Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = absorption mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4150 KB  
Article
Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers
by Jinhong Zhang, Rong Li and Guihua Xu
Buildings 2026, 16(3), 492; https://doi.org/10.3390/buildings16030492 (registering DOI) - 25 Jan 2026
Abstract
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. [...] Read more.
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. Secondly, its high hygroscopicity can lead to shrinkage cracking. In order to address the aforementioned issues, this study proposes a multi-scale modification strategy. The cementitious matrix was first strengthened using a binary blend of Fly Ash and Ground Granulated Blast Furnace Slag (GGBS), followed by the incorporation of a ternary admixture system containing Styrene-Acrylic Emulsion (SAE), a foaming agent (FA), and alkali-treated Straw Fibres (SF) to enhance workability and durability. The findings of this study demonstrate that a mineral admixture comprising 10% Fly Ash and 10% GGBS results in a substantial enhancement of matrix compactness, culminating in a 20% increase in compressive strength. An orthogonal test was conducted to identify the optimal formulation (D13), which was found to contain 4% SAE, 0.1% FA, and 5% SF. This formulation yielded a compressive strength of 35.2 MPa, a flexural strength of 7.5 MPa, and reduced water absorption to 8.0%. A comparative analysis was conducted between the mineral admixture mix ratio (Control group) and the Optimal mix ratio (Optimization group). The results of this analysis reveal that the Optimization group exhibited superior durability and thermal characteristics. Specifically, the water penetration depth of the optimized composite was successfully restricted to within 3.18 mm, while its thermal insulation performance demonstrated a significant enhancement of 12.3%. In the context of freeze–thaw cycles, the modified concrete demonstrated notable durability, exhibiting a 51.4% reduction in strength loss and a marginal 0.64% restriction in mass loss. SEM analysis revealed that the interaction between SAE and the FA resulted in the densification of the Interfacial Transition Zone (ITZ). In addition, the 3D network formed by SF redistributed internal stresses, thereby shifting the failure mode from brittle fracture to ductile deformation. The findings demonstrate that modifying VSLAC at both micro- and macro-levels can effectively balance structural integrity with thermal efficiency for sustainable construction applications. Full article
(This article belongs to the Special Issue Sustainable Approaches to Building Repair)
Show Figures

Figure 1

20 pages, 12502 KB  
Article
Research on Interface Damage Modes and Energy Absorption Characteristics of Additively Manufactured Graded-Aperture Honeycomb Sandwich Protective Structures
by Jin Dong, Jiaji Sun, Jianxun Du, Weisen Zhu, Chaoqi Xu, Jing Xiao and Zhongcheng Guo
Coatings 2026, 16(2), 151; https://doi.org/10.3390/coatings16020151 (registering DOI) - 24 Jan 2026
Abstract
Structural failure of the lead-carbon battery casing under external loads poses a serious threat to the safety of its energy storage function. To overcome the limitations of traditional protective casings regarding specific energy absorption (SEA) and crush force efficiency (CFE), this study proposes [...] Read more.
Structural failure of the lead-carbon battery casing under external loads poses a serious threat to the safety of its energy storage function. To overcome the limitations of traditional protective casings regarding specific energy absorption (SEA) and crush force efficiency (CFE), this study proposes a novel thin-walled protective structure utilizing graded aperture honeycomb sandwich panels fabricated via additive manufacturing (AM). Finite element (FE) models were established using HyperMesh and validated against experimental data. Subsequently, the impact resistance and energy absorption characteristics of four distinct cellular topologies were systematically investigated under varying pore-size gradients, impact directions, and velocities. Experimental and numerical simulation results indicate that, among the investigated configurations, the triangular honeycomb structure exhibits superior impact resistance and energy absorption capability under both axial and lateral loading conditions. Furthermore, the synergistic enhancement mechanism based on topological configuration and gradient design effectively optimizes the progressive crushing mode, thereby reducing the initial peak crushing force transmitted to the battery and resulting in a pronounced advantage in impact performance. This research provides a novel design approach for optimizing next-generation high-performance, lightweight protection systems for energy storage devices. Full article
Show Figures

