Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = aboveground biomass estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 - 3 Aug 2025
Viewed by 65
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 436
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

27 pages, 7785 KiB  
Article
Estimation of Potato Growth Parameters Under Limited Field Data Availability by Integrating Few-Shot Learning and Multi-Task Learning
by Sen Yang, Quan Feng, Faxu Guo and Wenwei Zhou
Agriculture 2025, 15(15), 1638; https://doi.org/10.3390/agriculture15151638 - 29 Jul 2025
Viewed by 230
Abstract
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises [...] Read more.
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises model accuracy and generalizability, impeding large-scale regional applications. This study proposes a novel deep learning model that integrates multi-task learning and few-shot learning to address the challenge of low data in growth parameter prediction. Two multi-task learning architectures, MTL-DCNN and MTL-MMOE, were designed based on deep convolutional neural networks (DCNNs) and multi-gate mixture-of-experts (MMOE) for the simultaneous estimation of LCC, LAI, and AGB from Sentinel-2 imagery. Building on this, a few-shot learning framework for growth prediction (FSLGP) was developed by integrating simulated spectral generation, model-agnostic meta-learning (MAML), and meta-transfer learning strategies, enabling accurate prediction of multiple growth parameters under limited data availability. The results demonstrated that the incorporation of calibrated simulated spectral data significantly improved the estimation accuracy of LCC, LAI, and AGB (R2 = 0.62~0.73). Under scenarios with limited field measurement data, the multi-task deep learning model based on few-shot learning outperformed traditional mixed inversion methods in predicting potato growth parameters (R2 = 0.69~0.73; rRMSE = 16.68%~28.13%). Among the two architectures, the MTL-MMOE model exhibited superior stability and robustness in multi-task learning. Independent spatiotemporal validation further confirmed the potential of MTL-MMOE in estimating LAI and AGB across different years and locations (R2 = 0.37~0.52). These results collectively demonstrated that the proposed FSLGP framework could achieve reliable estimation of crop growth parameters using only a very limited number of in-field samples (approximately 80 samples). This study can provide a valuable technical reference for monitoring and predicting growth parameters in other crops. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 391
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 438
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 241
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 302
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Graphical abstract

24 pages, 14887 KiB  
Article
Estimation and Change Analysis of Grassland AGB in the China–Mongolia–Russia Border Area Based on Multi-Source Geospatial Data
by Jiani Ma, Chao Zhang, Cong Ou, Chi Qiu, Cuicui Yang, Beibei Wang and Urtnasan Mandakh
Remote Sens. 2025, 17(14), 2527; https://doi.org/10.3390/rs17142527 - 20 Jul 2025
Viewed by 454
Abstract
Aboveground biomass (AGB) is a critical indicator for assessing carbon sequestration and ecosystem health in transboundary ecologically fragile areas. High-precision estimation and spatiotemporal inversion of AGB are the key to investigating transition zones. However, inadequate feature selection and complex parameter tuning limit accuracy [...] Read more.
Aboveground biomass (AGB) is a critical indicator for assessing carbon sequestration and ecosystem health in transboundary ecologically fragile areas. High-precision estimation and spatiotemporal inversion of AGB are the key to investigating transition zones. However, inadequate feature selection and complex parameter tuning limit accuracy and spatiotemporal representation in the estimation model. An AGB estimation model that integrates SHAP-based feature selection with a particle swarm optimization-enhanced random forest model (RF_PSO) was proposed. Then AGB trajectory clustering was used to characterize the grassland change pattern. The method was applied to grasslands across the China–Mongolia–Russia (CMR) border area from 2000 to 2020. The results show that (1) the SHAP-RF_PSO model achieved the highest accuracy (R2 = 0.87, RMSE = 45.8 g/m2), outperforming other estimation models. (2) AGB improvements were observed in 72.13% of the area, mainly in MN_EA, MN_CE, and CN_NMG, while 27.39% showed degradation, concentrated in CN_NMG and MN_CE. The stable area accounts for 0.48%, which is scattered in RU_BU and RU_ZA.CN_NMG. (3) Four change patterns, namely Fluctuating Low, Stable Low, Fluctuating High, and Stable High, were identified, with major shifts in 2007, 2012, and 2014. (4) Projections indicate that 80% of the region may maintain current trends, 13% may reverse, and 7% remain uncertain, requiring targeted interventions. This study offers a robust tool for high-precision AGB estimation and supports dynamic monitoring in the CMR border area. Full article
Show Figures

Figure 1

27 pages, 2736 KiB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 580
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Graphical abstract

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 458
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

