Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = a multi-cavity system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9121 KB  
Review
Generative Design of Concentrated Solar Thermal Tower Receivers—State of the Art and Trends
by Jorge Moreno García-Moreno and Kypros Milidonis
Energies 2025, 18(22), 5890; https://doi.org/10.3390/en18225890 - 8 Nov 2025
Viewed by 172
Abstract
The rapid advances in artificial intelligence (AI) and high-performance computing (HPC) are transforming the landscape of engineering design, and the concentrated solar power (CSP) tower sector is no exception. As these technologies increasingly penetrate the energy domain, they bring new capabilities for addressing [...] Read more.
The rapid advances in artificial intelligence (AI) and high-performance computing (HPC) are transforming the landscape of engineering design, and the concentrated solar power (CSP) tower sector is no exception. As these technologies increasingly penetrate the energy domain, they bring new capabilities for addressing the complex, multi-variable nature of receiver design and optimisation. This review explores the application of AI-driven generative design techniques in the context of CSP tower receivers, with a particular focus on the use of metaheuristic algorithms and machine learning models. A structured classification is presented, highlighting the most commonly employed methods, such as Genetic Algorithms (GAs), Particle Swarm Optimisation (PSO), and Artificial Neural Networks (ANNs), and mapping them to specific receiver types: cavity, external, and volumetric. GAs are found to dominate multi-objective optimisation tasks, especially those involving trade-offs between thermal efficiency and heat flux uniformity, while ANNs offer strong potential as surrogate models for accelerating design iterations. The review also identifies existing gaps in the literature and outlines future opportunities, including the integration of high-fidelity simulations and experimental validation into AI design workflows. These insights demonstrate the growing relevance and impact of AI in advancing the next generation of high-performance CSP receiver systems. Full article
Show Figures