Figure 1

19 pages, 2755 KB  
Article
Fractional Modelling of Hereditary Vibrations in Coupled Circular Plate System with Creep Layers
by Julijana Simonović
Fractal Fract. 2026, 10(1), 72; https://doi.org/10.3390/fractalfract10010072 (registering DOI) - 21 Jan 2026
Viewed by 56
Abstract
This paper presents an analytical model for the hereditary vibrations of a coupled circular plate system interconnected by viscoelastic creep layers. The system is represented as a discrete-continuous chain of thin, isotropic plates with time-dependent material properties. Based on the theory of hereditary [...] Read more.
This paper presents an analytical model for the hereditary vibrations of a coupled circular plate system interconnected by viscoelastic creep layers. The system is represented as a discrete-continuous chain of thin, isotropic plates with time-dependent material properties. Based on the theory of hereditary viscoelasticity and D’Alembert’s principle, a system of partial integro-differential equations is derived and reduced to ordinary integro-differential equations using Bernoulli’s method and Laplace transforms. Analytical expressions for natural frequencies, mode shapes, and time-dependent response functions are obtained. The results reveal the emergence of multi-frequency vibration regimes, with modal families remaining temporally uncoupled. This enables the identification of resonance conditions and dynamic absorption phenomena. The fractional parameter serves as a tunable damping factor: lower values result in prolonged oscillations, while higher values cause rapid decay. Increasing the kinetic stiffness of the coupling layers raises vibration frequencies and enhances sensitivity to hereditary effects. This interplay provides deeper insight into dynamic behavior control. The model is applicable to multilayered structures in aerospace, civil engineering, and microsystems, where long-term loading and time-dependent material behavior are critical. The proposed framework offers a powerful tool for designing systems with tailored dynamic responses and improved stability. Full article
Show Figures

Figure 1

15 pages, 4461 KB  
Article
Conceptualising Sound, Inferring Structure, Making Meaning: Artistic Considerations in Ravel’s ‘La vallée des cloches’
by Billy O’Brien
Arts 2026, 15(1), 23; https://doi.org/10.3390/arts15010023 - 21 Jan 2026
Viewed by 60
Abstract
Processes of preparing repertoire for performance in the field of artistic pianism are far from linear, often involving many epistemic modes contributing to an ever-evolving relationship between the pianist, the score and their instrument. Beyond the absorption and internalisation of the score (note-learning, [...] Read more.
Processes of preparing repertoire for performance in the field of artistic pianism are far from linear, often involving many epistemic modes contributing to an ever-evolving relationship between the pianist, the score and their instrument. Beyond the absorption and internalisation of the score (note-learning, memorisation, addressing technical issues), a range of contingent elements preoccupy pianists in their artistic journey of interpretation. These multifarious influences and approaches have increasingly been acknowledged in the field of Artistic Research, which has for some time sought to move beyond textualist, singular readings of works as bearers of fixed meanings and recognise the creative role of performers and the experience they bring. Through scholarly and phenomenological enquiry concerning the practice of ‘La vallée des cloches’ from Miroirs by Maurice Ravel, in this article, I attempt to represent the multi-modal complexity involved in the creative process of interpretation from my perspective as pianist and artistic researcher. I present novel engagement with scholarship in a multidisciplinary sense, demonstrating a dialogue through which scholarship and performance can interact. I reveal new insights about ‘La vallée des cloches’ through the analysis of my own diary entries logged over three practice sessions, exploring the themes of sound conceptualisation, the consideration of musical structure, and the creation of meaning. Full article
(This article belongs to the Special Issue Creating Musical Experiences)
Show Figures

