Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = Z-spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1443 KiB  
Article
Mid-Infrared Spectroscopy with Variable Selection for the Rapid Quantification of Amylose Content in Starch
by Jingyue Qiao, Hongwei Wang, Jianing Bai, Yimin Liu, Xiaocheng Liu, Yanyan Zhang and Leiming Yuan
Chemosensors 2025, 13(8), 287; https://doi.org/10.3390/chemosensors13080287 - 4 Aug 2025
Abstract
Amylose content significantly influences the technological, quality, and nutritional properties of starchy foods. This study developed a rapid, non-destructive method to quantify amylose content in starch using mid-infrared (MIR) spectroscopy combined with chemometric techniques. Manually prepared starch mixtures with varying amylose levels were [...] Read more.
Amylose content significantly influences the technological, quality, and nutritional properties of starchy foods. This study developed a rapid, non-destructive method to quantify amylose content in starch using mid-infrared (MIR) spectroscopy combined with chemometric techniques. Manually prepared starch mixtures with varying amylose levels were scanned to obtain MIR spectra, which were preprocessed using smoothing and z-score normalization to reduce operational variability. Three variable selection methods, including bootstrap soft shrinkage (BOSS), competitive adaptive reweighted sampling (CARS), and uninformative variable elimination (UVE), were applied to select the useful spectra. A partial least square (PLS) model was then constructed to correlate selected spectral data with amylose content. The results revealed that the number and position of selected variables differed across different optimization methods, which influenced the model’s performance. It is worth noting that the optimized PLS model significantly reduced the root mean squared error of cross-validation (RMSECV) and improved prediction accuracy in 50 runs. In particular, the CARS-PLS model showed superior performance, achieving a correlation coefficient (Rp) of 0.964 and a root mean squared error of prediction (RMSEP) of 4.59, a 60% improvement over the original PLS model, which had an RMSEP of 11.56. These results highlight MIR spectroscopy’s potential, combined with optimized chemometric models, for accurate amylose quantification in food quality control. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

18 pages, 12019 KiB  
Article
Influence of Temperature on the Optical Properties of Ternary Organic Thin Films for Photovoltaics
by Gabriela Lewinska, Jerzy Sanetra, Konstanty W. Marszalek, Alexander Quandt and Bouchta Sahraoui
Materials 2025, 18(14), 3319; https://doi.org/10.3390/ma18143319 - 15 Jul 2025
Viewed by 308
Abstract
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, [...] Read more.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2′,3′:4′,5′] thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4′,5′]thieno [2′,3′:4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ(3) after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer. Full article
Show Figures

Figure 1

17 pages, 2713 KiB  
Article
LC-HRMS Coupling to Feature-Based Molecular Networking to Efficiently Annotate Monoterpene Indole Alkaloids of Alstonia scholaris
by Ying-Jie He, Yan Qin and Xiao-Dong Luo
Plants 2025, 14(14), 2177; https://doi.org/10.3390/plants14142177 - 14 Jul 2025
Viewed by 365
Abstract
Monoterpene indole alkaloids (MIAs) exhibit diverse structures and pharmacological effects. Annotating MIAs in herbal medicines remains challenging when using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). This study introduced a new annotation strategy employing LC-HRMS to efficiently identify MIAs in herbal medicines. [...] Read more.
Monoterpene indole alkaloids (MIAs) exhibit diverse structures and pharmacological effects. Annotating MIAs in herbal medicines remains challenging when using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). This study introduced a new annotation strategy employing LC-HRMS to efficiently identify MIAs in herbal medicines. Briefly, MS2 spectra under multiple collision energies (MCEs/MS2) helped capture high-quality product ions across a range of mass-to-charge (m/z) values, revealing key MS2 features such as diagnostic product ions (DPIs), characteristic cleavages (CCs), and neutral/radical losses (NLs/RLs). Next, feature-based molecular networking (FBMN) was created to map the structural relationships among MIAs across large MS datasets. Potential MIAs were then graded and annotated through systematic comparison with known biosynthetic pathways (BPs), derived skeletons, and their characteristic substituents. The MCEs/MS2-FBMN/BPs workflow was first applied to annotate MIAs in the alkaloids from the leaf of Alstonia scholaris (ALAS), a new botanical drug for respiratory diseases. A total of 229 MIAs were systematically annotated and classified, forming a solid basis for future clinical research on ALAS. This study offers an effective strategy that enhances the structural annotation of MIAs within complex herbal medicines. Full article
Show Figures

