Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (558)

Search Parameters:
Keywords = absorption and emission spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1917 KiB  
Article
Influence of Energetic Xe132 Ion Irradiation on Optical, Luminescent and Structural Properties of Ce-Doped Y3Al5O12 Single Crystals
by Ruslan Assylbayev, Gulnur Tursumbayeva, Guldar Baubekova, Zhakyp T. Karipbayev, Aleksei Krasnikov, Evgeni Shablonin, Gulnara M. Aralbayeva, Yevheniia Smortsova, Abdirash Akilbekov, Anatoli I. Popov and Aleksandr Lushchik
Crystals 2025, 15(8), 683; https://doi.org/10.3390/cryst15080683 - 27 Jul 2025
Viewed by 563
Abstract
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are [...] Read more.
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are employed to analyze radiation-induced changes. Irradiation leads to the formation of Frenkel (F, F+) and antisite defects and attenuates Ce3+ emission (via enhanced nonradiative processes and Ce3+ → Ce4+ recharging). A redistribution between the fast and slow components of the Ce3+-emission is considered. Excitation spectra show the suppression of exciton-related emission bands, as well as a shift of the excitation onset due to increased lattice disorder. XRD data confirm partial amorphization and a high level of local lattice disordering, both increasing with irradiation fluence. These findings provide insight into radiation-induced processes in YAG:Ce, which are relevant for its application in radiation–hard scintillation detectors. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 191
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

18 pages, 11678 KiB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 204
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 297
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

17 pages, 3146 KiB  
Article
Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions
by Karol Lemański, Nadiia Rebrova, Patrycja Zdeb-Stańczykowska and Przemysław Jacek Dereń
Molecules 2025, 30(14), 2944; https://doi.org/10.3390/molecules30142944 - 11 Jul 2025
Viewed by 271
Abstract
The spectroscopic properties of Pr3+ ions in the aluminosilicate matrix were investigated for the first time. Synthesis of CaAl2SiO6 (CASO) polycrystals doped with Pr3+ ions was carried out using the sol–gel method. The crystalline structures have been confirmed [...] Read more.
The spectroscopic properties of Pr3+ ions in the aluminosilicate matrix were investigated for the first time. Synthesis of CaAl2SiO6 (CASO) polycrystals doped with Pr3+ ions was carried out using the sol–gel method. The crystalline structures have been confirmed with XRD measurement. The absorption, excitation, emission spectra, and time decay profiles of the praseodymium (III) ions were measured and analyzed. It was found that upon excitation with visible light, this material exhibits emission mainly in the UVC region, via an upconversion emission process. The Stokes emission in the visible range is observed mainly from the 3P0 and 1D2 energy levels. The 1D23H4 emission is very stable even at very high temperatures. The studied aluminosilicate phosphors possess characteristics that confirm their potential in upconversion emission applications. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 348
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

18 pages, 4853 KiB  
Article
Origin Identification of Table Salt Using Flame Atomic Absorption and Portable Near-Infrared Spectrometries
by Larissa Rodrigues Zanela Lima, Luana Dalagrana dos Santos, Isabella Taglieri, David Cabral, Letícia Estevinho, Fábio Luiz Melquiades, Luís Guimarães Dias and Evandro Bona
Chemosensors 2025, 13(7), 231; https://doi.org/10.3390/chemosensors13070231 - 24 Jun 2025
Viewed by 467
Abstract
The mineral composition of table salt can be indicative of its origin. This work evaluated the possibility of identifying the origin of salt from four countries: Brazil, Spain, France, and Portugal. Eight metals were quantified through flame atomic absorption/emission spectroscopy (FAAS). The possibility [...] Read more.
The mineral composition of table salt can be indicative of its origin. This work evaluated the possibility of identifying the origin of salt from four countries: Brazil, Spain, France, and Portugal. Eight metals were quantified through flame atomic absorption/emission spectroscopy (FAAS). The possibility of using portable near-infrared spectroscopy (NIR) as a faster and lower-cost alternative for identifying salt provenance was also evaluated. The content of Ca, Mg, Fe, Mn, and Cu was identified as possible markers to differentiate the salt origin. One-class classifiers using FAAS data and DD-SIMCA could discriminate the salt origin with few misclassifications. For NIR spectroscopy, it was possible to highlight the importance of controlling the humidity and granulometry before the spectra acquisition. After drying and milling the samples, it was possible to discriminate between samples based on the interaction between the water of hydration and the presence of the cations in the sample. The Mg, Mn, and Cu are important in identifying the origin of salt using NIR spectra. The DD-SIMCA model using NIR spectra could classify the origin with the same performance as observed in FAAS. However, it is important to emphasize that NIR spectroscopy requires less sample preparation, is faster, and has low-cost instrumentation. Full article
(This article belongs to the Special Issue Chemometrics Tools Used in Chemical Detection and Analysis)
Show Figures

