A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
Abstract
1. Introduction
2. Results
2.1. Growth Responses of Woody and Herbaceous Plants
2.2. BCF and TF
2.3. Cd Extraction and Phytoextraction Efficiency
2.4. Correlation Between Plant Nutrient Uptake and Cd Content
2.5. Correlation Between Plant Cd Extraction and Soil Physicochemical Properties
3. Discussion
3.1. Mechanisms of Remediation Efficiency in Woody vs. Herbaceous Plants
3.2. Adaptive Mechanisms of Plant Nutrient Uptake Under Cd Contamination
3.3. Soil Drivers of Cd Accumulation in Plants
4. Materials and Methods
4.1. Description of the Experimental Site
4.2. Experimental Materials
4.3. Experimental Design
4.4. Measurement Metrics and Methodology
4.4.1. Plant Height and Basal Diameter Net Growth
- ΔH: net height increment (cm);
- ΔD: net ground diameter increment (mm);
- H1/D1: initial measurements (before treatment);
- H2/D2: final measurements (after treatment period).
4.4.2. Plant Biomass
4.4.3. Plant Nutrient Element Content
4.4.4. Soil Properties
4.4.5. Plant and Soil Cd Content
4.4.6. Calculation of Plant Bioconcentration Factor (BCF), Translocation Factor (TF), Cd Extraction Amount, and Extraction Efficiency
- : Cd concentration in homogenized whole-plant tissues (mg·kg−1, dry weight);
- : total cadmium concentration in rhizosphere soil (mg·kg−1);
- ,: Cd concentrations in shoot (stem + leaves) and root tissues (mg·kg−1, dry weight);
- , : oven-dried biomass of shoot and root systems (g).
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.; Wang, X.X.; Jiang, Y.; Chen, C.D.; Wang, Y.; Lv, M.Q. Research progress on the effects of the Three Gorges Reservoir on the ecological environment. Chin. J. Eco-Agric. 2015, 23, 127–140, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zou, H. Study on the Adaptation of Riparian Zone Plants in the Reservoir Area Under the Influence of the Three Gorges Project. Ph.D. Thesis, Chongqing Jiaotong University, Chongqing, China, 2025. [Google Scholar]
- Zhou, P.; Wen, A.B.; Shi, Z.L.; Long, Y. Distribution characteristics and pollution evaluation of soil heavy metals of different land use types in Three Gorges Reservoir Region. Trans. Chin. Soc. Agric. Mach. 2017, 48, 207–213, (In Chinese with English Abstract). [Google Scholar]
- Shuang, Y.; Li, H.; Yang, Z.H.; Yi, Z.W.; Li, H. Geochemical characteristics of heavy metal elements in soil-crops in the distribution area of siliceous rocks of the Permian Gufeng Formation in the Three Gorges Reservoir area. Chin. J. Environ. Eng. 2024, 52, 188–198, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, C.X.; Mei, N.; Zhang, M.P.; Zhang, C.; Wang, D.Y. Characteristics and risk evaluation of heavy metal contamination in paddy soils in the Three Gorges Reservoir Area. Environ. Sci. 2023, 44, 3520–3530, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xu, D.; Gao, B.; Gao, L.; Zhou, H.; Zhao, X.; Yin, S. Characteristics of cadmium remobilization in tributary sediments in Three Gorges Reservoir using chemical sequential extraction and DGT technology. Environ. Pollut. 2016, 218, 1094–1101. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Xie, D.; Wang, D. Potential ecological risk of heavy metals in a typical tributary of the Three Gorges Reservoir. Bull. Environ. Contam. Toxicol. 2020, 106, 18–23. [Google Scholar] [CrossRef]
- Ye, C.; Li, S.; Zhang, Y.; Zhang, Q. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J. Hazard. Mater. 2011, 191, 366–372. [Google Scholar] [CrossRef]
