Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = abandoned underground mines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 710 KiB  
Article
A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
by Yinhua Guo, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang and Zhan Chen
Plants 2025, 14(14), 2202; https://doi.org/10.3390/plants14142202 - 16 Jul 2025
Viewed by 298
Abstract
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were [...] Read more.
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were collected from an abandoned coal mine and adjacent pristine natural areas within the dam-adjacent section of the Three Gorges Reservoir Area to establish three soil treatment groups: unpolluted soil (T1, 0.18 mg·kg−1 Cd), a 1:1 mixture of contaminated and unpolluted soil (T2, 0.35 mg·kg−1 Cd), and contaminated coal mine soil (T3, 0.54 mg·kg−1 Cd). This study aimed to investigate the growth status of plants, Cd accumulation and translocation characteristics, and the relationship between them and soil environmental factors. Woody plants exhibited significant advantages in aboveground biomass accumulation. Under T3 treatment, the Cd extraction amount of S. babylonica (224.93 mg) increased by about 36 times compared to T1, and the extraction efficiency (6.42%) was significantly higher than other species. Among the herbaceous species, A. argyi showed the maximum Cd extraction amount (66.26 mg) and extraction efficiency (3.11%) during T2 treatment. While A. hypochondriacus exhibited a trend of increasing extraction amount but decreasing extraction efficiency with increasing concentration. With the exception of S. babylonica under T1 treatment (BCF = 0.78), the bioconcentration factor was greater than 1 in both woody (BCF = 1.39–6.42) and herbaceous species (BCF = 1.39–3.11). However, herbaceous plants demonstrated significantly higher translocation factors (TF = 1.58–3.43) compared to woody species (TF = 0.31–0.87). There was a significant negative correlation between aboveground phosphorus (P) content and root Cd (p < 0.05), while underground nitrogen (N) content was positively correlated to aboveground Cd content (p < 0.05). Soil total N and available P were significantly positively correlated with plant Cd absorption, whereas total potassium (K) showed a negative correlation. This study demonstrated that woody plants can achieve long-term remediation through biomass advantages, while herbaceous plants, with their high transfer efficiency, are suitable for short-term rotation. In the future, it is suggested to conduct a mixed planting model of woody and herbaceous plants to remediate Cd-contaminated soils in the tailing areas of reservoir areas. This would synergistically leverage the dual advantages of root retention and aboveground removal, enhancing remediation efficiency. Concurrent optimization of soil nutrient management would further improve the Cd remediation efficiency of plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Predictability and Impact of Structural Reinforcement on Unplanned Dilution in Sublevel Stoping Operations
by Thaís Janine Oliveira and Anna Luiza Marques Ayres da Silva
Resources 2025, 14(7), 104; https://doi.org/10.3390/resources14070104 - 24 Jun 2025
Viewed by 627
Abstract
Unplanned dilution is a critical challenge in underground mining, directly affecting operating costs, resource recovery, stope stability and operational safety. This study presents an empirical–statistical framework that integrates the Mathews–Potvin stability graph, the Equivalent Linear Overbreak/Slough (ELOS) metric, and a site-specific linear calibration [...] Read more.
Unplanned dilution is a critical challenge in underground mining, directly affecting operating costs, resource recovery, stope stability and operational safety. This study presents an empirical–statistical framework that integrates the Mathews–Potvin stability graph, the Equivalent Linear Overbreak/Slough (ELOS) metric, and a site-specific linear calibration to improve dilution prediction in sublevel stoping operations. A database of more than 65 stopes from a Brazilian underground zinc mine was analyzed and classified as cable-bolted, non-cable-bolted, or self-supported. Planned dilution derived from the Potvin graph was compared with actual ELOS measured by cavity-monitoring surveys. Results show a strong correlation between cable-bolted/supported stopes (r = 0.918), whereas non-cabled/unsupported and self-supported stopes display lower correlations (r = 0.755 and 0.767). Applying a site-specific linear calibration lowered the mean absolute dilution error from 0.126 m to 0.101 m (≈20%), with the largest improvement (≈29%) occurring in self-supported stopes where the unadjusted graph is least reliable. Because the equation can be embedded in routine stability calculations, mines can obtain more realistic forecasts without abandoning established empirical workflows. Beyond geotechnical accuracy, the calibrated forecasts improve grade-control decisions, reduce unnecessary waste haulage, and extend resource life—thereby enhancing both the efficiency and the accessibility of mineral resources. This research delivers the first Brazilian case study that couples Potvin analysis with ELOS back-analysis to generate an operational calibration tool, offering a practical pathway for other sites to refine dilution estimates while retaining the simplicity of empirical design. Full article
(This article belongs to the Special Issue Mineral Resource Management 2025: Assessment, Mining and Processing)
Show Figures

