Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,723)

Search Parameters:
Keywords = absorber design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1619 KB  
Article
Morphological and Performance Assessment of Commercial Menstrual and Incontinence Absorbent Hygiene Products
by Liesbeth Birchall, Millie Newmarch, Charles Cohen and Muhammad Tausif
Polymers 2026, 18(3), 318; https://doi.org/10.3390/polym18030318 (registering DOI) - 24 Jan 2026
Abstract
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate [...] Read more.
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate to performance is limited. In this work, fifteen commercial AHPs were characterised using dimensional measurement, infrared spectroscopy, and imaging. Simulated urination, air permeability, and moisture management testing were used to assess expected leakage and user comfort. Sustainable materials currently in use were identified, and their performance compared to typical plastics, informing opportunities to replace or reduce nonbiodegradable materials. Polybutylene adipate terephthalate-based leakproof layers replaced polyolefins. Commercial alternatives to polyacrylate superabsorbent polymers (SAPs), with comparable absorption, were not seen. Although absorbency correlated with the mass of absorbants, SAPs reduced surface moisture after absorption and are known for high absorption capacity under pressure, preventing rewetting. Channels and side guards were observed to prevent side leakage and guide fluid distribution, potentially reducing the need for nonbiodegradable nonwoven and absorbant content by promoting efficient use of the full product mass. While synthetic nonwovens typically outperformed cellulosics, apertured and layered nonwovens were associated with improved moisture transport; polylactic acid rivalled typical thermoplastics as a bio-derived, compostable alternative. Although the need for biopolymer-based SAPs and foams remains, it is hoped that these findings will guide AHP design and promote research in sustainable materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
22 pages, 3743 KB  
Review
A Science Mapping Analysis of Computational Methods and Exploration of Electrical Transport Studies in Solar Cells
by Noor ul ain Ahmed, Patrizia Lamberti and Vincenzo Tucci
Materials 2026, 19(3), 452; https://doi.org/10.3390/ma19030452 - 23 Jan 2026
Viewed by 23
Abstract
This study investigates the state of the art related to the computational methods for solar cells. Numerical modeling is a basic pillar that is used to ensure the robust design of any device. In this paper, the results of a detailed science mapping-based [...] Read more.
This study investigates the state of the art related to the computational methods for solar cells. Numerical modeling is a basic pillar that is used to ensure the robust design of any device. In this paper, the results of a detailed science mapping-based analysis on the publications that focus on the “numerical modelling of solar cells” are presented. The query was conducted on the Web of Science for 2014–2024, and a subsequent filtering was performed. The results of this analysis provided the answers to the five research questions posed. The paper has been divided into two parts. In the first part, the literature search began with a broad examination, and 3259 studies were included in the analysis. To present the results in a visual form, graphs created using VOS viewer software have been used to identify the pattern of co-authorship, the geographical distribution of the authors, and the keywords most frequently used. In the second part, the analysis focused on three main aspects: (i) the influence of absorber layer thickness on optical absorption and device efficiency, (ii) the role of different ETL/HTL materials in charge transport, and (iii) the effect of illumination conditions on carrier dynamics and photovoltaic performance. By integrating the results across these dimensions, the study provides a comprehensive understanding of how these parameters collectively determine the efficiency and reliability of perovskite solar cells. Full article
Show Figures