Figure 1

16 pages, 2086 KiB  
Article
High-Coverage Profiling of Hydroxyl and Amino Compounds in Sauce-Flavor Baijiu Using Bromine Isotope Labeling and Ultra-High Performance Liquid Chromatography–High-Resolution Mass Spectrometry
by Zixuan Wang, Youlan Sun, Tiantian Chen, Lili Jiang, Yuhao Shang, Xiaolong You, Feng Hu, Di Yu, Xinyu Liu, Bo Wan, Chunxiu Hu and Guowang Xu
Metabolites 2025, 15(7), 464; https://doi.org/10.3390/metabo15070464 - 9 Jul 2025
Viewed by 423
Abstract
Background: Hydroxyl and amino compounds play a significant role in defining the flavor and quality of sauce-flavor Baijiu, yet their comprehensive analysis remains challenging due to limitations in detection sensitivity. In this study, we developed a novel bromine isotope labeling approach combined [...] Read more.
Background: Hydroxyl and amino compounds play a significant role in defining the flavor and quality of sauce-flavor Baijiu, yet their comprehensive analysis remains challenging due to limitations in detection sensitivity. In this study, we developed a novel bromine isotope labeling approach combined with ultra-high performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to achieve high-coverage profiling of these compounds in sauce-flavor Baijiu. Methods: The method employs 5-bromonicotinoyl chloride (BrNC) for rapid (30 s) and mild (room temperature) labeling of hydroxyl and amino functional groups, utilizing bromine’s natural isotopic pattern (Δm/z = 1.998 Da) for efficient screening. Annotation was performed hierarchically at five confidence levels by integrating retention time, accurate mass, and MS/MS spectra. Results: A total of 309 hydroxyl and amino compounds, including flavor substances (e.g., tyrosol and phenethyl alcohol) and bioactive compounds (e.g., 3-phenyllactic acid), were identified in sauce-flavor Baijiu. The method exhibited excellent analytical performance, with wide linearity (1–4 orders of magnitude), precision (RSD < 18.3%), and stability (RSD < 15% over 48 h). When applied to sauce-flavor Baijiu samples of different grades, distinct compositional patterns were observed: premium-grade products showed greater metabolite diversity and higher contents of bioactive compounds, whereas lower-grade samples exhibited elevated concentrations of acidic flavor compounds. Conclusions: These results demonstrate that the established method is efficient for the comprehensive analysis of hydroxyl and amino compounds in complex food matrices. The findings provide valuable insights for quality control and flavor modulation in sauce-flavor Baijiu production. Full article
Show Figures

Figure 1

30 pages, 5294 KiB  
Article
Non-Invasive Bioelectrical Characterization of Strawberry Peduncles for Post-Harvest Physiological Maturity Classification
by Jonnel Alejandrino, Ronnie Concepcion, Elmer Dadios, Ryan Rhay Vicerra, Argel Bandala, Edwin Sybingco, Laurence Gan Lim and Raouf Naguib
AgriEngineering 2025, 7(7), 223; https://doi.org/10.3390/agriengineering7070223 - 8 Jul 2025
Viewed by 337
Abstract
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) [...] Read more.
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) and 100 commercially mature (CM) strawberries were distinguished. Spectra from their peduncles were measured from 1 kHz to 1 MHz, collecting four parameters (magnitude (Z(f)), phase angle (θ(f)), resistance (R(f)), and reactance (X(f))), resulting in 80,000 raw data points. Through systematic spectral preprocessing, Bode and Cole–Cole plots revealed a distinction between PR and CM strawberries. Frequency selection identified seven key frequencies (1, 5, 50, 75, 100, 250, 500 kHz) for deriving 37 engineered features from spectral, extrema, and derivative parameters. Feature selection reduced these to 6 parameters: phase angle at 50 kHz (θ (50 kHz)); relaxation time (τ); impedance ratio (|Z1k/Z250k|); dispersion coefficient (α); membrane capacitance (Cm); and intracellular resistivity (ρi). Four algorithms (TabPFN, CatBoost, GPC, EBM) were evaluated with Monte Carlo cross-validation with five iterations, ensuring robust evaluation. CatBoost achieved the highest accuracy at 93.3% ± 2.4%. Invasive reference metrics showed strong correlations with bioelectrical parameters (r = 0.74 for firmness, r = −0.71 for soluble solids). These results demonstrate a solution for precise harvest classification, reducing post-harvest losses without compromising marketability. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