Figure 1

25 pages, 1610 KiB  
Article
Study on the Seismic Stability of Urban Sewage Treatment and Underground Reservoir of an Abandoned Mine Pumped Storage Power Station
by Baoyu Wei, Lu Gao and Hongbao Zhao
Sustainability 2025, 17(12), 5620; https://doi.org/10.3390/su17125620 - 18 Jun 2025
Viewed by 478
Abstract
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities [...] Read more.
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities within these decommissioned mines. By utilizing the expansive underground voids left by coal extraction, this method aims to achieve multifaceted objectives: efficient energy storage and generation, reclamation of mine water, and treatment of urban sewage. This research enhances the development and deployment of pumped storage technology in the context of abandoned mines, demonstrating its potential for fostering sustainable energy solutions and optimizing urban infrastructure. This study not only facilitates the progressive transformation and modernization of energy cities but also provides crucial insights for future advances in ecological mining practices, energy efficiency, emission mitigation, and green development strategies in the mining industry. Full article
Show Figures

Figure 1

15 pages, 2052 KiB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Viewed by 843
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

16 pages, 3447 KiB  
Review
Autonomous Mobile Inspection Robots in Deep Underground Mining—The Current State of the Art and Future Perspectives
by Martyna Konieczna-Fuławka, Anton Koval, George Nikolakopoulos, Matteo Fumagalli, Laura Santas Moreu, Victor Vigara-Puche, Jakob Müller and Michael Prenner
Sensors 2025, 25(12), 3598; https://doi.org/10.3390/s25123598 - 7 Jun 2025
Viewed by 996
Abstract
In this article, the current state of the art in the area of autonomously working and mobile robots used for inspections in deep underground mining and exploration is described, and directions for future development are highlighted. The increasing demand for CRMs (critical raw [...] Read more.
In this article, the current state of the art in the area of autonomously working and mobile robots used for inspections in deep underground mining and exploration is described, and directions for future development are highlighted. The increasing demand for CRMs (critical raw materials) and deeper excavations pose a higher risk for people and require new solutions in the maintenance and inspection of both underground machines and excavations. Mitigation of risks and a reduction in accidents (fatal, serious and light) may be achieved by the implementation of mobile or partly autonomous solutions such as drones for exploration, robots for exploration or initial excavation, etc. This study examines various types of mobile unmanned robots such as ANYmal on legs, robots on a tracked chassis, or flying drones. The main scope of this review is the evaluation of the effectiveness and technological advancement in the aspect of improving safety and efficiency in deep underground and abandoned mines. Notable possibilities are multi-sensor systems or cooperative behaviors in systems which involve many robots. This study also highlights the challenges and difficulties of working and navigating (in an environment where we cannot use GNSS or GPS systems) in deep underground mines. Mobile inspection robots have a major role in transforming underground operations; nevertheless, there are still aspects that need to be developed. Further improvement might focus on increasing autonomy, improving sensor technology, and the integration of robots with existing mining infrastructure. This might lead to safer and more efficient extraction and the SmartMine of the future. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