Figure 1

18 pages, 10615 KB  
Review
Acoustic Emission Mechanisms During Polymer Processing and Chain Orientation: From Amorphous to Crystalline
by Guowei Chen and Tizazu Mekonnen
Polymers 2025, 17(21), 2948; https://doi.org/10.3390/polym17212948 - 5 Nov 2025
Viewed by 349
Abstract
Acoustic emission (AE) technology has emerged as a highly sensitive and non-destructive method for the real-time monitoring of defect formation and microstructural changes during the manufacturing and early service life of polymeric materials and composites. This review highlights the fundamental principles and applications [...] Read more.
Acoustic emission (AE) technology has emerged as a highly sensitive and non-destructive method for the real-time monitoring of defect formation and microstructural changes during the manufacturing and early service life of polymeric materials and composites. This review highlights the fundamental principles and applications of AE in detecting crystallization-induced defects, such as cavities, dislocations, and microcracks, as well as plastic deformation mechanisms, including chain orientation, cavitation, and stress release. It is shown that AE activity correlates strongly with crystallinity and processing conditions, providing critical insights into microstructure–property relationships. The possible mechanisms can be the friction between grain boundaries, the local stress release, chain movement, phase changing, and fiber/filler debonding, among others. A comprehensive understanding can help with the prediction/prevention of early defects in the crystalline polymer processing. Furthermore, integrating AE with artificial intelligence and multi-sensor data fusion offers promising pathways toward smart, adaptive manufacturing systems capable of real-time quality control and early defect diagnosis in high-performance polymer composites. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 4308 KB  
Article
Bi-Directional Fabry–Perot Cavity Antenna Based on Polarization-Dependent Transmit–Reflect Metasurface
by Yanfei Ren, Zhenghu Xi, Tao Wang, Qinqin Liu, Shunli Zhang, Zhiwei Sun, Boyu Sima and Hao Zeng
Sensors 2025, 25(21), 6642; https://doi.org/10.3390/s25216642 - 30 Oct 2025
Viewed by 734
Abstract
Metasurfaces (MSs) have been an effective method for the manipulation of electromagnetic (EM) radiation. However, this research mainly focused on controlling single-directional radiation. In this paper, a Fabry–Perot cavity (FPC) antenna based on the MSs technique is proposed, which obtains a bi-directional radiation [...] Read more.
Metasurfaces (MSs) have been an effective method for the manipulation of electromagnetic (EM) radiation. However, this research mainly focused on controlling single-directional radiation. In this paper, a Fabry–Perot cavity (FPC) antenna based on the MSs technique is proposed, which obtains a bi-directional radiation with independent control of the forward and backward radiation patterns. The antenna is located in an FPC with two MSs forming the top and bottom surfaces. The MSs can partially reflect the x-polarized incident wave, i.e., it is a partially reflective metasurface (PRMS). Meanwhile, it can transform a specific incident component from x-polarization into y-polarization with a transmittance around −9.2 dB. In addition, the phase of the x-polarized reflection and y-polarized transmission can be controlled independently. So, a bi-directional radiation, of which the forward and backward radiation can be independently controlled, is obtained by the FPC antenna by manipulating the transmission phase distribution of the two PRMSs. As validation, two bi-directional radiation FPC antennas are designed based on the proposed method. Antenna 1 achieved a bi-directional single-beam radiation, of which the forward and backward radiation radiate to 2° and 177° with a gain of 13.4 dBi and 12.3 dBi, respectively. Antenna 2 achieved a bi-directional multibeam radiation, which radiates dual beams forward and a single beam backward. The two beams forward fire to 37° and 322° with a gain of 9.53 dBi and 9.3 dBi, while the beam backward fires to 178° with a gain of 7.8 dBi. At last, the first antenna is fabricated and measured for experimental validation, achieving the coincident results as simulation. This research can be potentially applied in research on antennas, communication, and wireless sensors in several practical scenarios, such as multibeam electromagnetic radiation, multi-user communication, multi-target monitoring, and sensor–communication system integration. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 1326 KB  
Article
Hardness Characterization of Simultaneous Aging and Surface Treatment of 3D-Printed Maraging Steel
by Zsuzsa Szabadi Olesnyovicsné, Attila Széll, Richárd Horváth, Mária Berkes Maros and Mihály Réger
Materials 2025, 18(21), 4830; https://doi.org/10.3390/ma18214830 - 22 Oct 2025
Viewed by 253
Abstract
The primary objective of this research is to simplify and make the industrial manufacturing process of coated maraging steels more economical by combining the advantages of additive manufacturing with simultaneous bulk (aging) and surface (nitriding) treatment in an effective manner. With this aim, [...] Read more.
The primary objective of this research is to simplify and make the industrial manufacturing process of coated maraging steels more economical by combining the advantages of additive manufacturing with simultaneous bulk (aging) and surface (nitriding) treatment in an effective manner. With this aim, preliminary experiments were performed that demonstrated the hardness (and related microstructure) of an as-built MS1 maraging steel, produced by selective laser melting (SLM), is comparable to that of the bulk maraging steel products treated by conventional solution annealing. The direct aging of the solution-annealed and as-built 3D printed maraging steel resulted in similar hardness, indicating that the kinetics of the precipitation hardening process are identical for the steel in both conditions. This assumption was strengthened by a thermodynamic analysis of the kinetics and determination of the activation energy for precipitation hardening using Differential Scanning Calorimetry (DSC) measurements. Industrial target experiments were performed on duplex-coated SLM-printed MS1 steel specimens, which were simultaneously aged and salt-bath nitrided, followed by PVD coating with three different ceramic layers: DLC, CrN, and TiN. For reference, similar duplex-coated samples were used, featuring a bulk Böhler W720 maraging steel substrate that was solution annealed, precipitation hardened, and salt-bath nitrided in separate steps, following conventional procedures. The technological parameters (temperature and time) of the simultaneous nitriding and aging process were optimized by modeling the phase transformations of the entire heat treatment procedure using DSC measurements. A comparison was made based on the in-depth hardness profile estimated by the so-called expanding cavity model (ECM), demonstrating that the hardness of the surface layer of the coated composite material systems is determined solely by the type of the coatings and does not influenced by the type of the applied substrate materials (bulk or 3D printed) or its heat treatment (whether it is a conventional, multi-step treatment or a simultaneous nitriding + aging process). Based on the research work, a proposal is suggested for modernizing and improving the cost-effectiveness of producing aged, duplex-treated, wear-resistant ceramic-coated maraging steel. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 3814 KB  
Article
Fire Spread Through External Walls of Wooden Materials in Multi-Story Buildings—Part I
by Eva Sopikova, Jakub Klezla and Petr Kucera
Fire 2025, 8(10), 399; https://doi.org/10.3390/fire8100399 - 14 Oct 2025
Viewed by 1069
Abstract
The increasing use of wooden cladding in multi-storey buildings raises critical fire safety concerns, especially in ventilated façade systems where the chimney effect can accelerate vertical flame spread. This study combines theoretical analysis with three full-scale fire tests to investigate key factors influencing [...] Read more.
The increasing use of wooden cladding in multi-storey buildings raises critical fire safety concerns, especially in ventilated façade systems where the chimney effect can accelerate vertical flame spread. This study combines theoretical analysis with three full-scale fire tests to investigate key factors influencing fire propagation, including the influence of façade design details. Results show that poorly constructed lintels and jambs significantly accelerate flame entry into ventilated cavities, while wooden fire barriers—despite being combustible—can delay flame spread if properly installed. These findings inform design recommendations and underscore the need for more robust fire safety strategies in modern timber construction. Full article
(This article belongs to the Special Issue Fire Safety and Sustainability)
Show Figures