- Jiang, C.C.; Yu, G.H.; Zhou, X.J.; Sun, F.S.; Liu, C.-Q. Biogeochemical process governing cadmium availability in sediments of typical coastal wetlands driven by drying-wetting alternation. J. Hazard. Mater. 2024, 480, 135980. [Google Scholar] [CrossRef]
- Wang, C.B.; Fang, L.Q.; Ran, C.M.; Tang, Y.L.; Zou, Q.H. Morphological features of Pb and Cd in the water-level fluctuation zone in Fuling section of the Three Gorges Reservoir. Ecol. Environ. Monit. Three Gorges 2018, 3, 7–12, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Pei, S.; Jian, Z.; Guo, Q.; Ma, F.; Qin, A.; Zhao, Y.; Xin, X.; Xiao, W. Temporal and spatial variation and risk assessment of soil heavy metal concentrations for water-level-fluctuating zones of the Three Gorges Reservoir. J. Soils Sediments 2018, 18, 2924–2934. [Google Scholar] [CrossRef]
- Kou, T. Summary of cadmium contaminated site remediation technology. Environ. Prot. Front. 2019, 9, 158–163, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, M.N.; Nie, X.Q.; Zhang, X.F.; He, C.Q.; Gao, B. Effects of earthworm, straw, and citric acid on the remediation of Zn, Pb, and Cd contaminated soil by solanum Photeinocarpum and Pterocypsela indica. Environ. Sci. 2023, 44, 1714–1726, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Latif, A.; Abbas, A.; Iqbal, J.; Azeem, M.; Asghar, W.; Ullah, R.; Bilal, M.; Arsalan, M.; Khan, M.; Latif, R.; et al. Remediation of environmental contaminants through phytotechnology. Water. Air. Soil Pollut. 2023, 234, 139. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, J.; Zhao, Q. Assessing the heavy metal contamination of soils in the water-level fluctuation zone upstream and downstream of the Manwan Dam, Lancang River. J. Soils Sediments 2014, 14, 1147–1157. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, C.; Li, Y.; Zhou, W.; Li, Y.; Zhao, G.; Su, P. Research Progress on Physical and Chemical Remediation Methods for the Removal of Cadmium from Soil. Separations 2024, 11, 299. [Google Scholar] [CrossRef]
- Almeaiweed, N.H.; Aloud, S.S.; Alotaibi, K.D.; Alotaibi, F.; Alshebel, B. Enhancing phytoremediation of heavy metal-contaminated aridic soil using olive mill wastewater, sulfur, and chelating agents. Sustainability 2025, 17, 3745. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Z.C.; Wang, M.Y.; Scavo, A.; Schroeder, J.I.; Qiu, B.S. Identification and characterization of SaeIF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii. Planta 2021, 253, 12. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Santiago-Herrera, M.; Ibáñez, J.; Yousaf, S.; Iqbal, M.; Martel-Martín, S.; Barros, R. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. J. Environ. Manag. 2023, 326, 116700. [Google Scholar] [CrossRef]
- Anggraini, Z.; Nurliati, G.; Pratama, H.A.; Sriwahyuni, H.; Sumarbagiono, R.; Shadrina, N.; Mirawaty, M.; Pamungkas, N.S.; Putra, Z.P.; Yusuf, M. A critical review about phytoremediation of heavy metals and radionuclides: From mechanisms to post-remediation strategies. Chemosphere 2025, 381, 144475. [Google Scholar] [CrossRef]
- Ogunsola, S.S.; Oladele, O.L.; Abdulraheem, T.; Cooke, C.G. Synergizing phytoremediation and geopolymerization: A sustainable waste-to-wealth approach for heavy metal-contaminated soils. Chemosphere 2025, 385, 144539. [Google Scholar] [CrossRef] [PubMed]
- Whiting, S.N.; Leake, J.R.; McGrath, S.P.; Baker, A.J.M. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 2000, 145, 199–210. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Q.; Lin, M.; Chen, M.; Zhao, C.; Lu, Q.; Meng, X. Electric field-enhanced cadmium accumulation and photosynthesis in a woody ornamental hyperaccumulator—Lonicera japonica Thunb. Plants 2022, 11, 1040. [Google Scholar] [CrossRef]