24 pages, 4083 KiB  
Review
The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
by Yun Luo, Wei Liu, Hongxing Wang and Keyao Li
Energies 2025, 18(10), 2634; https://doi.org/10.3390/en18102634 - 20 May 2025
Viewed by 646
Abstract
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been [...] Read more.
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been proposed both currently and in the future, mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns, the storage media, such as gas, oil, compressed air and hydrogen, have been introduced respectively in terms of the current development and future implementation, with site-selection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m, while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness, and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes, including low-level nuclear waste and industrial waste, the applicable conditions, technical difficulties, and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally, but in China, policy and technical research require strengthening to promote its application. Furthermore, considering the recovery of salt mines and the development of salt industries, the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally. Full article
Show Figures

Figure 1

35 pages, 9411 KiB  
Review
A Review of Evaporite Beds Potential for Storage Caverns: Uncovering New Opportunities
by Sheida Sheikheh, Minou Rabiei and Vamegh Rasouli
Appl. Sci. 2025, 15(9), 4685; https://doi.org/10.3390/app15094685 - 23 Apr 2025
Viewed by 745
Abstract
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of [...] Read more.
Salt caverns serve as underground storage for crude oil, natural gas, compressed air, carbon dioxide, and hydrogen. Key stages of cavern development for storage purposes include design, construction, storage, and abandonment. The design phase addresses optimal cavern shape, size, pillar dimensions, number of caverns, the impact of interbeds, and cyclic loading while considering the creep behavior of salt and the mechanical behavior of surrounding layers. During this phase, geological factors such as depth, thickness, and the quality of salt are considered. For construction, two main methods—direct leaching and reverse leaching—are chosen based on design specifications. The storage stage includes the injection and withdrawal of gases in a cyclic manner with specific injection rates and pressures. After 30 to 50 years, the caverns are plugged and abandoned. The geological limitation of salt domes makes it essential to look for more bedded evaporites. This study provides a comprehensive review of bedded evaporites, including their origin and depositional environment. The stability of caverns in all these stages heavily relies on geomechanical analysis. Factors affecting the geomechanics of bedded salts such as mineralogy, physical properties, and mechanical properties are reviewed. A list of bedded evaporites in the U.S. and Canada, including their depth, thickness, and existing caverns, is provided. Additionally, this study discusses the main geomechanical considerations influencing design, solution mining, cyclic loading, and abandonment of caverns in bedded salt caverns. Full article
Show Figures

Figure 1

20 pages, 21130 KiB  
Article
Combined Solid-State LiDAR and Fluorescence Photogrammetry Imaging to Determine Uranyl Mineral Distribution in a Legacy Uranium Mine
by Thomas B. Scott, Ewan Woodbridge, Yannick Verbelen, Matthew Ryan Tucker, Lingteng Kong, Adel El-Turke, David Megson-Smith, Russell Malchow and Pamela C. Burnley
Sensors 2025, 25(7), 2094; https://doi.org/10.3390/s25072094 - 27 Mar 2025
Viewed by 591
Abstract
Determining the presence and abundance of uranium mineralization at legacy mine sites is important both for responsible environmental management and potential resource recovery. Technologies that can make such determinations quickly and at low costs are highly desirable. The current work focuses on demonstrating [...] Read more.
Determining the presence and abundance of uranium mineralization at legacy mine sites is important both for responsible environmental management and potential resource recovery. Technologies that can make such determinations quickly and at low costs are highly desirable. The current work focuses on demonstrating the use of simple handheld commercial-off-the-shelf (COTS) devices for rapidly determining the presence and distribution of uranyl minerals within an abandoned copper–uranium mine. Specifically, this work demonstrates the use of a COTS iPhone 13 Pro smartphone with an inbuilt solid-state LiDAR (laser) scanner in combination with a handheld LED-based UV torch to conduct a rapid fluorescence imaging photogrammetry survey aimed at rapidly determining the distribution of uranyl minerals within an abandoned copper–uranium mine in the Sierra Ancha Wilderness Area, Gila County, Arizona, USA. Such a simple methodology, presented herein, can be used to quickly determine the distribution of uranyl minerals on exposed surfaces within the underground workings and provide an indication of the presence of primary uranium ore minerals buried within the surrounding rock. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