Figure 1

17 pages, 13069 KB  
Article
Sensitive Detection of Multi-Point Temperature Based on FMCW Interferometry and DSP Algorithm
by Chengyu Mo, Yuqiang Yang, Xiaoguang Mu, Fujiang Li and Yuting Li
Nanomaterials 2025, 15(20), 1545; https://doi.org/10.3390/nano15201545 - 10 Oct 2025
Viewed by 339
Abstract
This paper presents a high-sensitivity multi-point seawater temperature detection system based on the virtual Vernier effect, achieved through multiplexed Fabry–Perot (FP) cavities combined with optical frequency-modulated continuous wave (FMCW) interferometry. To address the nonlinear frequency scanning issue inherent in FMCW systems, this paper [...] Read more.
This paper presents a high-sensitivity multi-point seawater temperature detection system based on the virtual Vernier effect, achieved through multiplexed Fabry–Perot (FP) cavities combined with optical frequency-modulated continuous wave (FMCW) interferometry. To address the nonlinear frequency scanning issue inherent in FMCW systems, this paper implemented a software compensation method. This approach enables accurate positioning of multiple FP sub-sensors and effective demodulation of the sensing interference spectrum (SIS) for each FP interferometer (FPI). Through digital signal processing (DSP) algorithms and spectral demodulation, each sub-FP sensor generates an artificial reference spectrum (ARS). The virtual Vernier effect is then achieved by means of a computational process that combines the SIS intensity with the corresponding ARS intensity. This eliminates the need for physical reference arrays with carefully detuned spatial frequencies, as is required in traditional Vernier effect implementations. The sensitivity amplification can be dynamically adjusted with the modulation function parameters. Experimental results demonstrate that an optical fiber link of 82.3 m was achieved with a high spatial resolution of 23.9 μm. Within the temperature range of 30 C to 70 C, the temperature sensitivities of the three enhanced EIS reached −275.56 pm/C, −269.78 pm/C, and −280.67 pm/C, respectively, representing amplification factors of 3.32, 4.93, and 6.13 compared to a single SIS. The presented approach not only enables effective multiplexing and spatial localization of multiple fiber sensors but also successfully amplifies weak signal detection. This breakthrough provides crucial technical support for implementing quasi-distributed optical sensitization sensing in marine environments, opening new possibilities for high-precision oceanographic monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2083 KB  
Article
Temperature-Controlled Cascaded Fabry–Pérot Filters: A Scalable Solution for Ultra-Low-Noise Stokes Photon Detection in Quantum Systems
by Ya Li, Changqing Niu, Weizhe Qiao, Xiaolong Zou and Youxing Chen
Photonics 2025, 12(10), 986; https://doi.org/10.3390/photonics12100986 - 4 Oct 2025
Viewed by 322
Abstract
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six [...] Read more.
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six filtering stages, created by designing Fabry–Pérot cavities of three different lengths, each used twice (to match optical frequencies), along with temperature control settings. By applying differentiated linewidth regulation, the approach effectively suppresses interference from locked light while significantly enhancing the signal-to-noise ratio in photon detection. This method overcomes the challenge of interference from same-frequency noise photons in atomic ensemble-entangled sources, achieving a noise–photon extinction ratio on the order of 106 and surpassing the frequency resolution limit of a single filter. Experimental results demonstrate that the system reduces the noise floor in the detection optical path to below 10−16, while maintaining a photon transmission efficiency above 53% for the signal. This technology effectively addresses key challenges in noise suppression and photon state fidelity optimization in optical fiber quantum communication, offering a scalable frequency–photon noise filtering solution for long-distance quantum communication. Furthermore, its multi-parameter cooperative filtering mechanism holds broad potential applications in areas such as quantum storage and optical frequency combs. Full article
Show Figures