Graphical abstract

23 pages, 3262 KB  
Article
Designing Bio-Hybrid Sandwich Composites: Charpy Impact Performance of Polyester/Glass Systems Reinforced with Musa paradisiaca Fibres
by Aldo Castillo-Chung, Luis Aguilar-Rodríguez, Ismael Purizaga-Fernández and Alexander Yushepy Vega Anticona
J. Compos. Sci. 2026, 10(2), 59; https://doi.org/10.3390/jcs10020059 (registering DOI) - 23 Jan 2026
Viewed by 58
Abstract
This study investigates the design of bio-hybrid sandwich composites by combining polyester/glass skins with cores reinforced by continuous Musa paradisiaca fibres. The aim is to quantify how fibre weight fraction and alkaline surface treatment control the Charpy impact performance of these systems. Sandwich [...] Read more.
This study investigates the design of bio-hybrid sandwich composites by combining polyester/glass skins with cores reinforced by continuous Musa paradisiaca fibres. The aim is to quantify how fibre weight fraction and alkaline surface treatment control the Charpy impact performance of these systems. Sandwich laminates were manufactured with three fibre loadings in the core (20, 25 and 30 wt.%), using fibres in the as-received condition and after alkaline treatment in NaOH solution. Charpy impact specimens were machined from the laminates and tested according to ISO 179-1. Fibre morphology and fracture surfaces were examined by scanning electron microscopy, while Fourier-transform infrared spectroscopy was used to monitor changes in surface chemistry after alkaline treatment. The combined effect of fibre content and treatment on absorbed energy was assessed through a two-way analysis of variance. Increasing Musa paradisiaca fibre content up to 30 wt.% enhanced the impact energy of the sandwich composites, and alkaline treatment further improved performance by strengthening fibre–matrix adhesion and promoting fibre pull-out, crack deflection and bridging mechanisms. The best Charpy impact response was obtained for cores containing 30 wt.% NaOH-treated fibres, demonstrating that surface modification and optimised fibre loading are effective design parameters for toughening polyester/glass bio-hybrid sandwich composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

21 pages, 68333 KB  
Article
Tuning Ag/Co Metal Ion Composition to Control In Situ Nanoparticle Formation, Photochemical Behavior, and Magnetic–Dielectric Properties of UV–Cured Epoxy Diacrylate Nanocomposites
by Gonul S. Batibay, Sureyya Aydin Yuksel, Meral Aydin and Nergis Arsu
Nanomaterials 2026, 16(2), 143; https://doi.org/10.3390/nano16020143 - 21 Jan 2026
Viewed by 179
Abstract
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl [...] Read more.
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV–curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl ether acrylate (DEGEEA), and Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), which served as a Type I photoinitiator. These formulations were designed to enable the simultaneous photopolymerization and photoreduction of metal precursors at various Ag+/Co2+ ratios, resulting in nanocomposites containing in situ-formed Ag NPs, cobalt oxide NPs, and hybrid Ag–Co3O4 nanostructures. The photochemical, magnetic, and dielectric properties of the resulting nanocomposites were evaluated in comparison with those of the pure polymer using UV–Vis and Fourier Transform Infrared Spectroscopy (FT-IR), Photo-Differential Scanning Calorimetry (Photo-DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Impedance Analysis, and Vibrating Sample Magnetometry (VSM). Photo-DSC studies revealed that the highest conversion values were obtained for the BEA-Ag1Co1, BEA-Co, and BEA-Ag1Co2 samples, demonstrating that the presence of Co3O4 NPs enhances polymerization efficiency because of cobalt species participating in redox-assisted radical generation under UV irradiation, increasing the number of initiating radicals and leading to faster curing and higher final conversion. On the other hand, the Ag NPs, due to the SPR band formation at around 400 nm, compete with photoinitiator absorbance and result in a gradual decrease in conversion values. Crystal structures of the NPs were confirmed by XRD analyses. The dielectric and magnetic characteristics of the nanocomposites suggest potential applicability in energy-storage systems, electromagnetic interference mitigation, radar-absorbing materials, and related multifunctional electronic applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