18 pages, 3043 KiB  
Article
Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
by Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei and Luis Alamo-Nole
Micro 2025, 5(3), 31; https://doi.org/10.3390/micro5030031 - 22 Jun 2025
Viewed by 312
Abstract
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced [...] Read more.
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS. Full article
Show Figures

Figure 1

13 pages, 1900 KiB  
Article
Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation
by Qiyun Deng, Lei Gao, Wuyi Gao, Jiali Hao, Chunhua Zeng and Hua Wang
Nanomaterials 2025, 15(11), 844; https://doi.org/10.3390/nano15110844 - 1 Jun 2025
Viewed by 549
Abstract
Two-dimensional direct Z-scheme photocatalysts have emerged as highly promising photocatalysts for solar-driven water splitting owing to their effective separation of photogenerated carriers and strong redox abilities. This study focuses on the theoretical prediction of promising Z-scheme photocatalysts for solar-driven water splitting based on [...] Read more.
Two-dimensional direct Z-scheme photocatalysts have emerged as highly promising photocatalysts for solar-driven water splitting owing to their effective separation of photogenerated carriers and strong redox abilities. This study focuses on the theoretical prediction of promising Z-scheme photocatalysts for solar-driven water splitting based on M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) heterojunctions using first-principles calculations. All M2X/BiOY heterojunctions possess staggered band alignments, Z-scheme carrier migration, and suitable band edges for overall water splitting. Optical absorption spectra indicate that these heterojunctions exhibit significantly extended solar absorption in the visible and near-infrared regions. Moreover, the interfacial built-in electric fields of (0.46–0.72 V/Å) point from M2X to BiOY, promote photogenerated carrier separation, and enhance redox overpotentials, thereby improving photocatalytic performance. These results suggest that M2X/BiOY heterojunctions are promising Z-scheme photocatalysts for solar-driven water splitting and are expected to be experimentally prepared and realized in the near future. Full article
(This article belongs to the Special Issue Low-Dimensional Nanomaterials for Photocatalyst and Gas Sensor)
Show Figures

Graphical abstract

18 pages, 3753 KiB  
Article
Degradation Resistance of Next-Generation Dental Composites Under Bleaching and Immersion: A Multiscale Investigation
by Syed Zubairuddin Ahmed, Shahad Al-Qahtani, Naif H. Al-Qahtani, Hussah Al-Mulhim, Maha Al-Qahtani, Ali Albalushi and Sultan Akhtar
Prosthesis 2025, 7(3), 57; https://doi.org/10.3390/prosthesis7030057 - 23 May 2025
Viewed by 1009
Abstract
Background/Objectives: In the oral environment, tooth-colored restorations are frequently exposed to staining agents, affecting their aesthetic and physical properties. This study assessed the impact of stains and bleaching agents on the surface roughness, microhardness, and color stability of four different composite materials (Omnichroma, [...] Read more.
Background/Objectives: In the oral environment, tooth-colored restorations are frequently exposed to staining agents, affecting their aesthetic and physical properties. This study assessed the impact of stains and bleaching agents on the surface roughness, microhardness, and color stability of four different composite materials (Omnichroma, Charisma, Z350, and TPH). Methods: Based on group distribution, the discs of all the composite material samples were prepared. All the ninety-six-disc specimens (n = 96) were then randomly divided into four different groups based on different composite resin groups. The samples were then immersed into four different immersing media [each group had twenty-four-disc samples (n = 24)]. Finally, all the samples then faced the challenge of a bleaching agent application. Measurements were taken at baseline, post-immersion, and post-bleaching stages. Results: Red wine caused increased roughness in Filtek™ Z350 and significant color change in Omnichroma, while coffee increased roughness in Omnichroma and altered the color of TPH spectra. Soda led to increased roughness and significant color change in TPH spectra. Additionally, Filtek™ Z350 experienced reduced microhardness across all solutions after bleaching. Conclusion: This study concluded that staining and bleaching adversely affected the tested composites, with increases in surface roughness, color change, and microhardness reduction observed. Overall, Charisma diamond demonstrated the greatest resilience to staining and bleaching challenges, whereas Filtek™ Z350 XT exhibited the most pronounced degradation, indicating that composite formulation critically governs both aesthetic and mechanical stability under clinically relevant conditions. Full article
Show Figures