Figure 1

33 pages, 21083 KB  
Article
Numerical Analysis of Energy Dissipation and Frictional Effects in Aramid-Based Polymeric Fabrics Under Dynamic Loading
by Larisa Titire, Cristian Munteniță and Valentin Tiberiu Amorțilă
Polymers 2026, 18(2), 259; https://doi.org/10.3390/polym18020259 - 18 Jan 2026
Viewed by 179
Abstract
Aramid-based polymeric fabrics are increasingly employed in lightweight protective and structural applications where high strength, flexibility, and impact resistance are required. Their response under high-velocity impact is governed by complex interactions among fiber properties, inter-yarn friction, and the mechanical behavior of the impacting [...] Read more.
Aramid-based polymeric fabrics are increasingly employed in lightweight protective and structural applications where high strength, flexibility, and impact resistance are required. Their response under high-velocity impact is governed by complex interactions among fiber properties, inter-yarn friction, and the mechanical behavior of the impacting body. In this work, three-dimensional finite element simulations were conducted in ANSYS Explicit Dynamics to investigate the coupled effects of the interfacial friction coefficient (μ = coefficient of friction = 0.0–0.5) and impactor material on the dynamic response of 24-layer plain-weave aramid panels. The numerical results reveal that low friction facilitates yarn mobility and localized penetration, whereas moderate friction enhances stress-wave dispersion and enables a more uniform activation of multiple fabric layers. At higher friction levels, penetration is further reduced, but localized stress concentrations may emerge due to constrained yarn movement. The constitutive properties of the impactor strongly influenced deformation modes and the efficiency of kinetic energy transfer to the composite structure. The simulated results are consistent with experimental data reported in the literature, confirming the predictive capability of the model. The study provides quantitative insight into the role of frictional interactions and impactor characteristics in optimizing the energy absorption and structural integrity of aramid-based polymeric fabrics subjected to high-velocity loading, contributing to the development of advanced lightweight protective materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

19 pages, 2346 KB  
Article
Process Simulation of a Temperature Swing Absorption Process for Hydrogen Isotope Separation
by Annika Uihlein, Jonas Caspar Schwenzer, Stefan Hanke and Thomas Giegerich
Energies 2026, 19(2), 466; https://doi.org/10.3390/en19020466 - 17 Jan 2026
Viewed by 102
Abstract
Temperature Swing Absorption (TSA) is the primary candidate for the Isotope Rebalancing and Protium Removal (IRPR) system within the envisioned EU-DEMO fusion reactor fuel cycle. TSA separates a mixed hydrogen isotope stream into two product streams using a semi-continuous process. One stream, enriched [...] Read more.
Temperature Swing Absorption (TSA) is the primary candidate for the Isotope Rebalancing and Protium Removal (IRPR) system within the envisioned EU-DEMO fusion reactor fuel cycle. TSA separates a mixed hydrogen isotope stream into two product streams using a semi-continuous process. One stream, enriched in heavy isotopes, is used to re-establish the required deuterium-to-tritium fuel ratio. The second, enriched in protium, is stripped off from the fuel cycle to counteract the protium build-up. Separation is achieved by cycling an isotope mixture between two columns filled with metallic absorption materials that have opposite isotope effects of metal hydride formation. The selection of these materials, the operation parameters and the column geometry allow for adjusting the resulting enrichments. To identify suitable operation parameters, a TSA process model is developed which depicts the process dynamics and interactions between the columns. A modified process operation mode is introduced, which enables higher system throughputs and non-cryogenic operation, i.e., operational temperatures between 0 to 130 °C, while reducing the tritium inventory due to shorter cycling times by reduced amplitudes of the temperature swings. Finally, simulations of a TSA system at relevant scale confirm the suitability of TSA technology for the separation task of the EU-DEMO IRPR system. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