Graphical abstract

18 pages, 3043 KiB  
Article
Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
by Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei and Luis Alamo-Nole
Micro 2025, 5(3), 31; https://doi.org/10.3390/micro5030031 - 22 Jun 2025
Viewed by 307
Abstract
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced [...] Read more.
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS. Full article
Show Figures

Figure 1

14 pages, 2874 KiB  
Article
Quantitative Analysis of Lithium in Natural Brines from the Lithium Triangle by Laser-Induced Breakdown Spectroscopy
by Juan Molina M., Carisa Sarchi, Alvaro Y. Tesio, César Costa-Vera and Diego M. Díaz Pace
Atoms 2025, 13(6), 56; https://doi.org/10.3390/atoms13060056 - 17 Jun 2025
Viewed by 391
Abstract
Lithium (Li)-rich continental brines found in the Lithium Triangle region in South America are a natural resource of paramount importance. In the present research, the analytical performance of laser-induced breakdown spectroscopy (LIBS) technology was assessed for the quantitative analysis of Li in natural [...] Read more.
Lithium (Li)-rich continental brines found in the Lithium Triangle region in South America are a natural resource of paramount importance. In the present research, the analytical performance of laser-induced breakdown spectroscopy (LIBS) technology was assessed for the quantitative analysis of Li in natural brines aimed at enhancing the efficient exploration of salt flats (called salars). Brine samples were collected from different salars located in the Puna plateau (Northwest Argentina) and analyzed by LIBS in the form of solid pressed pellets. Broadband emission spectra (180–900 nm) were recorded and spectrally analyzed by specially designed computational algorithms. The laser-induced plasmas were characterized by calculating the electron density and the temperature. The Li elemental concentrations in the brines were determined through univariate calibration with the Li I emission line at 670.77 nm by using a suitable set of standards with Li concentrations up to 1300 μg/g. The calculated limit of detection was LoD = 0.2 ± 0.1 μg/g. The Li content in the brines determined with LIBS showed a good agreement (normalized standard deviation: σN = 25%) with the concentrations measured with atomic absorption spectroscopy. The results demonstrated the feasibility of the LIBS technique for the quantitative analysis of Li in natural brines, thus contributing to advancing the exploration of Li-rich resources. Full article
Show Figures