21 pages, 5844 KB  
Article
Design and Material Characterisation of Additively Manufactured Polymer Scaffolds for Medical Devices
by Aidan Pereira, Amirpasha Moetazedian, Martin J. Taylor, Frances E. Longbottom, Heba Ghazal, Jie Han and Bin Zhang
J. Manuf. Mater. Process. 2026, 10(1), 39; https://doi.org/10.3390/jmmp10010039 - 21 Jan 2026
Viewed by 95
Abstract
Additive manufacturing has been adopted in several industries including the medical field to develop new personalised medical implants including tissue engineering scaffolds. Custom patient-specific scaffolds can be additively manufactured to speed up the wound healing process. The aim of this study was to [...] Read more.
Additive manufacturing has been adopted in several industries including the medical field to develop new personalised medical implants including tissue engineering scaffolds. Custom patient-specific scaffolds can be additively manufactured to speed up the wound healing process. The aim of this study was to design, fabricate, and evaluate a range of materials and scaffold architectures for 3D-printed wound dressings intended for soft tissue applications, such as skin repair. Multiple biocompatible polymers, including polylactic acid (PLA), polyvinyl alcohol (PVA), butenediol vinyl alcohol copolymer (BVOH), and polycaprolactone (PCL), were fabricated using a material extrusion additive manufacturing technique. Eight scaffolds, five with circular designs (knee meniscus angled (KMA), knee meniscus stacked (KMS), circle dense centre (CDC), circle dense edge (CDE), and circle no gradient (CNG)), and three square scaffolds (square dense centre (SDC), square dense edge (SDE), and square no gradient (SNG), with varying pore widths and gradient distributions) were designed using an open-source custom toolpath generator to enable precise control over scaffold architecture. An in vitro degradation study in phosphate-buffered saline demonstrated that PLA exhibited the greatest material stability, indicating minimal degradation under the tested conditions. In comparison, PVA showed improved performance relative to BVOH, as it was capable of absorbing a greater volume of exudate fluid and remained structurally intact for a longer duration, requiring up to 60 min to fully dissolve. Tensile testing of PLA scaffolds further revealed that designs with increased porosity towards the centre exhibited superior mechanical performance. The strongest scaffold design exhibited a Young’s modulus of 1060.67 ± 16.22 MPa and withstood a maximum tensile stress of 21.89 ± 0.81 MPa before fracture, while maintaining a porosity of approximately 52.37%. This demonstrates a favourable balance between mechanical strength and porosity that mimics key properties of engineered tissues such as the meniscus. Overall, these findings highlight the potential of 3D-printed, patient-specific scaffolds to enhance the effectiveness and customisation of tissue engineering treatments, such as meniscus repair, offering a promising approach for next-generation regenerative applications. Full article
Show Figures

Figure 1

1003 KB  
Proceeding Paper
Energy-Absorbing Lattice Structures: Design, Simulation and Manufacturing Evaluation
by Ciro Annicchiarico, Daniele Almonti and Nadia Ucciardello
Mater. Proc. 2025, 26(1), 5; https://doi.org/10.3390/materproc2025026005 (registering DOI) - 19 Jan 2026
Abstract
This study investigates the design, numerical analysis and manufacturing-oriented evaluation of two-dimensional energy-absorbing lattice structures. Several lattice geometries, including conventional honeycomb and non-conventional auxetic layouts, were modelled using CAD tools and analysed through static and explicit dynamic finite element simulations. The mechanical response [...] Read more.
This study investigates the design, numerical analysis and manufacturing-oriented evaluation of two-dimensional energy-absorbing lattice structures. Several lattice geometries, including conventional honeycomb and non-conventional auxetic layouts, were modelled using CAD tools and analysed through static and explicit dynamic finite element simulations. The mechanical response was evaluated in terms of deformation behaviour, reaction forces and energy dissipation. Results indicate that auxetic and anti-tetrachiral lattices exhibit more progressive deformation and reduced transmitted forces compared with honeycomb configurations. Manufacturing aspects were assessed through additive manufacturing simulations, providing a first screening of feasible geometries. The proposed workflow supports the selection of lattice families suitable for further experimental validation. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Materials)
Show Figures