16 pages, 2278 KB  
Article
Fine-Fraction Brazilian Residual Kaolin-Filled Coating Mortars
by Thamires Alves da Silveira, Mirian Dosolina Fusinato, Gustavo Luis Calegaro, Cristian da Conceição Gomes and Rafael de Avila Delucis
Waste 2026, 4(1), 3; https://doi.org/10.3390/waste4010003 - 13 Jan 2026
Viewed by 114
Abstract
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 [...] Read more.
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 µm, intermediate: 75–150 µm, and fine: <75 µm) and incorporated at two filler contents (10% and 20% by weight). Mineralogical and chemical analyses revealed that the fine fractions contained higher proportions of kaolinite and accessory oxides, while medium and coarse fractions were dominated by quartz. Intensity ratios from XRD confirmed greater structural disorder in the fine fraction, which was associated with higher water demand but also improved particle packing and pore refinement. Fresh state tests showed that mortars with fine kaolin maintained higher density and exhibited moderate increases in air content, whereas medium and coarse fractions promoted greater entrainment. In the hardened state, fine kaolin reduced water absorption by immersion and capillary rise, while medium and coarse fractions led to higher porosity. Mechanical tests confirmed these trends: although compressive and flexural strengths decreased with increasing substitution, mortars containing the fine kaolin fraction consistently exhibited more moderate strength losses than those with medium or coarse fractions, reflecting their enhanced packing efficiency and pore refinement. Tensile bond strength results further highlighted the positive contribution of the kaolin additions, as the mixtures with 10% coarse kaolin and 20% fine kaolin achieved adhesion values only about 7% and 4% lower, respectively, than the control mortar after 28 days. All mixtures surpassed the performance requirements of NBR 13281, demonstrating that the incorporation of residual kaolin—even at higher substitution levels—does not compromise adhesion and remains compatible with favorable cohesive failure modes in the mortar layer. Despite the lack of pozzolanic activity, residual kaolin was used due to its filler effect and capacity to enhance particle packing and pore refinement in rendering mortars. A life cycle assessment indicated that the partial substitution of cement with residual kaolin effectively reduces the environmental impacts of mortar production, particularly the global warming potential, when the residue is modeled as a by-product with a negligible environmental burden. This highlights the critical role of methodological choices in assessing the sustainability of industrial waste utilization. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