- Kama, R.; Ma, Q.; Nabi, F.; Aidara, M.; Huang, P.; Li, Z.; He, J.; Diatta, S.; Li, H. Hyperaccumulator Solanum nigrum L. intercropping reduced rice cadmium uptake under a high-bed and low-ditch planting system. Plants 2023, 12, 4027. [Google Scholar] [CrossRef]
- Xu, L.; Tian, S.; Hu, Y.; Zhao, J.; Ge, J.; Lu, L. Cadmium contributes to heat tolerance of a hyperaccumulator plant species Sedum alfredii. J. Hazard. Mater. 2023, 441, 129840. [Google Scholar] [CrossRef]
- Luo, J.; Yin, D.; Cheng, H.; Davison, W.; Zhang, H. Plant-induced changes to rhizosphere characteristics affecting supply of Cd to Noccaea caerulescens and Ni to Thlaspi goesingense. Environ. Sci. Technol. 2018, 52, 5085–5093. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wu, P.; Feng, J.F.; Guo, Y.H.; Gao, B. Species, habitat characteristics, and screening suggestions of cadmium hyperaccumulators in China. Environ. Sci. 2021, 40, 1481–1491, (In Chinese with English Abstract). [Google Scholar]
- Song, B.; Zhang, Y.X.; Tian, M.L.; Yang, Z.J.; Wang, F.P.; Chen, T.B. Potential for cadmium contaminated farmland remediation with Amaranthus hypochondriacus L. Chin. J. Environ. Eng. 2019, 13, 1711–1719, (In Chinese with English Abstract). [Google Scholar]
- Ling, T.; Jun, R.; Fangke, Y. Effect of cadmium supply levels to cadmium accumulation by Salix. Int. J. Environ. Sci. Technol. 2011, 8, 493–500. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, J.; Du, J.; Hou, C.; Zhou, X.; Chen, J.; Zhang, Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Sci. Total Environ. 2024, 948, 174237. [Google Scholar] [CrossRef]
- Duan, C.X.; He, P.; Wang, A.R.; Fang, W.; Xie, Y.Z. Study on tree species selection and allocation mode in the construction of high slope forest land in Zhaomushan Forest Park. J. Southwest China Norm. Univ. 2014, 39, 151–157, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Rebele, F.; Lehmann, C. Phytoextraction of cadmium and phytostabilisation with Mugwort (Artemisia vulgaris). Water. Air. Soil Pollut. 2011, 216, 93–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, J.; Guo, X.; Xu, C.; Huang, D.; Liu, J.; Chen, X. Differential Effects of pH on Cadmium Accumulation in Artemisia argyi Growing in Low and Moderately Cadmium-Contaminated Paddy Soils. Chem. Biol. Technol. Agric. 2024, 11, 158. [Google Scholar] [CrossRef]
- Han, M.; Ullah, H.; Yang, H.; Yu, G.; You, S.; Liu, J.; Chen, B.; Shahab, A.; Antoniadis, V.; Shaheen, S.M.; et al. Cadmium uptake and membrane transport in roots of hyperaccumulator Amaranthus hypochondriacus L. Environ. Pollut. 2023, 331, 121846. [Google Scholar] [CrossRef]
- Migeon, A.; Richaud, P.; Guinet, F.; Chalot, M.; Blaudez, D. Metal accumulation by woody species on contaminated sites in the north of France. Water. Air. Soil Pollut. 2009, 204, 89–101. [Google Scholar] [CrossRef]
- Utmazian, M.N.D.S.; Wenzel, W.W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J. Plant Nutr. Soil Sci. 2007, 170, 265–272. [Google Scholar] [CrossRef]
- Luo, Z.B.; He, J.; Polle, A.; Rennenberg, H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol. Adv. 2016, 34, 1131–1148. [Google Scholar] [CrossRef]
- Zhang, D.W.; Cui, J.G.; Ge, S.F.; Yang, C.C. Effect of Cd contamination in soil on growth of poplar of different varieties. Bull. Soil Water Conserv. 2008, 28, 59–64, (In Chinese with English Abstract). [Google Scholar]