Figure 1

19 pages, 2581 KB  
Article
Effect of Mo Layer Thickness on Bandwidth Tunability and Absorption Properties of Planar Ultra-Wideband Optical Absorbers
by Kao-Peng Min, Yu-Ting Gao, Cheng-Fu Yang, Walter Water and Chi-Ting Ho
Photonics 2026, 13(1), 86; https://doi.org/10.3390/photonics13010086 - 19 Jan 2026
Viewed by 114
Abstract
This study utilizes COMSOL Multiphysics (version 6.0) to design a planar ultra-broadband optical absorber with a multilayer configuration. The proposed structure consists of seven stacked layers arranged from bottom to top: W (h1, acting as a reflective substrate and transmission blocker), [...] Read more.
This study utilizes COMSOL Multiphysics (version 6.0) to design a planar ultra-broadband optical absorber with a multilayer configuration. The proposed structure consists of seven stacked layers arranged from bottom to top: W (h1, acting as a reflective substrate and transmission blocker), WSe2 (h2), SiO2 (h3), Ni (h4), SiO2 (h5), Mo (h6), and SiO2 (h7). One key finding of this study is that, when all other layer thicknesses are fixed, variations in the Mo layer thickness systematically induce a redshift in both the short- and long-wavelength cutoff edges. Notably, the long-wavelength cutoff exhibits a larger shift than the short-wavelength edge, resulting in an increased absorption bandwidth where absorptivity remains above 0.900. The second contribution is the demonstration that this planar structure can be readily engineered to achieve ultra-broadband absorption, spanning from the near-ultraviolet and visible region (360 nm) to the mid-infrared (6300 nm). An important characteristic of the proposed design is that the thickness of the h7 SiO2 layer influences the cutoff wavelength at the short-wavelength edge, while the thickness of the h6 Mo layer governs the cutoff position at the long-wavelength edge. This dual modulation capability allows the proposed optical absorber to flexibly tune both the spectral range and the bandwidth in which absorptivity exceeds 0.900, thereby enabling the realization of a wavelength- and bandwidth-tunable optical absorber. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

17 pages, 4065 KB  
Article
Inverse Electromagnetic Parameter Design of Single-Layer P-Band Radar Absorbing Materials
by Guoxu Feng, Jie Huang, Jinwang Wang, Kaiqiang Wen, Quancheng Gu and Han Wang
Photonics 2026, 13(1), 83; https://doi.org/10.3390/photonics13010083 - 19 Jan 2026
Viewed by 103
Abstract
In response to the significant threat posed by low-frequency P-band anti-stealth radar to aircraft stealth capabilities, this paper examines the inverse design of electromagnetic parameters for a single-layer, thin P-band radar absorbing material. An efficient computational model is constructed by integrating impedance boundary [...] Read more.
In response to the significant threat posed by low-frequency P-band anti-stealth radar to aircraft stealth capabilities, this paper examines the inverse design of electromagnetic parameters for a single-layer, thin P-band radar absorbing material. An efficient computational model is constructed by integrating impedance boundary conditions with the characteristic basis function method. The NSGA-II genetic algorithm is employed to accomplish multi-objective co-optimization of electromagnetic parameters and material thickness. Results demonstrate that the optimized single-layer RAM, with a relative permittivity of μr = 3.3078 + j3.9018 and permeability of εr = 2.3522 + j6.9519, exhibits outstanding P-band absorption characteristics within a thickness constraint of only 1 mm. Applying this RAM to aircraft wing components’ leading/trailing edges, intake duct cavities, and lip areas effectively suppresses edge diffraction and cavity scattering. The target achieves a maximum forward average RCS reduction of −13.97 dB and a maximum rearward average RCS reduction of −5.03 dB, maintaining stable performance within a pitch angle range of 0° ± 5°. Full article
Show Figures