21 pages, 5944 KB  
Article
Effect of Vibratory Mixing on the Quasi-Static and Dynamic Compressive Properties of a Sustainable Concrete for Transmission Tower Foundations
by Guangtong Sun, Xingliang Chen, Fei Yang, Xinri Wang, Wanhui Feng and Hongzhong Li
Buildings 2026, 16(2), 310; https://doi.org/10.3390/buildings16020310 - 11 Jan 2026
Viewed by 95
Abstract
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing [...] Read more.
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing influences strength evolution, failure modes, strain rate sensitivity, and energy absorption of rubberized concrete compared with conventional mixing at 0%, 20%, and 30% rubber contents. Quasi-static compression tests and Split Hopkinson Pressure Bar (SHPB) dynamic compression tests were conducted to quantify these effects. The results show that vibratory mixing significantly improves the paste–aggregate–rubber interfacial structure. It increases the compressive strength by 8.4–30% compared with conventional mixing and reduces the strength loss at the 30% rubber content from 51.12% to 38.98%. Under high-speed impact loading, vibratory mixed rubber concrete exhibits higher peak strength, stronger energy absorption capacity, and a more stable strain rate response. The mixture with 20% rubber content shows the best comprehensive performance and is suitable for impact-resistant design of transmission tower foundations. Future research should extend this work by considering different rubber particle sizes and vibratory mixing frequencies to identify optimal combinations, and by incorporating quantitative fragment size distribution analysis under impact loading to further clarify the fracture mechanisms and enhance the application of rubberized concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 7965 KB  
Article
An Open-Path Eddy-Covariance Laser Spectrometer for Simultaneous Monitoring of CO2, CH4, and H2O
by Viacheslav Meshcherinov, Iskander Gazizov, Bogdan Pravuk, Viktor Kazakov, Sergei Zenevich, Maxim Spiridonov, Shamil Gazizov, Gennady Suvorov, Olga Kuricheva, Yuri Lebedev, Imant Vinogradov and Alexander Rodin
Sensors 2026, 26(2), 462; https://doi.org/10.3390/s26020462 - 10 Jan 2026
Viewed by 250
Abstract
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using [...] Read more.
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using the eddy-covariance method. The instrument utilizes two interband cascade lasers operating at 2.78 µm and 3.24 µm within a novel four-pass M-shaped optical cell, which provides high signal power and long-term field operation without requiring active air sampling. Two detection techniques—tunable diode laser absorption spectroscopy (TDLAS) and a simplified wavelength modulation spectroscopy (sWMS)—were implemented and evaluated. Laboratory calibration demonstrated linear responses for all gases (R2 ≈ 0.999) and detection precisions at 10 Hz of 311 ppb for CO2, 8.87 ppb for CH4, and 788 ppb for H2O. Field tests conducted at a grassland site near Moscow showed strong correlations (R = 0.91 for CO2 and H2O, R = 0.74 for CH4) with commercial LI-COR LI-7200 and LI-7700 analyzers. The TDLAS mode demonstrated lower noise and greater stability under outdoor conditions, while sWMS provided baseline-free spectra but was more sensitive to power fluctuations. E-CAHORS combines high precision, multi-species sensing capability with low power consumption (10 W) and a compact design (4.2 kg). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 3710 KB  
Article
Study of Structural, Vibrational, and Molecular Docking Properties of (1S,9aR)-1-({4-[4-(Benzyloxy)-3-methoxyphenyl]-1H-1,2,3-triazol-1-yl}methyl)octahydro-2H-quinolizine
by Dastan Turdybekov, Zhangeldy Nurmaganbetov, Almagul Makhmutova, Dmitry Baev, Yury Gatilov, Dmitrii Pankin, Mikhail Smirnov, Pernesh Bekisheva and Kymbat Kopbalina
Molecules 2026, 31(2), 218; https://doi.org/10.3390/molecules31020218 - 8 Jan 2026
Viewed by 193
Abstract
A promising direction for the creation of new biologically active derivatives of the alkaloid lupinine is the synthesis of “hybrid molecules” that combine a fragment of the alkaloid and the pharmacophore of 1,2,3-triazole in their structure. From a biological perspective, this work presents [...] Read more.
A promising direction for the creation of new biologically active derivatives of the alkaloid lupinine is the synthesis of “hybrid molecules” that combine a fragment of the alkaloid and the pharmacophore of 1,2,3-triazole in their structure. From a biological perspective, this work presents the first X-ray diffraction study of a single crystal of (1S,9aR)-1-({4-[4-(Benzyloxy)-3-methoxyphenyl]-1H-1,2,3-triazol-1-yl}methyl)octahydro-2H-quinolizine, a new, recently synthesized 1,2,3-triazole derivative of lupinine. A comparison of theoretically predicted and experimentally observed structural parameters was carried out. The FTIR spectroscopy study and vibrational properties calculations allowed us to interpret the FTIR absorption spectrum and localize specific vibrational modes in quinolizidine, 1,2,3-triazole, and benzene rings. Such information can be fruitful for further characterization of the synthesis process and products. The molecular docking of the compound was performed. It was shown that the studied molecules are capable of interacting with the Mpro binding site via non-covalent and hydrophobic interactions with subsites S3 (Met165, Glu166, Leu167, Pro168) and S5 (Gln189, Thr190, Gln192), which ensure the stabilization of the Mpro substrate. Blocking of the active site of the enzyme in the region of the oxyanion hole does not occur, but stable stacking interactions with the π-system of one of the catalytic amino acids, His41, are observed. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

16 pages, 6529 KB  
Article
Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface
by Seung-Heon Kim, Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Appl. Sci. 2026, 16(2), 634; https://doi.org/10.3390/app16020634 - 7 Jan 2026
Viewed by 253
Abstract
Wearable antennas for wireless sensor network (WSN) applications require circularly polarized (CP) radiation to maintain stable communication link under human body movement and complex environments. However, many existing wearable CP antennas rely on either linearly polarized (LP) or CP radiator with a single [...] Read more.
Wearable antennas for wireless sensor network (WSN) applications require circularly polarized (CP) radiation to maintain stable communication link under human body movement and complex environments. However, many existing wearable CP antennas rely on either linearly polarized (LP) or CP radiator with a single axial ratio (AR) mode combined with external polarization conversion structures, which limit the achievable axial ratio bandwidth (ARBW). In this work, an all-textile wideband CP antenna with a square-ring notched slot radiator, a 50 Ω microstrip line, and a 3 × 3 nonuniform metasurface (MTS) is proposed for 5.85 GHz WSN applications. Unlike conventional CP generation approaches, the square-ring notched slot, analyzed using characteristic mode analysis (CMA), directly excites three distinct AR modes, enabling potential wideband CP radiation. The nonuniform MTS further improves IBW performance by exciting additional surface wave resonances. Moreover, the nonuniform MTS further enhances ARBW by redirecting the incident wave into an orthogonal direction with equivalent amplitude and a 90° phase difference at higher frequency region. The proposed antenna is composed of conductive textile and felt substrates, offering flexibility for wearable applications. The proposed antenna is measured in free space, on human bodies, and fresh pork in an anechoic chamber. The measured results show a broad IBW and ARBW of 84.52% and 43.56%, respectively. The measured gain and radiation efficiency are 4.47 dBic and 68%, respectively. The simulated specific absorption rates (SARs) satisfy both US and EU standards. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor Networks and Communication Technology)
Show Figures