Figure 1

18 pages, 3878 KB  
Article
Covalently Functionalized Halloysite-Calixarene Nanotubes for Injectable Hydrogels: A Multicavity Platform for Hydrophobic Drug Delivery
by Giuseppe Cinà, Marina Massaro, Andrea Pappalardo, Carmela Bonaccorso, Cosimo G. Fortuna, Placido G. Mineo, Angelo Nicosia, Paola Poma, Rita Sánchez-Espejo, Caterina Testa, César Viseras and Serena Riela
Pharmaceuticals 2025, 18(9), 1356; https://doi.org/10.3390/ph18091356 - 11 Sep 2025
Viewed by 502
Abstract
Background: Poor water solubility is a major limitation for the therapeutic use of many anticancer drugs. In this study, we report the design and development of two halloysite-based hybrid nanomaterials for the encapsulation and delivery of hydrophobic and positively charged drugs. Methods [...] Read more.
Background: Poor water solubility is a major limitation for the therapeutic use of many anticancer drugs. In this study, we report the design and development of two halloysite-based hybrid nanomaterials for the encapsulation and delivery of hydrophobic and positively charged drugs. Methods: A novel multicavity platform was obtained by covalently grafting calix[5]arene macrocycles onto the external surface of halloysite nanotubes (HNTs), combining lumen encapsulation with supramolecular host–guest recognition. PB4, a planar and hydrophobic pyridinium salt with significant antiproliferative activity, was selected as a model compound. Both PB4-loaded HNTs (HNTs/PB4) and calixarene-functionalized HNTs (HNTs-Calix/PB4) were incorporated into Laponite®-based thixotropic hydrogels to obtain injectable and biocompatible systems. Results: The nanomaterials were thoroughly characterized, and their loading efficiency, release behavior, and aqueous dispersibility were evaluated. Antiproliferative tests on MCF-7 cells demonstrated that both hydrogels retained PB4 activity, with distinct release profiles: the pristine HNTs allowed faster drug availability, while calix[5]arene-functionalized systems promoted sustained release. Conclusions: This work introduces the first example of covalently calixarene-functionalized halloysite and presents a versatile drug delivery platform adaptable to different therapeutic contexts and combination strategies. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Graphical abstract

11 pages, 2289 KB  
Article
Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting
by Lin Jiang, Qi Hu and Yijun Feng
Photonics 2025, 12(9), 897; https://doi.org/10.3390/photonics12090897 - 6 Sep 2025
Viewed by 795
Abstract
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal [...] Read more.
Although epsilon-near-zero (ENZ) media have emerged as a promising platform for power dividers, the majority of existing designs are confined to fixed power splitting. In this work, two dynamically tunable power dividers using waveguide ENZ media are proposed by precisely modulating the internal magnetic field and the widths of the output waveguides. The first approach features a mechanically reconfigurable ring-shaped ENZ waveguide. By continuously re-distributing the magnetic field within the ENZ tunneling channels utilizing rotatable copper plates, arbitrary power division among multiple output ports is constructed. The second design integrates a rectangular-loop ENZ cavity into a substrate-integrated waveguide, with four positive–intrinsic–negative diodes embedded to dynamically activate specific output ports. This configuration steers electromagnetic energy toward output ports with varying cross-sectional areas, enabling on-demand control over both the power division and the number of output ports. Both analytical and full-wave simulation results confirm dynamic power division, with transmission efficiencies exceeding 93%. Despite differences in structure and actuation mechanisms, both designs exhibit flexible field control, high reconfigurability, and excellent transmission performance, highlighting their potential in advanced applications such as real-time wireless communications, multi-input–multi-output systems, and reconfigurable antennas. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