Figure 1

29 pages, 3377 KB  
Review
Application of Magnetorheological Damper in Aircraft Landing Gear: A Systematic Review
by Quoc-Viet Luong
Machines 2026, 14(1), 106; https://doi.org/10.3390/machines14010106 - 16 Jan 2026
Viewed by 143
Abstract
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and [...] Read more.
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and inability to adjust to changing operating conditions, these passive systems have several limitations. Recent research has focused on creating intelligent landing gear systems with magnetic dampers (MR) to overcome these limitations. By changing the magnetic field acting on the MR fluid, MR dampers provide semi-active control of the landing gear dynamics and adjust the damping force in real time. This flexibility reduces structural load during landing, increases riding comfort, and improves energy absorption efficiency. This study examines the current state of MR damper application for aircraft landing gear. The review categorizes current control techniques and highlights the structural integration of MR dampers in landing gear assemblies. Purpose: The magnetorheological (MR) damper has become a promising semiactive system to replace the conventional passive damper in aircraft landing gear. However, the mechanical structure and control strategy of the MR damper must be designed to be suitable for aircraft landing gear applications. Methods: Researchers have explored the potential structure designed, the mathematical model of the MR landing gear system, and the control algorithm that was developed for aircraft landing gear applications. Results: According to the mathematical model of the MR damper, three types of models, which are pseudo-static models, parametric models, and unparameterized models, are detailed with their application. Based on these mathematical models, many control algorithms were studied, from classical control, such as PID and skyhook control, to modern control, such as intelligent control and SMC control. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

19 pages, 4395 KB  
Article
An Attention-Based Bidirectional Feature Fusion Algorithm for Insulator Detection
by Binghao Gao, Jinyu Guo, Yongyue Wang, Dong Li and Xiaoqiang Jia
Sensors 2026, 26(2), 584; https://doi.org/10.3390/s26020584 - 15 Jan 2026
Viewed by 177
Abstract
To maintain reliability, safety, and sustainability in power transmission, insulator defect detection has become a critical task in power line inspection. Due to the complex backgrounds and small defect sizes encountered in insulator defect images, issues such as false detections and missed detections [...] Read more.
To maintain reliability, safety, and sustainability in power transmission, insulator defect detection has become a critical task in power line inspection. Due to the complex backgrounds and small defect sizes encountered in insulator defect images, issues such as false detections and missed detections often occur. The existing You Only Look Once (YOLO) object detection algorithm is currently the mainstream method for image-based insulator defect detection in power lines. However, existing models suffer from low detection accuracy. To address this issue, this paper presents an improved YOLOv5-based MC-YOLO insulator detection algorithm. To effectively extract multi-scale information and enhance the model’s ability to represent feature information, a multi-scale attention convolutional fusion (MACF) module incorporating an attention mechanism is proposed. This module utilises parallel convolutions with different kernel sizes to effectively extract features at various scales and highlights the feature representation of key targets through the attention mechanism, thereby improving the detection accuracy. Additionally, a cross-context feature fusion module (CCFM) is designed, where shallow features gain partial deep semantic supplementation and deep features absorb shallow spatial information, achieving bidirectional information flow. Furthermore, the Spatial-Channel Dual Attention Module (SCDAM) is introduced into CCFM. By incorporating a dynamic attention-guided bidirectional cross-fusion mechanism, it effectively resolves the feature deviation between shallow details and deep semantics during multi-scale feature fusion. The experimental results show that the MC-YOLO algorithm achieves an mAP@0.5 of 67.4% on the dataset used in this study, which is a 4.1% improvement over the original YOLOv5. Although the FPS is slightly reduced compared to the original model, it remains practical and capable of rapidly and accurately detecting insulator defects. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

11 pages, 2119 KB  
Proceeding Paper
The Influence of Printing Parameters on the Impact Strength of FDM 3D-Printed Polylactic Acid
by Tsvetomir Gechev, Veselin Tsonev, Petar Ivanov, Ivan Kralov and Krasimir Nedelchev
Eng. Proc. 2026, 121(1), 14; https://doi.org/10.3390/engproc2025121014 - 13 Jan 2026
Viewed by 136
Abstract
The paper investigates experimentally the influence of infill density, infill pattern, layer height, wall number, printing orientation, and material color on the impact strength of 3D-printed PLA (polylactic acid) samples by using the Charpy test method. The used printing method is FDM (Fused [...] Read more.
The paper investigates experimentally the influence of infill density, infill pattern, layer height, wall number, printing orientation, and material color on the impact strength of 3D-printed PLA (polylactic acid) samples by using the Charpy test method. The used printing method is FDM (Fused Deposition Modeling) performed on a desktop printer. For each parameter changed in the study, five separate unnotched specimens were produced and tested, and the average impact strength value was taken into account. The filament rolls went through a drying process before printing and were then stored in a low-humidity environment filled with desiccant in order to minimize the effect of absorbed humidity in the filament during the experiments. The conditioning and testing of samples were performed according to the EN ISO 179-1 standard. Dimensional accuracy, print times, and filament consumption were also estimated in the study. The results revealed that the infill density, infill pattern, and wall number have a larger influence on the impact energy absorbed by the samples in comparison to the layer height, printing orientation, and the PLA filament color. The best optimization of the studied mechanical property was obtained by increasing the infill percentage and the number of walls. Applying different PLA colors has a slight effect on the impact strength, yet it should be taken into consideration when designing 3D-printed products that are intended to withstand impact. Moreover, it was found out that the studied parameters have an insignificant effect on the dimensional accuracy of the produced samples. Full article
Show Figures