23 pages, 2695 KiB  
Article
Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height
by Yi Wu, Yu Chen, Chunhong Tian, Ting Yun and Mingyang Li
Remote Sens. 2025, 17(14), 2509; https://doi.org/10.3390/rs17142509 - 18 Jul 2025
Viewed by 370
Abstract
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest [...] Read more.
Forest biomass is closely related to carbon sequestration capacity and can reflect the level of forest management. This study utilizes four machine learning algorithms, namely Multivariate Stepwise Regression (MSR), K-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), and Random Forest (RF), to estimate forest aboveground biomass (AGB) in Chenzhou City, Hunan Province, China. In addition, a canopy height model, constructed from a digital surface model (DSM) derived from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and an ICESat-2-corrected SRTM DEM, is incorporated to quantify its impact on the accuracy of AGB estimation. The results indicate the following: (1) The incorporation of multi-source remote sensing data significantly improves the accuracy of AGB estimation, among which the RF model performs the best (R2 = 0.69, RMSE = 24.26 t·ha−1) compared with the single-source model. (2) The canopy height model (CHM) obtained from InSAR-LiDAR effectively alleviates the signal saturation effect of optical and SAR data in high-biomass areas (>200 t·ha−1). When FCH is added to the RF model combined with multi-source remote sensing data, the R2 of the AGB estimation model is improved to 0.74. (3) In 2018, AGB in Chenzhou City shows clear spatial heterogeneity, with a mean of 51.87 t·ha−1. Biomass increases from the western hilly part (32.15–68.43 t·ha−1) to the eastern mountainous area (89.72–256.41 t·ha−1), peaking in Dongjiang Lake National Forest Park (256.41 t·ha−1). This study proposes a comprehensive feature integration framework that combines red-edge spectral indices for capturing vegetation physiological status, SAR-derived texture metrics for assessing canopy structural heterogeneity, and canopy height metrics to characterize forest three-dimensional structure. This integrated approach enables the robust and accurate monitoring of carbon storage in subtropical forests. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 2666 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Natural Forest Trees: Generalized or Species-Specific?
by Yuxin Shang, Yutong Xia, Xiaodie Ran, Xiao Zheng, Hui Ding and Yanming Fang
Diversity 2025, 17(7), 493; https://doi.org/10.3390/d17070493 - 18 Jul 2025
Viewed by 421
Abstract
Accurate estimation of aboveground biomass (AGB) in tree–shrub communities is critical for quantifying forest ecosystem productivity and carbon sequestration potential. Although generalized allometric equations offer expediency in natural forest AGB estimation, their neglect of interspecific variability introduces methodological pitfalls. Precise AGB prediction necessitates [...] Read more.
Accurate estimation of aboveground biomass (AGB) in tree–shrub communities is critical for quantifying forest ecosystem productivity and carbon sequestration potential. Although generalized allometric equations offer expediency in natural forest AGB estimation, their neglect of interspecific variability introduces methodological pitfalls. Precise AGB prediction necessitates resolving two biological constraints: phylogenetic conservation of allometric coefficients and ontogenetic regulation of scaling relationships. This study establishes an integrated framework combining the following: (1) phylogenetic signal detection (Blomberg’s K/Pagel’s λ) across 157 species’ allometric equations, revealing weak but significant evolutionary constraints (λ = 0.1249, p = 0.0027; K ≈ 0, p = 0.621); (2) hierarchical error decomposition of 9105 stems in a Mt. Wuyishan forest dynamics plot (15 species), identifying family-level error stratification (e.g., Theaceae vs. Myrtaceae, Δerror > 25%); (3) ontogenetic trajectory analysis of Castanopsis eyrei between Mt. Wuyishan and Mt. Huangshan, demonstrating significant biomass deviations in small trees (5–15 cm DBH, p < 0.05). Key findings resolve the following hypotheses: (1) absence of strong phylogenetic signals validates generalized models for phylogenetically diverse communities; (2) ontogenetic regulation dominates error magnitude, particularly in early developmental stages; (3) differential modeling is recommended: species-specific equations for pure forests/seedlings vs. generalized equations for mixed mature forests. This work establishes an error hierarchy: ontogeny > taxonomy > phylogeny, providing a mechanistic basis for optimizing forest carbon stock assessments. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

27 pages, 4738 KiB  
Article
A Dual-Variable Selection Framework for Enhancing Forest Aboveground Biomass Estimation via Multi-Source Remote Sensing
by Dapeng Chen, Hongbin Luo, Zhi Liu, Jie Pan, Yong Wu, Er Wang, Chi Lu, Lei Wang, Weibin Wang and Guanglong Ou
Remote Sens. 2025, 17(14), 2493; https://doi.org/10.3390/rs17142493 - 17 Jul 2025
Viewed by 291
Abstract
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To [...] Read more.
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To this end, this study employed six types of remote sensing data—Landsat 8 OLI, Sentinel-2A, GEDI, ICESat-2, ALOS-2, and SAOCOM. A dual-variable selection strategy based on SHapley Additive exPlanations (SHAP) was developed, and a genetic algorithm (GA) was used to optimize the parameters of five machine learning models—elastic net (EN), least absolute shrinkage and selection operator (Lasso), support vector regression (SVR), Random Forest (RF), and Categorical Boosting (CatBoost)—to estimate the AGB of Pinus kesiya var. langbianensis forest in Wuyi Village, Zhenyuan County. The dual-variable selection strategy integrates SHAP with the Pearson correlation coefficient (PC), RF, EN, and Lasso to enhance feature screening robustness and interpretability. The results of the study showed that Lasso-SHAP dual-variate screening was more stable than SHAP univariate screening. In particular, the Lasso-SHAP strategy improved the average R2 from 0.59 (using SHAP alone) to above 0.70, achieving an enhancement of 11%. Among GA-optimized parametric machine learning models, the linear GA-Lasso achieved the best performance, with an R2 of 0.91 and an RMSE of 12.94 Mg/ha, followed by the GA-EN model (R2 = 0.89, RMSE = 14.46 Mg/ha). For nonlinear models, GA-SVR performed the best (R2 = 0.74, RMSE = 22.07 Mg/ha), surpassing the GA-CatBoost model (R2 = 0.64, RMSE = 25.88 Mg/ha). In summary, the Lasso-SHAP dual-variable selection strategy effectively improves the estimation accuracy of AGB for Pinus kesiya var. langbianensis forests, while GA-optimized machine learning models demonstrate excellent performance, providing strong support for regional-scale forest resource monitoring and carbon stock assessment. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