Figure 1

16 pages, 2734 KB  
Article
Experimental Study on the Impact Resistance of UHMWPE Flexible Film Against Hypervelocity Particles
by Chen Liu, Zhirui Rao, Hao Liu, Changlin Zhao, Yifan Wang and Aleksey Khaziev
Polymers 2026, 18(2), 161; https://doi.org/10.3390/polym18020161 - 7 Jan 2026
Viewed by 239
Abstract
The increasing threat posed by micrometeoroids and orbital debris to in-orbit spacecraft necessitates the development of lightweight and deformable shielding systems capable of withstanding hypervelocity impacts. Ultra-high-molecular-weight polyethylene (UHMWPE) films, owing to their high specific strength and energy-absorption capacity, present a promising candidate [...] Read more.
The increasing threat posed by micrometeoroids and orbital debris to in-orbit spacecraft necessitates the development of lightweight and deformable shielding systems capable of withstanding hypervelocity impacts. Ultra-high-molecular-weight polyethylene (UHMWPE) films, owing to their high specific strength and energy-absorption capacity, present a promising candidate for such applications. However, the hypervelocity impact response of thin, highly oriented UHMWPE films—distinct from bulk plates or composites—remains poorly understood, particularly for micron-scale particles at velocities relevant to space debris (≥8 km/s). In this study, we systematically investigate the impact resistance of 0.1 mm UHMWPE films using a plasma-driven microparticle accelerator and a hypervelocity dust gun to simulate impacts by micron-sized Al2O3 and Fe particles at velocities up to ~8.5 km/s. Through detailed analysis of crater morphology via scanning electron microscopy, we identify three distinct damage modes: plastic-dominated craters (Type I), fracture-melting craters (Type II), and perforations (Type III). These modes are correlated with impact energy and particle size, revealing the material’s transition from large-scale plastic deformation to localized thermal softening and eventual penetration. Crucially, we provide quantitative penetration thresholds (e.g., 2.25 μm Al2O3 at 8.5 km/s) and establish a microstructure-informed damage classification that advances the fundamental understanding of UHMWPE film behavior under extreme strain rates. Our findings not only elucidate the energy-dissipation mechanisms in oriented polymer films but also offer practical guidelines for the design of next-generation, flexible spacecraft shielding systems. Full article
Show Figures