17 pages, 1175 KB  
Article
The Prevalence and Drug Susceptibility of Candida Species and an Analysis of Risk Factors for Oral Candidiasis—A Retrospective Study
by Marcin Tkaczyk, Anna Kuśka-Kielbratowska, Jakub Fiegler-Rudol, Wojciech Niemczyk, Anna Mertas, Dariusz Skaba and Rafał Wiench
Antibiotics 2025, 14(9), 876; https://doi.org/10.3390/antibiotics14090876 - 30 Aug 2025
Cited by 1 | Viewed by 2186
Abstract
Background: Oral candidiasis is a prevalent opportunistic infection, predominantly caused by Candida albicans (CA), though non-albicans Candida (NAC) species are increasing worldwide. This study aimed to characterize the prevalence of Candida species, evaluate antifungal susceptibility, and identify predisposing risk factors in [...] Read more.
Background: Oral candidiasis is a prevalent opportunistic infection, predominantly caused by Candida albicans (CA), though non-albicans Candida (NAC) species are increasing worldwide. This study aimed to characterize the prevalence of Candida species, evaluate antifungal susceptibility, and identify predisposing risk factors in patients with oral mucosal candidiasis. Methods: A retrospective review of 1286 electronic patient medical records (788 women, 498 men) from 2018 to 2022 was conducted at the Department of Periodontal and Oral Mucosa Diseases, Medical University of Silesia. Swabs from the oral cavity were processed to identify Candida strains by mass spectrometry, followed by drug susceptibility testing for amphotericin B, nystatin, flucytosine, econazole, ketoconazole, miconazole, and fluconazole. Relevant local and systemic predisposing factors were recorded and analyzed statistically. Results: Among 958 patients with positive fungal cultures, CA accounted for 66.79% of isolates, while NAC constituted 33.21%. Multi-strain infections were detected in 8.46% of patients. CA showed lower resistance (<10%) to amphotericin B, nystatin, and flucytosine, but up to 30% resistance to azoles. NAC strains demonstrated elevated resistance rates (>40% for most azoles), with C. krusei exhibiting the highest resistance to the previously mentioned antifungal agents. Key risk factors included wearing removable dentures (p = 0.042) and uncontrolled diabetes mellitus (p = 0.0431). Additional factors, including poor oral hygiene, reduced salivary flow, and immunosuppressive conditions, further increased infection risk. Patients presenting with multiple risk factors were more likely to have multi-strain infections and more severe disease courses. Conclusions: This retrospective analysis highlights the growing prevalence of NAC, rising antifungal resistance (particularly to azoles), and the importance of identifying risk factors, especially denture use and poor glycemic control. Enhanced preventive strategies, robust diagnostic approaches, and optimized antifungal regimens are essential to address this evolving clinical challenge. Full article
Show Figures