12 pages, 6621 KiB  
Article
Application of Electrical Resistivity Tomography (ERT) in Detecting Abandoned Mining Tunnels Along Expressway
by Mengyu Sun, Jian Ou, Tongsheng Li, Chuanghua Cao and Rong Liu
Appl. Sci. 2025, 15(5), 2289; https://doi.org/10.3390/app15052289 - 20 Feb 2025
Viewed by 1083
Abstract
The settlement and deformation of abandoned mining tunnels can lead to cracking, deformation, or even the collapse of surface structures. Recently, a dual-direction, four-lane expressway, designed a speed of 100 km/h, is planned to be constructed between Yuanling County and Chenxi County. This [...] Read more.
The settlement and deformation of abandoned mining tunnels can lead to cracking, deformation, or even the collapse of surface structures. Recently, a dual-direction, four-lane expressway, designed a speed of 100 km/h, is planned to be constructed between Yuanling County and Chenxi County. This expressway will pass through a long-abandoned refractory clay mining area in Chenxi County. This study focuses on this abandoned mining area and employs the Electrical Resistivity Tomography (ERT) method to investigate the underground conditions, aiming to determine the location and scale of the subterranean goaf. A total of five survey lines were deployed for the investigation. The inversion results indicate the presence of five low-resistivity anomalies in the underground structure (with six low-resistivity anomalies identified along line L1). These low-resistivity anomalies are preliminarily interpreted as subsurface cavities. Subsequent borehole verification revealed that the five low-resistivity anomalies correspond to a total of eight water-filled cavities, including six abandoned mining tunnels and two karst caves. At the location K33+260~K33+350, a large low-resistivity anomaly was identified which actually consisted of three closely spaced water-filled abandoned mining tunnels. Additionally, the surrounding strata primarily consisted of fractured mudstone, which has a high water content and thus exhibits low resistivity. These two factors combined resulted in the three water-filled abandoned mining tunnels appearing as a single large low-resistivity anomaly in the inversion profile. Meanwhile, at K33+50~K33+110, two water-filled abandoned mining tunnels were found. These tunnels are far apart along line L1 but are relatively close to each other on the other four survey lines. Consequently, in the inversion results, line L1 displays these as two separate low-resistivity anomalies, while the other four survey lines show them as a single large low-resistivity anomaly. Based on the 2D inversion results, a 3D model of the study area was constructed. This model provides a more intuitive visualization of the underground cavity structures in the study area. The findings not only serve as a reference for the subsequent remediation of the goaf area but also offer new insights into the detection of abandoned mining tunnels. Full article
Show Figures

Figure 1

20 pages, 4749 KiB  
Review
Methane Emissions from Mining in the European Union
by Magdalena Zięba and Adam Smoliński
Energies 2025, 18(4), 791; https://doi.org/10.3390/en18040791 - 8 Feb 2025
Viewed by 689
Abstract
Methane emissions from coal mining remain a significant environmental challenge in the European Union, particularly in the context of climate change commitments and the ongoing transformation of the energy sector. This article analyses methane emissions from surface and underground coal mining, distinguishing between [...] Read more.
Methane emissions from coal mining remain a significant environmental challenge in the European Union, particularly in the context of climate change commitments and the ongoing transformation of the energy sector. This article analyses methane emissions from surface and underground coal mining, distinguishing between emissions from mining activities, abandoned underground mines, and post-mining activities. A key aspect of the analysis is the methane emissions per 1000 tonnes of lignite and hard coal mined, which allows a comparison of emission intensities between different mining methods. Between 2009 and 2021, methane emissions from coal mining in the EU decrease, with reductions of 2436 kt CO2 eq. (87 kt CH4) from surface mining and 16,518 kt CO2 eq. (590 kt CH4) from underground mining. However, total methane emissions in 2021 still amount to 25,414 kt CO2 eq. (908 kt CH4), with underground mining contributing 84.7% of the emissions. Discrepancies in national emissions reporting and the lack of transparent data on methane emissions from imported coal make accurate assessments difficult. Strengthening international cooperation, improving data transparency, and exploring methane recovery for energy use are essential steps towards achieving the EU’s climate change objectives. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