Figure 1

20 pages, 7496 KB  
Article
Behaviour of Shear Stress Distribution in Steel Sections Under Static and Dynamic Loads
by Alaa Al-Mosawe, Doha Al-Mosawe, Shahad A. Hamzah, Bahaa Al-Atta and Abbas A. Allawi
Infrastructures 2026, 11(1), 27; https://doi.org/10.3390/infrastructures11010027 - 12 Jan 2026
Viewed by 152
Abstract
Shear lag is the phenomenon that occurs when a supported slender member undergoes deformation from lateral loading, causing in-plane non-uniform distribution of stresses that results in reducing the member’s minimum strength capacity. This paper investigates the behaviour of shear distribution in steel I-section [...] Read more.
Shear lag is the phenomenon that occurs when a supported slender member undergoes deformation from lateral loading, causing in-plane non-uniform distribution of stresses that results in reducing the member’s minimum strength capacity. This paper investigates the behaviour of shear distribution in steel I-section and box girders when subjected to both static and impact loadings. Three-dimensional finite element analysis models were prepared in Strand7 and validated against experimental results providing a basis for further comparison research into shear lagging effects. A parametric study was conducted comparing the effects of impact loading through certain specified velocities at the midspan of restrained ends. It provided new insights into the distribution of shear lag and prevalence of loading locality when considering unique impact scenarios. Impact loads provided different shear-lag results compared to static loads as the material’s properties absorb energy through deformation and distribution of stress. Furthermore, the study highlights the need for additional investigation into a variety of impact scenarios and possible factors for designers to consider when implementing members in structures. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

11 pages, 2682 KB  
Article
A Metasticker Composed of Indium-Tin-Oxide-Square-Fractal Rings for Broadband Absorption
by Min-Sik Kim, Won-Woo Choi and Yongjune Kim
Materials 2026, 19(2), 297; https://doi.org/10.3390/ma19020297 - 12 Jan 2026
Viewed by 166
Abstract
This study proposes design and fabrication methods for an electromagnetic metasurface absorber (MA) that absorbs electromagnetic waves using a metasticker attached on a dielectric substrate blocked by a copper sheet. To guarantee a high design freedom as well as make the absorption bandwidth [...] Read more.
This study proposes design and fabrication methods for an electromagnetic metasurface absorber (MA) that absorbs electromagnetic waves using a metasticker attached on a dielectric substrate blocked by a copper sheet. To guarantee a high design freedom as well as make the absorption bandwidth (BW) as broad as possible, a square-fractal ring is chosen as the metapattern, and its design is optimized using a genetic algorithm. To fabricate the square-fractal rings in a simple manner, an indium-tin-oxide film is cut by using a laser-cutting machine. Then, the metasticker is fabricated by assembling the metapatterns on a double-sided adhesive film which could be attached on the dielectric substrate using the opposite side of the film. From measured results of the finalized MA of which damaged regions caused by the laser-cutting process are compensated in the design process, a broad 10 dB reflectance BW is confirmed from 4.39 to 7.51 GHz of which the fractional BW is 52.44% for the normal incidence. Moreover, a fractional BW of 4.35% is measured in a wide incident angle range from 0° to 60° for both the transverse electric and the transverse magnetic polarizations simultaneously. Full article
Show Figures