- Sarfaraz, A. Inter-Species Physiological Response and Phytoremediation Potential of Three Poplar Species Under Cadmium Stress. Ph.D. Thesis, Southwest University of Science and Technology, Mianyang, China, 2018. [Google Scholar]
- Kang, W.; Bao, J.G.; Zheng, J.; Zou, T.; Min, J.H.; Yang, Y.Q. Analysis on heavy metal enrichment ability of woody plants at ancient copper mine site in Tonglushan of Hubei Province. J. Plant Resour. Environ. 2014, 23, 78–84, (In Chinese with English Abstract). [Google Scholar]
- Franke, R.; Schreiber, L. Suberin—A biopolyester forming apoplastic plant interfaces. Curr. Opin. Plant Biol. 2007, 10, 252–259. [Google Scholar] [CrossRef]
- Galvis, D.A.; Jaimes-Suárez, Y.Y.; Molina, J.R.; Ruiz, R.; Carvalho, F.E.L. Cadmium uptake and allocation in wood species associated to cacao agroforestry systems and its potential role for phytoextraction. Plants 2023, 12, 2930. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.E.T.; Ullah, I.; de Oliveira, V.H.; Hammond, S.J.; Strekopytov, S.; Tibbett, M.; Dunwell, J.M.; Rehkämper, M. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of Natural Resistance-Associated Macrophage Protein 5 and Heavy Metal ATPase-family transporters. Hortic. Res. 2020, 7, 71. [Google Scholar] [CrossRef]
- Chen, C.Z.; Lv, X.F.; Li, J.Y.; Yi, H.Y.; Gong, J.-M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol. 2012, 159, 1582–1590. [Google Scholar] [CrossRef]
- Luo, P.; Wu, J.; Li, T.-T.; Shi, P.; Ma, Q.; Di, D.-W. An overview of the mechanisms through which plants regulate ROS homeostasis under Cadmium stress. Antioxidants 2024, 13, 1174. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Pan, M.; Yu, Y.; Guo, Y.; Ge, Q.; Hao, W. Physiology and transcriptome analysis of Artemisia argyi adaptation and accumulation to soil cadmium. Environ. Saf. 2024, 278, 116397. [Google Scholar] [CrossRef]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M.; et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef]
- Thomas, M. A comparative study of the factors affecting uptake and distribution of Cd with Ni in barley. Plant Physiol. Biochem. 2021, 162, 730–736. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Jia, Y.; Qin, D.; Zheng, Y.; Wang, Y. Finding balance in adversity: Nitrate signaling as the key to plant growth, resilience, and stress response. Int. J. Mol. Sci. 2023, 24, 14406. [Google Scholar] [CrossRef]
- Chtouki, M.; Naciri, R.; Soulaimani, A.; Zeroual, Y.; El Gharous, M.; Oukarroum, A. Effect of cadmium and phosphorus interaction on tomato: Chlorophyll a fluorescence, plant growth, and cadmium translocation. Water. Air. Soil Pollut. 2021, 232, 84. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhuang, Y.; Sun, X.H.; Du, S.T. Interactions between cadmium and nutrients and their implications for safe crop production in Cd-contaminated soils. Crit. Rev. Environ. Sci. Technol. 2023, 53, 2071–2091. [Google Scholar] [CrossRef]
- Tian, Q.; Zheng, D.; Chen, P.; Yuan, S.; Yi, Z. The effects of reducing nitrogen and increasing density in the main crop on yield and cadmium accumulation of ratoon rice. Agronomy 2025, 15, 485. [Google Scholar] [CrossRef]
- Ge, A.-H.; Wang, E. Exploring the plant microbiome: A pathway to climate-smart crops. Cell 2025, 188, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Guo, J.; Peng, C.; Kneeshaw, D.; Roberge, G.; Pan, C.; Ma, X.; Zhou, D.; Wang, W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Glob. Change Biol. 2023, 29, 3970–3989. [Google Scholar] [CrossRef]