Figure 1

14 pages, 3390 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 - 29 Aug 2025
Viewed by 900
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 5899 KB  
Article
Flow Characteristics and Mass Flow Distribution Mechanism Within Multi-Inlet and Multi-Outlet Corotating Disc Cavities
by Clarence Jia Cheng Chai, Xueying Li and Jing Ren
Energies 2025, 18(17), 4584; https://doi.org/10.3390/en18174584 - 29 Aug 2025
Viewed by 477
Abstract
This study reveals the governing mechanism of mass flow distribution within a multi-inlet, multi-outlet corotating disc cavity, providing critical insights for designing advanced gas turbine secondary air systems. An experimentally verified numerical investigation is conducted across a range of rotational Reynolds numbers [...] Read more.
This study reveals the governing mechanism of mass flow distribution within a multi-inlet, multi-outlet corotating disc cavity, providing critical insights for designing advanced gas turbine secondary air systems. An experimentally verified numerical investigation is conducted across a range of rotational Reynolds numbers Reϕ=5×106 ~ 2×107 and axial Reynolds numbers Rez=2×105 ~ 5×105, corresponding to Rossby numbers Ro from 0.01 to 0.10. Results highlight that Ro governs the internal flow and outlet mass flow distribution through two distinct regimes. In the rotation-dominated regime at low Ro, the radial outlet mass flow ratio MR decreases sharply, and a stable, dual-zone vortical structure forms. As Ro increases, growing inflow inertia disrupts this structure, causing vortices to merge, which enhances swirl uniformity and slows the rate of MR decrease. This transition dictates outlet performance: the radial outlet discharge steadily improves with Ro, while the axial outlet performance increases abruptly around Ro=0.02 before saturating. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 5995 KB  
Article
Influence of Inlet Temperature Differentials on Aerothermal Characteristics and Mass Flow Distribution in Multi-Inlet and Multi-Outlet Corotating-Disc Cavities
by Clarence Jia Cheng Chai, Xueying Li and Jing Ren
Energies 2025, 18(17), 4472; https://doi.org/10.3390/en18174472 - 22 Aug 2025
Cited by 1 | Viewed by 496
Abstract
To facilitate the development of next-generation gas turbine cooling systems, the present study systematically investigates the influence of inlet temperature differentials on the aerothermal characteristics and mass flow distribution within multi-inlet, multi-outlet corotating-disc cavities, for which inlet temperature differentials of 10 K, 30 [...] Read more.
To facilitate the development of next-generation gas turbine cooling systems, the present study systematically investigates the influence of inlet temperature differentials on the aerothermal characteristics and mass flow distribution within multi-inlet, multi-outlet corotating-disc cavities, for which inlet temperature differentials of 10 K, 30 K, and 50 K were applied. Steady-state Reynolds-averaged Navier–Stokes (RANS) simulations using the Shear Stress Transport (SST) k-ω model were performed across a range of flow conditions corresponding to Rossby numbers from 0.01 to 0.10, by varying the rotational and axial Reynolds numbers. This study finds that the inlet temperature differentials are a secondary driver of the aerothermal characteristics in the corotating cavity. Meanwhile, Rossby number dictates the main flow structure of radially stratified vortices and governs the thermal mixing between hot and cold streams. A higher Rossby number enhances mixing, causing the radial outlet temperature to rise significantly, while the axial outlet remains cool. A larger inlet temperature differential can induce secondary vortices at high Rossby numbers. Furthermore, the differential is revealed to increase cavity pressure, slightly reducing the radial outlet’s mass flow by up to 2.5% and its discharge coefficient by nearly 5% at high Rossby numbers. These insights allow engine designers to develop more precise and optimized cooling strategies. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 5264 KB  
Article
Compact Circularly Polarized Cavity-Backed Crossed-Dipole Antenna with Ultra-Wide Bandwidth for Integrated GNSS–SatCom Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Rui Fang, Qiushou Liu and Zhengde Li
Electronics 2025, 14(16), 3193; https://doi.org/10.3390/electronics14163193 - 11 Aug 2025
Viewed by 631
Abstract
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional [...] Read more.
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional crossed-dipole antennas rarely exceeds 100%. This paper presents a compact left-hand circularly polarized (LHCP) crossed-dipole antenna that combines a cavity-backed ground, ground-slot perturbations, and parasitic patches to simultaneously broaden the impedance and axial-ratio bandwidths. The fabricated prototype achieves an impedance bandwidth (IMBW) of 0.71–3.89 GHz (138%) and a 3 dB axial-ratio bandwidth (ARBW) of 0.98–3.27 GHz (108%), while maintaining gains above 3.5 dBic across most of the frequency range. The good agreement validates the multi-technique co-design and shows that the compact architecture (0.302 λ × 0.302 λ × 0.129 λ) breaks classical crossed-dipole limits. The antenna provides a scalable building block for wideband conformal arrays in next-generation integrated GNSS–SatCom systems. Full article
Show Figures

Figure 1

21 pages, 5062 KB  
Article
Forest Management Effects on Breeding Bird Communities in Apennine Beech Stands
by Guglielmo Londi, Francesco Parisi, Elia Vangi, Giovanni D’Amico and Davide Travaglini
Ecologies 2025, 6(3), 54; https://doi.org/10.3390/ecologies6030054 - 1 Aug 2025
Viewed by 1260
Abstract
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate [...] Read more.
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate the effect of forest management regimes on bird communities in the Italian Peninsula during 2022 through audio recordings. We studied the structure, composition, and specialization of the breeding bird community in four managed beech stands (three even-aged beech stands aged 20, 60, and 100 years old, managed by a uniform shelterwood system; one uneven-aged stand, managed by a single-tree selection system) and one uneven-aged, unmanaged beech stand in the northern Apennines (Tuscany region, Italy). Between April and June 2022, data were collected through four 1-hour audio recording sessions per site, analyzing 5 min sequences. The unmanaged stand hosted a richer (a higher number of species, p < 0.001) and more specialized (a higher number of cavity-nesting species, p < 0.001; higher Woodland Bird Community Index (WBCI) values, p < 0.001; and eight characteristic species, including at least four highly specialized ones) bird community, compared to all the managed forests; moreover, the latter were homogeneous (similar to each other). Our study suggests that the unmanaged beech forests should be a priority option for conservation, while in terms of the managed beech forests, greater attention should be paid to defining the thresholds for snags, deadwood, and large trees to be retained to enhance their biodiversity value. Studies in additional sites, conducted over more years and including multi-taxon communities, are recommended for a deeper understanding and generalizable results. Full article
Show Figures

Figure 1

Back to TopTop