29 pages, 9097 KiB  
Article
An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring
by Christopher Power
Pollutants 2025, 5(1), 1; https://doi.org/10.3390/pollutants5010001 - 20 Jan 2025
Cited by 1 | Viewed by 2751
Abstract
Acid mine drainage (AMD), which is primarily caused by the exposure of sulfidic minerals to oxygen and water during mining operations, remains a significant contributor to environmental pollution. Numerous technologies have been developed to prevent/control and treat AMD, including the isolation of waste [...] Read more.
Acid mine drainage (AMD), which is primarily caused by the exposure of sulfidic minerals to oxygen and water during mining operations, remains a significant contributor to environmental pollution. Numerous technologies have been developed to prevent/control and treat AMD, including the isolation of waste from the atmosphere and treatment systems for AMD-impacted water. Many field studies on mine site reclamation have involved an individual AMD source and/or technology, with a limited number of studies looking at reclamation programs integrating multiple approaches to manage AMD stemming from both surface and underground sources. The former Franklin mine site in Nova Scotia, Canada, was impacted by the deposition of waste rock across the site and the discharge of mine water from underground workings, with the adjacent Sullivan’s Pond serving as the main environmental receptor. Site reclamation was completed in 2010 and involved the following: (1) excavation of the dispersed waste rock (117,000 m2) and backfilling with clean soil; (2) consolidation of the excavated waste rock into a covered, compact waste rock pile (WRP) (25,000 m2); and (3) construction of a passive treatment system for the discharging underground mine water. An extensive field sampling program was conducted between 2011 and 2018 to monitor a range of meteorological, cover material, waste rock, groundwater, and surface water quality parameters. The results confirm that the multi-layer, geomembrane-lined WRP cover system is an extremely effective barrier to air and water influx, thereby minimizing the rate of AMD generation and seepage into groundwater and eliminating all contaminated surface water runoff. A small AMD groundwater plume emanates from the base of the WRP, with 50% captured by the underground mine workings over the long term and 50% slowly migrating towards Sullivan’s Pond. Excavation of the former waste disposal area eliminated the AMD source from the previously dispersed waste, with only clean surface water runoff and a diminishing legacy groundwater plume remaining. Finally, the passive treatment system, which contains a series of treatment technologies such as a limestone leach bed and settling pond, successfully treats all mine water loading (~50 kg/day) discharging from the underground workings and surface runoff. Its additional treatment capacity (up to ~150 kg/day) ensures it will be able to manage any potential drop in treatment efficiency and/or increased AMD loading from long-term WRP seepage. This comprehensive study of mine site reclamation and AMD management at an abandoned mining site can be of great reference value for environmental management and policymakers in the mining sector. Full article
(This article belongs to the Section Pollution Prevention and Control)
Show Figures

Graphical abstract

21 pages, 8842 KiB  
Article
The Future of Abandoned Shallow Mines as a Function of Precipitation Under Changing Climate
by Nathalie Conil and Marwan Al Heib
Appl. Sci. 2025, 15(2), 932; https://doi.org/10.3390/app15020932 - 18 Jan 2025
Viewed by 833
Abstract
The paper discusses the future of abandoned underground mines and the main hazards related to their instability, specifically local and large collapses. A database of over 500 large collapses is presented. The analysis of these events reveals that the primary causes are the [...] Read more.
The paper discusses the future of abandoned underground mines and the main hazards related to their instability, specifically local and large collapses. A database of over 500 large collapses is presented. The analysis of these events reveals that the primary causes are the extraction ratio, ageing and climatic factors (such as heavy rain, and increasing water levels). Furthermore, a back analysis of a large-scale collapse, the Château-Landon collapse of 1910, showed that the collapse resulted from a combination of the mining conditions and slope instability climate factor, particularly the impact of rainfall on mine stability. In the case of Château-Landon, the water had two effects: it reduced the resistance of the chalk and decreased the shear strength of the fault crossing the slope. The back analysis and database contribute to a better understanding of mine collapses caused by mining conditions and the modification of climate conditions. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