- Lin, L.; Wu, X.; Deng, X.; Lin, Z.; Liu, C.; Zhang, J.; He, T.; Yi, Y.; Liu, H.; Wang, Y. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. Environ. Res. 2024, 245, 118054. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ai, S.Y.; Li, M.J.; Yang, S.H.; Yao, J.W.; Tang, M.D.; Zeng, Z.B. Effect of nitrogen fertilization on cadmium translocation in soil-mustard system. Chin. J. Eco-Agric. 2010, 18, 649–653, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, Z.; Huang, B.; Huang, J.; Chen, G.; Zhang, C.; Nie, X.; Luo, N.; Yao, H.; Ma, W.; Zeng, G. Influence of Removal of Organic Matter and Iron and Manganese Oxides on Cadmium Adsorption by Red Paddy Soil Aggregates. RSC Adv. 2015, 5, 90588–90595. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, S.; Cao, Y.; Zhong, Q.; Wang, G.; Li, T.; Xu, X. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. J. Hazard. Mater. 2019, 366, 177–183. [Google Scholar] [CrossRef]
- Zamani, S.; Naderi, M.R.; Soleymani, A.; Nasiri, B.M. Sunflower (Helianthus annuus L.) biochemical properties and seed components affected by potassium fertilization under drought conditions. Ecotoxicol. Environ. Saf. 2020, 190, 110017. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Zhao, Y.; Fu, Y.; Yan, B.; Wan, X.; Cheng, G.; Zhang, W. Effects of different phosphorus and potassium supply on the root architecture, phosphorus and potassium uptake, and utilization efficiency of hydroponic rice. Sci. Rep. 2024, 14, 21178. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Song, X.; Deng, Z.; Xu, C.; Huang, D.; Qin, X. Interspecific Root Interaction Enhances Cadmium Accumulation In Oryza Sativa When Intercropping With Cadmium Accumulator Artemisia argyi. Ecotoxicol. Environ. Saf. 2024, 269, 115788. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Wang, Z.W.; Ding, R.; Hou, S.L.; Yang, G.J.; Lü, X.T.; Han, X.G. The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environ. Pollut. 2018, 242, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Atilio, N.C.; Fertonani, F.L.; Oliveira, E.C.d. Modified and optimized glass electrode for pH measurements in hydrated ethanol fuel. Molecules 2022, 27, 8048. [Google Scholar] [CrossRef] [PubMed]
- Sergei, C.; Fu, S. Applications of physical methods in estimation of soil biota and soil organic matter. Soil Ecol. Lett. 2020, 2, 165–175. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Sherrell, C.G.; Saunders, W.M.H. An evaluation of methods for the determination of total phosphorus in soils. N. Z. J. Agric. Res. 1966, 9, 972–979. [Google Scholar] [CrossRef]
- Ullah, R.; Abbas, Z.; Bilal, M.; Habib, F.; Iqbal, J.; Bashir, F.; Noor, S.; Qazi, M.A.; Niaz, A.; Baig, K.S.; et al. Method development and validation for the determination of potassium (K2O) in fertilizer samples by flame photometry technique. J. King Saud Univ.-Sci. 2022, 34, 102070. [Google Scholar] [CrossRef]
- Iatrou, M.; Papadopoulos, A.; Papadopoulos, F.; Dichala, O.; Psoma, P.; Bountla, A. Determination of soil available phosphorus using the Olsen and Mehlich 3 methods for greek soils having variable amounts of calcium carbonate. Commun. Soil Sci. Plant Anal. 2014, 45, 2207–2214. [Google Scholar] [CrossRef]
- Hao, Z.M. Determination of soil available potassium. J. Chifeng Univ. 2000, 03, 81–82, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Plant Name | Treatments | Plant Height Net Growth (cm) | Basal Diameter Net Growth (mm) | Aboveground Biomass (g) | Belowground Biomass (g) |
---|---|---|---|---|---|