Graphical abstract

22 pages, 10230 KiB  
Article
Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus
by Daria Evdokimova, Anna Fedorova, Nikolay Ignatiev, Oleg Korablev, Franck Montmessin and Jean-Loup Bertaux
Atmosphere 2025, 16(6), 726; https://doi.org/10.3390/atmos16060726 - 15 Jun 2025
Cited by 1 | Viewed by 400
Abstract
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the [...] Read more.
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the first time, the H2O volume mixing ratio in the deep Venus atmosphere at about 10–16 km has been retrieved for the entire SPICAV IR dataset using a radiative transfer model with multiple scattering. The retrieved H2O volume mixing ratio is found to be sensitive to different approximations of the H2O and CO2 absorption lines’ far wings and assumed surface emissivity. The global average of the H2O abundance retrieved for different parameters ranges from 23.6 ± 1.0 ppmv to 27.7 ± 1.2 ppmv. The obtained values are consistent with recent studies of water vapor below the cloud layer, showing the H2O mixing ratio below 30 ppmv. Within the considered dataset, the zonal mean of the H2O mixing ratio does not vary significantly from 60° S to 75° N, except for a 2 ppmv decrease noted at high latitudes. The H2O local time distribution is also uniform. The 8-year observation period revealed no significant long-term trends or periodicities. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

7 pages, 1181 KiB  
Communication
The Enigmatic, Highly Variable, High-Mass Young Stellar Object Mol 12: A New Extreme Herbig Be (Proto)star
by Mauricio Tapia, Paolo Persi, Jesús Hernández and Nuria Calvet
Galaxies 2025, 13(3), 70; https://doi.org/10.3390/galaxies13030070 - 13 Jun 2025
Viewed by 484
Abstract
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) [...] Read more.
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) in the centre of a dense core at a distance of 1.59 kpc from the Sun and has a total luminosity of 1.74×103L. The spectra show a large number of permitted atomic emission lines, mostly for Fe, H, C, N, and Ca, that originate in the inner zones of a very active protoplanetary disc and no photospheric absorption lines. Conspicuously, the He I line at 1.0830 μm displays a complex P-Cygni profile. Also, the first overtone CO emission band-heads at 2.3 μm are seen in emission. From the strengths of the principal emission lines, we determined the accretion rate and luminosity to be M˙105M y−1 and Lacc103L, respectively. Decade-long light curves show a series of irregular brightness dips of more than four magnitudes in r, becoming shallower as the wavelength increases and disappearing at λ>3μm. The colour–magnitude diagrams suggest the occurrence of a series of eclipses caused by the passage of small dust cloudlets in front of the star, producing more than 10 magnitudes of extra extinction. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Improvement in Heat Transfer in Hydrocarbon and Geothermal Energy Coproduction Systems Using Carbon Quantum Dots: An Experimental and Modeling Approach
by Yurany Villada, Lady J. Giraldo, Diana Estenoz, Masoud Riazi, Juan Ordoñez, Esteban A. Taborda, Marlon Bastidas, Camilo A. Franco and Farid B. Cortés
Nanomaterials 2025, 15(12), 879; https://doi.org/10.3390/nano15120879 - 7 Jun 2025
Viewed by 671
Abstract
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer [...] Read more.
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer from depleted wells for the coproduction of oil and electrical energy. The synthesized and commercial CQDs were characterized in terms of their morphology, zeta potential, density, size, and heat capacity. The nanofluids were prepared using brine from an oil well of interest and two types of CQDs. The effect of the CQDs on the thermophysical properties of the nanofluids was evaluated based on their thermal conductivity. In addition, a mathematical model based on heat transfer principles to predict the effect of nanofluids on the efficiency of the organic Rankine cycle (ORC) was implemented. The synthesized and commercial CQDs had particle sizes of 25 and 16 nm, respectively. Similarly, zeta potential values of 36 and 48 mV were obtained. Both CQDs have similar functional groups and UV absorption, and the fluorescence spectra show that the study CQDs have a maximum excitation–emission signal around 360–460 nm. The characterization of the nanofluids showed that the addition of 100, 300, and 500 mg/L of CQDs increased the thermal conductivity by 40, 50, and 60 %, respectively. However, the 1000 mg/L incorporated decreased the thermal conductivities of the nanofluids. The observed behavior can be attributed to the aggregate size of the nanoparticles. Furthermore, a new thermal conductivity model for CQD-based nanofluids was developed considering brine salinity, particle size distribution, and agglomeration effects. The model showed a remarkable fit with the experimental data and predicted the effect of the nanofluid concentration on the thermal conductivity and cycle efficiency. Coupled with an ORC cycle model, CQD concentrations of approximately 550 mg/L increased the cycle efficiency by approximately 13.8% and 18.6% for commercial and synthesized CQDs, respectively. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