24 pages, 40689 KiB  
Article
Research on the Seismic Response Law of Complete Morphology of Butted Well Salt Cavern for Large-Scale Underground Energy Storage
by Haitao Li, Dewen Zheng, Kang Li, Qiqi Wanyan, Lina Ran, Yanxia Kou, Song Bai, Jianan Wu, Jianchao Jia, Yunfei Wen, Yuanqing Wang, Hongyan Xing, Kuoyuan Zhu and Jingen Deng
Appl. Sci. 2025, 15(2), 564; https://doi.org/10.3390/app15020564 - 9 Jan 2025
Viewed by 1121
Abstract
The conversion of abandoned butted well salt cavities into underground storage facilities holds immense significance for safeguarding energy security and improving the ecological environment. A significant barrier to the reconstruction of these old cavities is the limited comprehension of their complete morphology, caused [...] Read more.
The conversion of abandoned butted well salt cavities into underground storage facilities holds immense significance for safeguarding energy security and improving the ecological environment. A significant barrier to the reconstruction of these old cavities is the limited comprehension of their complete morphology, caused by residue coverage. The three-dimensional seismic techniques excel in identifying complex geological structures but have a limited understanding of underground old salt cavity morphology, thus the seismic forward simulation method is utilized to study their seismic response patterns. Based on 3D seismic data, well logging data, and measured cavity shape parameters from the Yexian salt mine region in Henan Province, China, a geological model and observation system were established. The seismic response characteristics of the butted well salt cavern model, encompassing five distinct morphological attributes such as cavity spacing, cavity diameter, cavity height, sediment height, and horizontal connection channel height, were thoroughly investigated. The findings show that the cavity roof exhibits a distinctive “two peaks sandwiching a strong valley” feature, with the positions of the valley and roof remaining aligned and serving as a reliable indicator for identifying the cavity’s top surface. The width of the roof waveform exhibits an exponential amplification effect relative to the cavern width. The residue’s top surface presents an “upward-opening arc” wave peak with a downward shift that diminishes as the residue’s height increases. This peak forms a circular feature with the cavity roof reflection waveform, and the residue’s top surface is always located in the upper half of this circular waveform. The horizontal connection channel’s top and bottom surfaces exhibit contrasting reflection patterns, with the top position aligning with the reflection trough and the bottom reflection waveform shifting downward as the channel height increases. The brine cavern, residue, and bottom of the salt cavern mainly exhibit chaotic reflections. There are distinct identification characteristics on the cavity top, residue top, and connecting channel top in forward simulation. The research findings provide valuable guidance for identifying the morphology of the underground real butted well salt cavity based on 3D seismic data and accelerating the construction of underground energy storage facilities. Full article
(This article belongs to the Special Issue Applied Research on Energy Harvesting and Storage)
Show Figures