P. adenopoda | T1 | 103.33 ± 13.07 a | 13.1 ± 1.30 a | 53.57 ± 15.51 b | 25.92 ± 6.96 a |
T2 | 105.00 ± 23.28 a | 14.8 ± 3.40 a | 97.01 ± 16.83 a | 43.34 ± 6.46 a | |
T3 | 106.33 ± 5.91 a | 16.1 ± 1.50 a | 120.85 ± 37.19 a | 42.80 ± 13.27 a | |
S. babylonica | T1 | 104.00 ± 2.16 a | 13.2 ± 1.30 a | 54.23 ± 4.71 c | 33.86 ± 4.04 a |
T2 | 106.00 ± 10.98 a | 15.4 ± 0.40 a | 87.82 ± 16.51 b | 33.84 ± 6.27 a | |
T3 | 113.67 ± 10.87 a | 15.6 ± 2.20 a | 96.81 ± 17.18 a | 33.38 ± 7.00 a | |
A. hypochondriacus | T1 | 65.33 ± 12.81 b | 5.6 ± 1.30 b | 79.43 ± 15.90 a | 13.93 ± 5.50 a |
T2 | 91.33 ± 9.43 ab | 7.8 ± 0.80 ab | 101.78 ± 36.29 a | 13.12 ± 11.20 a | |
T3 | 102.67 ± 6.85 a | 8.9 ± 0.60 a | 106.10 ± 48.96 a | 16.31 ± 3.84 a | |
A. argyi | T1 | 54.33 ± 7.32 a | 4.2 ± 0.30 b | 63.04 ± 45.58 a | 33.35 ± 21.33 a |
T2 | 55.67 ± 8.81 a | 4.8 ± 0.60 ab | 66.23 ± 15.33 a | 35.60 ± 3.39 a | |
T3 | 60.00 ± 7.87 a | 5.4 ± 1.00 a | 73.15 ± 5.36 a | 33.89 ± 2.53 a |
Plant Name | BCF | TF | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |
P. adenopoda | 2.28 ± 0.17 AA | 1.88 ± 0.23 Ab | 1.88 ± 0.19 Ab | 0.41 ± 0.09 Ab | 0.34 ± 12.13 Ac | 0.31 ± 0.03 Ac |
S. babylonica | 0.78 ± 0.15 Bb | 2.75 ± 0.48 ABA | 6.42 ± 0.90 AA | 0.45 ± 0.17 Ab | 0.52 ± 0.20 Ac | 0.87 ± 0.07 Ac |
A. hypochondriacus | 2.56 ± 0.38 AA | 1.65 ± 0.11 Bb | 1.39 ± 0.180 Bb | 1.72 ± 0.36 BA | 1.75 ± 0.20 Bb | 3.43 ± 0.45 AA |
A. argyi | 2.57 ± 0.68 AA | 3.11 ± 0.09 AA | 1.41 ± 0.14 Bb | 2.50 ± 0.85 AA | 2.31 ± 0.27 AA | 1.58 ± 0.28 Ab |
Plant Name | Cd Uptake (mg·kg−1) | Cd Extraction Efficiency (%) | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |
P. adenopoda | 13.62 ± 4.03 CA | 36.71 ± 0.23BA | 61.11 ± 12.20 Ab | 2.28 ± 0.17 AA | 1.88 ± 0.23 Ab | 1.88 ± 0.19 Ab |
S. babylonica | 6.173 ± 0.998 BA | 70.13 ± 11.29BA | 224.93 ± 70.13 AA | 0.728 ± 0.47 Cb | 2.94 ± 0.46 BA | 6.42 ± 0.90 AA |
A. hypochondriacus | 12.16 ± 2.60 AA | 43.99 ± 13.28 AA | 53.46 ± 24.14 Ab | 2.56 ± 0.38 AA | 1.65 ± 0.11 Bb | 1.39 ± 0.18 Bb |
A. argyi | 16.39 ± 7.12 AA | 66.26 ± 40.08 AA | 25.58 ± 1.01 Ab | 2.57 ± 0.68 AA | 3.11 ± 0.09 AA | 1.41 ± 0.14 Bb |
Treatments | Cd | pH | TN | TP | TK | SOM | AP | AK |
---|---|---|---|---|---|---|---|---|
(mg·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | ||
T1 | 0.18 ± 0.01 | 7.54 ± 0.04 | 0.32 ± 0.12 | 0.23 ± 0.01 | 27.43 ± 0.65 | 6.98 ± 0.26 | 6.59 ± 3.96 | 92.84 ± 8.77 |
T2 | 0.35 ± 0.01 | 7.59 ± 0.01 | 0.55 ± 0.10 | 0.61 ± 0.05 | 25.00 ± 0.80 | 12.84 ± 0.61 | 4.53 ± 0.62 | 85.74 ± 1.97 |
T3 | 0.54 ± 0.04 | 7.58 ± 0.07 | 1.08 ± 0.06 | 1.23 ± 0.16 | 22.41 ± 0.57 | 20.65 ± 0.28 | 7.24 ± 0.48 | 67.31 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Liu, W.; Zeng, L.; Qiu, L.; Wu, D.; Wen, H.; Yuan, R.; Zhang, D.; Tang, R.; Chen, Z. A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China. Plants 2025, 14, 2202. https://doi.org/10.3390/plants14142202
Guo Y, Liu W, Zeng L, Qiu L, Wu D, Wen H, Yuan R, Zhang D, Tang R, Chen Z. A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China. Plants. 2025; 14(14):2202. https://doi.org/10.3390/plants14142202
Chicago/Turabian StyleGuo, Yinhua, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang, and Zhan Chen. 2025. "A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China" Plants 14, no. 14: 2202. https://doi.org/10.3390/plants14142202
APA StyleGuo, Y., Liu, W., Zeng, L., Qiu, L., Wu, D., Wen, H., Yuan, R., Zhang, D., Tang, R., & Chen, Z. (2025). A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China. Plants, 14(14), 2202. https://doi.org/10.3390/plants14142202