14 pages, 10226 KiB  
Article
Exploring the Photophysical Properties of Some Dextran-Iron Oxide Nanoparticle Composites
by Ion Lungu, Tamara Potlog, Anton Airinei, Radu Tigoianu and Carmen Gherasim
Molecules 2025, 30(11), 2290; https://doi.org/10.3390/molecules30112290 - 23 May 2025
Viewed by 604
Abstract
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and [...] Read more.
In this study, we report the synthesis and characterization of Fe3O4 nanoparticles coated with dextran. The structural and optical properties of the Dx:Fe3O4 synthesized composites were investigated by Fourier Transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV–Vis absorption spectroscopy. For the first time in this paper, the photophysics of Dx:Fe3O4 composites in water is studied using fluorescence and phosphorescence molecular spectrometry. An analysis of the absorption spectra of the Dx:Fe3O4 composite reveals the broad absorption bands with maxima at wavelengths of 227 nm, 264 nm, and 340 nm. Dx:Fe3O4 composite nanoparticles in water exhibit strong fluorescence with a quantum yield of 0.24% in contrast to 0.07% for dextran. Phosphorescence spectra confirm the formation of new emission bands within the Dx:Fe3O4 solution evidenced by the maxima shift for both dextran and Dx:Fe3O4 composites. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 3899 KiB  
Article
Growth and Characterization of High Doping Concentration (2.1 at%) Ytterbium (Yb) Doped Lithium Niobate (LiNbO3) Crystal: An Electrically Tunable Lasing Medium
by Kaicheng Wu, Mohammad Ahsanul Kabir, Kai-ting Chou and Shizhuo Yin
Crystals 2025, 15(5), 486; https://doi.org/10.3390/cryst15050486 - 21 May 2025
Viewed by 452
Abstract
In this paper, we report on the growth and characterization of high doping concentration (2.1 at%) ytterbium (Yb) doped lithium niobate (Yb:LiNbO3) crystal. By using a slightly modified Czochralski method, we have successfully grown a usable size (2 mm × 2 [...] Read more.
In this paper, we report on the growth and characterization of high doping concentration (2.1 at%) ytterbium (Yb) doped lithium niobate (Yb:LiNbO3) crystal. By using a slightly modified Czochralski method, we have successfully grown a usable size (2 mm × 2 mm × 30 mm) Yb:LiNbO3 single crystal. We also conducted the energy-dispersive X-ray spectroscopy (EDS) and the X-ray diffraction (XRD) analyses, which experimentally confirm that the grown crystal is a Yb:LiNbO3 single crystal. We also measured the absorption and emission spectra of the grown crystal. It was found out that there is a near-flat broad emission within a spectral range of 1004–1030 nm when excited at 980 nm for this high doping concentration Yb:LiNbO3 crystal. Such a near-flat broad emission can be very useful for realizing high slope efficiency ultrafast (femtosecond) lasing in the Yb:LiNbO3 crystal due to the low quantum defect of the Yb:LiNbO3 crystal. We also investigated the electro-optic effect of the Yb:LiNbO3. The experimental result confirms that the electro-optic (EO) effect of a highly doped (2.1 at%) lithium niobate crystal is close to the EO value of the pure lithium niobate. Thus, the highly doped Yb:LiNbO3 crystal can still be an effective electrically tunable lasing medium. It can enable electrically tunable, high slope efficiency femtosecond lasing due to the combined features, including (1) a near flat broad emission spectrum at the spectral range of 1004–1030 nm, (2) a non-compromised electro-optic effect at high doping concentration Yb:LiNbO3 crystal, and (3) a low quantum defect. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Viewed by 411
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

Back to TopTop