Figure 1

33 pages, 7015 KiB  
Article
A Novel Polymerized Sulfur Concrete for Underground Hydrogen Storage in Lined Rock Caverns
by Abdel-Mohsen O. Mohamed and Maisa El Gamal
Sustainability 2024, 16(19), 8595; https://doi.org/10.3390/su16198595 - 3 Oct 2024
Cited by 3 | Viewed by 1844
Abstract
Hydrogen is increasingly recognized as a viable solution to meet the growing global energy demand, making large-scale hydrogen storage essential for successfully realizing a full-scale hydrogen economy. Geological formations, such as depleted oil and gas reservoirs, salt caverns, and aquifers, have been identified [...] Read more.
Hydrogen is increasingly recognized as a viable solution to meet the growing global energy demand, making large-scale hydrogen storage essential for successfully realizing a full-scale hydrogen economy. Geological formations, such as depleted oil and gas reservoirs, salt caverns, and aquifers, have been identified as potential storage options. Additionally, unconventional methods like manufactured lined rock caverns and abandoned coal mines are gaining interest. This study introduces polymerized sulfur concrete (PSC) as a promising alternative to replace the current construction systems, which rely on Portland cement concrete and lining materials like stainless steel or polypropylene plastic liners. The paper presents the formulation of PSC, optimization of its compositional design, and evaluation of its physico-mechanical-chemical properties. The results demonstrate that PSC offers excellent mechanical strength, chemical resistance, and low permeability, making it highly suitable for underground hydrogen storage in lined rock caverns. The results showed that the manufactured PSC exhibits excellent physicochemical properties in terms of compressive strength (35–58 MPa), density (2.277–2.488 g/cm3), setting time (30–60 min), curing time (24 h), air content (4–8%), moisture absorption potential (0.17–0.3%), maximum volumetric shrinkage (1.69–2.0%), and maximum service temperature (85–90 °C). Moreover, the PSC is nonconductive and classified with zero flame spread classification and fuel contribution. In addition, the SPC was found to be durable in harsh environmental conditions involving pressure, humidity, and pH variations. It is also capable of resisting corrosive environments. In addition, the statistical modeling indicates that an overall mixture proportion of 32.5 wt.% polymerized sulfur, 32.5 wt.% dune sands, 17.5 wt. % LFS, and 17.5 wt.% GGBFS appear optimal for density values ranging from 2.43 to 2.44 g/cm3 and compressive strength ranging from 52.0 to 53.2 MPa, indicating that the PSC can sustain formation pressure up to about 5.3 km below the ground surface. Therefore, by addressing the critical limitations of traditional materials, PSC proves to be a durable, environmentally sustainable solution for lined rock caverns, reducing the risk of hydrogen leakage and ensuring the integrity of storage systems. Full article
Show Figures

Figure 1

15 pages, 6146 KiB  
Article
An Analytical Solution for Characterizing Mine Water Recharge of Water Source Heat Pump in Abandoned Coal Mines
by Kun Tu, Xiaoqiang Pan, Hongwei Zhang, Xiang Li and Hongyi Zhao
Water 2024, 16(19), 2781; https://doi.org/10.3390/w16192781 - 30 Sep 2024
Viewed by 1194
Abstract
Due to tremendous mining operations, large quantities of abandoned mines with considerable underground excavated space have formed in China during the past decades. This provides huge potential for geothermal energy production from mine water in abandoned coal mines to supply clean heating and [...] Read more.
Due to tremendous mining operations, large quantities of abandoned mines with considerable underground excavated space have formed in China during the past decades. This provides huge potential for geothermal energy production from mine water in abandoned coal mines to supply clean heating and cooling for buildings using heat pump technologies. In this study, an analytical model describing the injection pressure of mine water recharge for water source heat pumps in abandoned coal mines is developed. The analytical solution in the Laplace domain for the injection pressure is derived and the influences of different parameters on the injection pressure are investigated. This study indicates that a smaller pumping rate results in a smaller injection pressure, while smaller values of the hydraulic conductivity and the thickness of equivalent aquifer induce larger injection pressures. The well distance has insignificantly influenced the injection pressure at the beginning, but a smaller well distance leads to a larger injection pressure at later times. Additionally, the sensitivity analysis, conducted to assess the behavior of injection pressure with concerning changes in each input parameter, shows that the pumping rate and the hydraulic conductivity have a large influence on injection pressure compared with other parameters. Full article
(This article belongs to the Special Issue Innovative Technologies for Mine Water Treatment)
Show Figures

Figure 1

Back to TopTop