Figure 1

13 pages, 2712 KiB  
Article
S-Doped FeOOH Layers as Efficient Hole Transport Channels for the Enhanced Photoelectrochemical Performance of Fe2O3
by Yanhong Zhou, Yiran Zhang, Boyang Jing, Xiaoyuan Liu and Debao Wang
Nanomaterials 2025, 15(10), 767; https://doi.org/10.3390/nano15100767 - 20 May 2025
Viewed by 385
Abstract
Hematite (Fe2O3) has been accepted as a promising and potential photo(electro)catalyst. However, its poor carrier separation and transfer efficiency has limited its application for photoelectrocatalytic (PEC) water oxidation. Herein, a S-doped FeOOH (S:FeOOH) layer was rationally designed and grown [...] Read more.
Hematite (Fe2O3) has been accepted as a promising and potential photo(electro)catalyst. However, its poor carrier separation and transfer efficiency has limited its application for photoelectrocatalytic (PEC) water oxidation. Herein, a S-doped FeOOH (S:FeOOH) layer was rationally designed and grown on Fe2O3 to construct a S:FeOOH/Fe2O3 composite photoanode. The obtained S:FeOOH/Fe2O3 photoanodes were fully characterized. The surface injection efficiency for Fe2O3 was then significantly increased with a high ηsurface value of 92.8%, which increases to 2.98 times for Fe2O3 and 2.16 times for FeOOH/Fe2O3, respectively. With 2.43 mA cm‒2 at 1.23 V, the optimized S:FeOOH/Fe2O3 photoanode was entrusted with a higher photocurrent density. The onset potential for S:FeOOH/Fe2O3 cathodically shifts 70 mV over Fe2O3. The improved PEC performance suggests that the S:FeOOH layer acts as ultrafast transport channels for holes at the photoanode/electrolyte interface, suppressing surface charge recombination. A Z-scheme band alignment between Fe2O3 and S:FeOOH was deduced from the UV–Vis and UPS spectra to promote charge transfer. This method provides an alternative for the construction of photoanodes with enhanced PEC water splitting performance. Full article
Show Figures

Graphical abstract

17 pages, 5850 KiB  
Article
Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China
by Yifan Zhang, Shaochun Yang, Yong Wang, Shilong Ma and Dongmou Huang
Processes 2025, 13(5), 1346; https://doi.org/10.3390/pr13051346 - 28 Apr 2025
Viewed by 381
Abstract
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate [...] Read more.
The low-permeability gravity-flow sandstone reservoirs in the Dongying Depression, China, contain substantial oil reserves, yet their development is constrained by complex pore structures. In this study, optical and scanning electron microscopy (SEM) observations were integrated with nuclear magnetic resonance (NMR) measurements to investigate the pore system, pore size distribution, and connectivity of Es3z sandstone. By applying a Gaussian multi-peak fitting algorithm to the NMR T2 spectra, parameters that directly capture the physical attributes of the rocks were extracted. Based on the correlation between these parameters and permeability, three distinct pore structure types (A, B, and C) were identified. The results demonstrate the effectiveness of using these NMR T2 spectral parameters for quantitative pore structure characterization and classification, providing a robust framework for evaluating and predicting the quality of low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 9250 KiB  
Article
Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi2WO6 for Solar-Driven CO2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics
by Ting Liu, Yun Wu, Hao Wang, Jichang Lu and Yongming Luo
Nanomaterials 2025, 15(8), 618; https://doi.org/10.3390/nano15080618 - 17 Apr 2025
Viewed by 651
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic [...] Read more.
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production. Full article
Show Figures

