting in continuous and smooth torque output. Static balance experiments show that the proposed KLQR algorithm reduces the pitch-angle oscillation amplitude from approximately ±0.03 rad to ±0.01 rad, corresponding to an oscillation reduction of about threefold. The estimated RMS value of the pitch angle is reduced from approximately 0.010 rad to 0.003 rad, indicating improved convergence and steady-state stability. Furthermore, experiments involving constant-speed straight-line locomotion and turning indicate that the KLQR algorithm maintains stable motion with velocity fluctuations limited to within ±0.05 m/s. The lateral displacement deviation during locomotion remains below 0.02 m, and no abrupt acceleration or deceleration is observed throughout the experiments. Overall, the results demonstrate that applying Extended Kalman filtering to smooth the control torque effectively improves the smoothness and stability of LQR-based balance control for wheeled bipedal robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

26 pages, 6557 KB  
Article
Research on Rolling Bearing Fault Diagnosis Based on IRBMO-CYCBD
by Dawei Guo, Jiaxun Chen, Xiaodong Liu and Jiyou Fei
Mathematics 2026, 14(1), 201; https://doi.org/10.3390/math14010201 - 5 Jan 2026
Viewed by 163
Abstract
This paper introduces an Improved Red-Billed Blue Magpie Optimizer (IRBMO) to enhance the Maximum Second-Order Cyclostationary Blind Deconvolution (CYCBD) method, which traditionally depends on manual, experience-based setting of its key parameters (filter length L and cyclic frequency α). By adopting an Improved [...] Read more.
This paper introduces an Improved Red-Billed Blue Magpie Optimizer (IRBMO) to enhance the Maximum Second-Order Cyclostationary Blind Deconvolution (CYCBD) method, which traditionally depends on manual, experience-based setting of its key parameters (filter length L and cyclic frequency α). By adopting an Improved Envelope Spectrum Entropy (EK) as the fitness function, the IRBMO autonomously optimizes these parameters, eliminating the need for prior knowledge and improving its applicability in industrial settings. The Improved Red-Billed Blue Magpie algorithm is employed to adaptively optimize the penalty parameter and kernel function parameter of the support vector machine, thereby obtaining an optimal support vector machine model. By introducing fuzzy entropy theory, the feature vectors of filtered signals—processed by the Cyclostationary Blind Deconvolution method with optimal parameters—are extracted and used as input for the optimally parameterized support vector machine, achieving multi-fault classification for bogie bearings. The results show that the IRBMO-CYCBD method significantly enhances the periodic weak fault impulse components and improves the signal-to-noise ratio of the processed signal. Envelope spectrum analysis of the filtered signal allows for clear observation of shaft frequency components, as evidenced by the accurate identification of the 110 Hz fundamental frequency and its harmonic components at 220 Hz, 330 Hz, and 440 Hz in the spectrum. Simulation tests verify the efficacy of the IRBMO-CYCBD method in processing rolling bearing vibration signals under strong noise interference. Under laboratory conditions, simulation experiments were conducted by collecting vibration acceleration signals from rolling bearings in various states. The aforementioned method was applied for fault diagnosis, achieving a maximum diagnostic accuracy of 100%. Through repeated experiments, it was verified that this method meets the fault diagnosis requirements for rolling bearings in metro train bogies. Full article
(This article belongs to the Special Issue Applied Computing and Artificial Intelligence, 2nd Edition)
Show Figures

Figure 1

Back to TopTop