Graphical abstract

21 pages, 5342 KB  
Article
The Effect of Humidity and UV Light Exposure on the Mechanical Properties of PA6 Matrix Reinforced with Short Carbon Fibers and Built by Additive Manufacturing
by Bernardo Reyes-Flores, Jorge Guillermo Díaz-Rodríguez, Efrain Uribe-Beas, Edgar R. López-Mena and Alejandro Guajardo-Cuéllar
Polymers 2026, 18(2), 164; https://doi.org/10.3390/polym18020164 - 7 Jan 2026
Viewed by 345
Abstract
This work presents results of nylon-based composites used in additive manufacturing (AM) subjected to 24, 48, 96, 168, 336, and 504 h of continuous exposure to UV and 50% humidity. Sample coupons were built on a Markforged Two® printer. To mimic UV [...] Read more.
This work presents results of nylon-based composites used in additive manufacturing (AM) subjected to 24, 48, 96, 168, 336, and 504 h of continuous exposure to UV and 50% humidity. Sample coupons were built on a Markforged Two® printer. To mimic UV exposure, samples were exposed to 253 nm UV light (UV–C), whereas for humidity, samples were placed at 50% relative humidity and 22 °C in a bi-distilled water atmosphere. The effects of said exposure were measured in tensile, Charpy impact energy, mass absorption, and Shore hardness D tests. Nylon gained 5.6% ± 0.48 mass after 504 h. For Charpy, absorbed energy went down from 0.463 J/mm2 to 0.28 J/mm2 at 504 h of humidity exposure. For Shore D, the variation goes from 59.1 ± 0.82 for zero exposure to 66.8 ± 2.5 at 504 h of UV exposure. Conversely, UV exposure induced an increase in Young’s modulus and Shore hardness, while significantly reducing impact energy to 0.32 J/mm2, indicating embrittlement confirmed by SEM analysis. FTIR analysis revealed hydrolytic degradation under humidity and photo-oxidative degradation under UV, affecting N–H and C=O bonds. These findings allow a designer to project the residual mechanical properties of a component up to its last day of service. Full article
Show Figures

Graphical abstract

13 pages, 5513 KB  
Article
Structure-Enhanced Stress Attenuation in Magnetically Tunable Microstructures: A Numerical Study of Engineered BCT Lattices
by Kuei-Ping Feng, Chin-Cheng Liang and Yan-Hom Li
Micromachines 2026, 17(1), 81; https://doi.org/10.3390/mi17010081 - 7 Jan 2026
Viewed by 176
Abstract
Magnetorheological fluids (MRFs) exhibit dynamic, field-responsive mechanical properties, as they form chain-like and networked microstructures under magnetic stimuli. This study numerically investigates the structural and mechanical behavior of three-dimensional (3D) microbead chain assemblies, focusing on cubic and hexagonal body-centered tetragonal (BCT) configurations formed [...] Read more.
Magnetorheological fluids (MRFs) exhibit dynamic, field-responsive mechanical properties, as they form chain-like and networked microstructures under magnetic stimuli. This study numerically investigates the structural and mechanical behavior of three-dimensional (3D) microbead chain assemblies, focusing on cubic and hexagonal body-centered tetragonal (BCT) configurations formed under compressive and magnetic field-driven aggregation. A finite element-based model simulates magnetostatic and stress evolution in solidified structures composed of up to 20 particle chains. The analysis evaluates magnetic flux distribution, total magnetic force, and time-resolved stress profiles under vertical loading. Results show that increasing chain density significantly enhances magnetic coupling and reduces peak stress, especially in hexagonal lattices, where early stress equilibration and superior lateral load distribution are observed. The hexagonal BCT structure exhibits superior resilience, lower stress concentrations, and faster dissipation under dynamic loads. These findings offer insights into designing energy-absorbing MRF-based materials for impact mitigation, adaptive damping, and protective microfluidic structures. Full article
(This article belongs to the Special Issue Microfluidic Systems for Sustainable Energy)
Show Figures

Figure 1

Back to TopTop