Figure 1

27 pages, 13611 KB  
Article
Crashworthiness Design of Bidirectional Pyramidal Energy-Absorbing Tubes Based on Centipede Structures
by Aodi Bie, Xiurong Guo, Danfeng Du and Yuchen Xie
Biomimetics 2026, 11(1), 46; https://doi.org/10.3390/biomimetics11010046 - 7 Jan 2026
Viewed by 369
Abstract
Energy-absorbing components should be effective and stable in engineering protective structure designs to reduce collision impacts. However, conventional energy-absorbing structures have considerable potential for optimization for energy dissipation and structural stability. Like other invertebrates, the centipede’s folding mode when moving forward is compatible [...] Read more.
Energy-absorbing components should be effective and stable in engineering protective structure designs to reduce collision impacts. However, conventional energy-absorbing structures have considerable potential for optimization for energy dissipation and structural stability. Like other invertebrates, the centipede’s folding mode when moving forward is compatible with the hierarchical folding process when the energy-absorbing structure is impacted; however, this rule has not been thoroughly examined and proven. Based on this gap, this study built a unique biomimetic aluminum foam-filled bidirectional pyramid energy-absorbing structure, analyzed its geometric parameters on crashworthiness, and developed high-performance energy-absorbing components. Experiments and simulations were conducted on a bidirectional pyramid construction with three schemes for filling aluminum foam inspired by the centipede body section and profile. The construction with foam aluminum filling the gap has optimum specific energy absorption and load stability. Additionally, optimizing structural performance is most effective in certain ranges (78° ≤ θ ≤ 87°, t ≤ 0.1 mm, 34 mm ≤ d ≤ 44 mm). With Kriging and NSGA-III multi-objective optimization, the optimized peak crushing force decreases by 11.17% and specific energy absorption increases by 11.67%. The study and optimization process offers a theoretical reference for future high-performance energy-absorbing structures and has significant engineering application potential. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

20 pages, 4094 KB  
Article
Theoretical and Experimental Studies of Permeate Fluxes in Double-Flow Direct-Contact Membrane Distillation (DCMD) Modules with Internal Recycle
by Chii-Dong Ho, Ching-Yu Li, Thiam Leng Chew and Yi-Ting Lin
Membranes 2026, 16(1), 37; https://doi.org/10.3390/membranes16010037 - 6 Jan 2026
Viewed by 298
Abstract
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the [...] Read more.
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the other in a countercurrent-flow recycling mode, thereby significantly enhancing the permeate flux. Theoretical and experimental investigations were conducted to develop modeling equations capable of predicting the permeate flux in DCMD modules. These studies demonstrated the technical feasibility of minimizing temperature polarization effects while improving flow characteristics to boost permeate flux. Results indicated that increasing both convective heat-transfer coefficients and residence time generally improved device performance. The dual-flow operation increased fluid velocity and extended residence time, leading to reduced heat-transfer resistance and enhanced heat-transfer efficiency. Theoretical predictions and experimental results consistently showed that the absorption flux improved by up to 40.77% under the double-flow operation with internal recycling configuration compared to a single-pass device of identical dimensions. The effects of inserting the insulation barrier on permeate flux enhancement, power consumption, and overall economic feasibility were also discussed. Full article
Show Figures

Figure 1

12 pages, 472 KB  
Article
Assessment of Zinc Content in Food Supplements
by Anna Puścion-Jakubik, Katarzyna Kolenda, Katarzyna Socha and Renata Markiewicz-Żukowska
Foods 2026, 15(1), 151; https://doi.org/10.3390/foods15010151 - 2 Jan 2026
Viewed by 459
Abstract
Zinc (Zn) is an essential trace element that plays a key role as a cofactor for over 300 enzymes involved in metabolic processes, protein synthesis, and gene expression regulation. Zn supplementation is used in the prevention and treatment of infectious, dermatological, and reproductive [...] Read more.
Zinc (Zn) is an essential trace element that plays a key role as a cofactor for over 300 enzymes involved in metabolic processes, protein synthesis, and gene expression regulation. Zn supplementation is used in the prevention and treatment of infectious, dermatological, and reproductive system diseases. Legal regulations allow for a relatively wide range of mineral content in this product category (from −20% to +45% of the declared value). The study aimed to analyze the quality of food supplements containing Zn—compliance with declared Zn content was assessed. The study included 80 preparations. The preparations varied in terms of declared Zn content, pharmaceutical form, chemical form of Zn, composition, and primary mode of action. Zn content was determined by atomic absorption spectrometry after prior mineralization of the samples in concentrated nitric acid in a closed microwave system. It was estimated that 70% of food supplements contained Zn within the acceptable range. It should be emphasized that 23.75% of the preparations contained more Zn than the permissible range of Zn content, and 6.25% contained less—both of these groups of preparations may be associated with a health risk. From a regulatory perspective, these results highlight the need for continuous surveillance of the food supplement market to improve consumer safety. Full article
Show Figures

Figure 1

Back to TopTop