19 pages, 2494 KiB  
Article
Assessing Forest Structure and Biomass with Multi-Sensor Remote Sensing: Insights from Mediterranean and Temperate Forests
by Maria Cristina Mihai, Sofia Miguel, Ignacio Borlaf-Mena, Julián Tijerín-Triviño and Mihai Tanase
Forests 2025, 16(7), 1164; https://doi.org/10.3390/f16071164 - 15 Jul 2025
Viewed by 384
Abstract
Forests provide habitat for diverse species and play a key role in mitigating climate change. Remote sensing enables efficient monitoring of many forest attributes across vast areas, thus supporting effective and efficient management strategies. This study aimed to identify an effective combination of [...] Read more.
Forests provide habitat for diverse species and play a key role in mitigating climate change. Remote sensing enables efficient monitoring of many forest attributes across vast areas, thus supporting effective and efficient management strategies. This study aimed to identify an effective combination of remote sensing sensors for estimating biophysical variables in Mediterranean and temperate forests that can be easily translated into an operational context. Aboveground biomass (AGB), canopy height (CH), and forest canopy cover (FCC) were estimated using a combination of optical (Sentinel-2, Landsat) and radar sensors (Sentinel-1 and TerraSAR-X/TanDEM-X), along with records of past forest disturbances and topography-related variables. As a reference, lidar-derived AGB, CH, and FCC were used. Model performance was assessed not only with standard approaches such as out-of-bag sampling but also with completely independent lidar-derived reference datasets, thus enabling evaluation of the model’s temporal inference capacity. In Mediterranean forests, models based on optical imagery outperformed the radar-enhanced models when estimating FCC and CH, with elevation and spectral indices being key predictors of forest structure. In contrast, in denser temperate forests, radar data (especially X-band relative heights) were crucial for estimating CH and AGB. Incorporating past disturbance data further improved model accuracy in these denser ecosystems. Overall, this study underscores the value of integrating multi-source remote sensing data while highlighting the limitations of temporal extrapolation. The presented methodology can be adapted to enhance forest variable estimation across many forest ecosystems. Full article
Show Figures

Figure 1

23 pages, 3492 KiB  
Article
A Multimodal Deep Learning Framework for Accurate Biomass and Carbon Sequestration Estimation from UAV Imagery
by Furkat Safarov, Ugiloy Khojamuratova, Misirov Komoliddin, Xusinov Ibragim Ismailovich and Young Im Cho
Drones 2025, 9(7), 496; https://doi.org/10.3390/drones9070496 - 14 Jul 2025
Viewed by 339
Abstract
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to [...] Read more.
Accurate quantification of above-ground biomass (AGB) and carbon sequestration is vital for monitoring terrestrial ecosystem dynamics, informing climate policy, and supporting carbon neutrality initiatives. However, conventional methods—ranging from manual field surveys to remote sensing techniques based solely on 2D vegetation indices—often fail to capture the intricate spectral and structural heterogeneity of forest canopies, particularly at fine spatial resolutions. To address these limitations, we introduce ForestIQNet, a novel end-to-end multimodal deep learning framework designed to estimate AGB and associated carbon stocks from UAV-acquired imagery with high spatial fidelity. ForestIQNet combines dual-stream encoders for processing multispectral UAV imagery and a voxelized Canopy Height Model (CHM), fused via a Cross-Attentional Feature Fusion (CAFF) module, enabling fine-grained interaction between spectral reflectance and 3D structure. A lightweight Transformer-based regression head then performs multitask prediction of AGB and CO2e, capturing long-range spatial dependencies and enhancing generalization. Proposed method achieves an R2 of 0.93 and RMSE of 6.1 kg for AGB prediction, compared to 0.78 R2 and 11.7 kg RMSE for XGBoost and 0.73 R2 and 13.2 kg RMSE for Random Forest. Despite its architectural complexity, ForestIQNet maintains a low inference cost (27 ms per patch) and generalizes well across species, terrain, and canopy structures. These results establish a new benchmark for UAV-enabled biomass estimation and provide scalable, interpretable tools for climate monitoring and forest management. Full article
(This article belongs to the Special Issue UAVs for Nature Conservation Tasks in Complex Environments)
Show Figures

Figure 1

Back to TopTop