Figure 1

17 pages, 3834 KiB  
Article
Evaluation of the Removal of PVDF Using ToF-SIMS: Comparing Dihydrolevoglucosenone and Pyrolysis as Pretreatments for Cathode Materials of Lithium-Ion Batteries
by Marc Simon Henderson, Aliza Marie Salces, William D. A. Rickard, Denis Fougerouse, Álvaro José Rodríguez Medina, Elsayed A. Oraby, Chau Chun Beh, Martin Rudolph, Anna Vanderbruggen and Jacques Eksteen
Recycling 2025, 10(2), 56; https://doi.org/10.3390/recycling10020056 - 1 Apr 2025
Cited by 1 | Viewed by 2016
Abstract
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material [...] Read more.
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material using either a green solvent-based dissolution process or pyrolysis, analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The solvent pretreatment involved mixing dihydrolevoglucosenone (Cyrene™) with PVDF-coated NMC811 at 100 °C, followed by hot filtration to separate the Cyrene-PVDF solution. Pyrolysis was conducted at 800 °C under an argon atmosphere. Positive ToF-SIMS spectra for Cyrene showed characteristic peaks at ketene (42 m/z) and 1,3-dioxole (86 m/z), along with intense C2H3O+, C3H3O+, C4H7+, and C3H5O+ peaks. The characteristic peaks used to identify PVDF were C3H2F5+ (133 m/z), C3H2F3+ (95 m/z), and C3HF4+ (113 m/z). Both processes resulted in PVDF removal, with pyrolysis demonstrating higher effectiveness. Particle agglomeration was observed in both pretreated NMC811 samples, however agglomeration was more pronounced with Cyrene pretreatment due to PVDF redeposition. Following pyrolysis, PVDF was transformed into a defluorinated carbonaceous material. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

12 pages, 8217 KiB  
Article
Characterization of Ten Novel Metabolites of a PAF Antagonist SY0916 in Rats Using LC-MS and NMR
by Xin He, Tingting Zhang, Hongyi Zhao and Chen Ma
Metabolites 2025, 15(4), 238; https://doi.org/10.3390/metabo15040238 - 31 Mar 2025
Viewed by 410
Abstract
Background: SY0916 is a novel PAF receptor antagonist used to treat chronic immune-inflammatory diseases and is currently undergoing phase II clinical trials. However, SY0916 is rapidly transformed in vivo, suggesting a demand for metabolite screening. Methods: According to the similar MS fragmentation patterns [...] Read more.
Background: SY0916 is a novel PAF receptor antagonist used to treat chronic immune-inflammatory diseases and is currently undergoing phase II clinical trials. However, SY0916 is rapidly transformed in vivo, suggesting a demand for metabolite screening. Methods: According to the similar MS fragmentation patterns of SY0916 and its five reported metabolites (M01, M02, M03, M05, and M06), a strategy based on two characteristic ions of m/z 170 and m/z 142 was employed to identify the potential metabolites in precursor screening in vivo, then LC-HRMS and NMR were applied to the metabolites characterization. Results: Two phase I metabolites (M07 and M08) were identified using LC-HRMS and NMR. Eight phase II metabolites, including six glutathione conjugates (M09-M14) and two sulfonate conjugates (M15 and M16), were identified using LC-HRMS. The possible metabolic pathways of SY0916 and fragmentation regularities of mass spectra of its metabolites were summarized. Conclusions: We preliminarily determined the metabolic profile of SY0916 in rats using LC-MS, providing insight into the metabolism of SY0916 in vivo and a basis for clinical studies and future applications. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

12 pages, 2547 KiB  
Article
Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables
by Feng Gao, Yage Xing, Jialong Li, Lin Guo, Yiye Sun, Wen Shi and Leiming Yuan
Molecules 2025, 30(7), 1543; https://doi.org/10.3390/molecules30071543 - 30 Mar 2025
Cited by 1 | Viewed by 518
Abstract
Total soluble solids (TSSs) serve as a crucial maturity indicator and quality determinant in apricots, influencing harvest timing and postharvest management decisions. This study develops an advanced framework integrating adaptive boosting (Adaboost) ensemble learning with high-frequency spectral variables selected by uninformative variable elimination [...] Read more.
Total soluble solids (TSSs) serve as a crucial maturity indicator and quality determinant in apricots, influencing harvest timing and postharvest management decisions. This study develops an advanced framework integrating adaptive boosting (Adaboost) ensemble learning with high-frequency spectral variables selected by uninformative variable elimination (UVE) for the rapid non-destructive detection of fruit quality. Near-infrared (NIR) spectra (1000~2500 nm) were acquired and then preprocessed through robust principal component analysis (ROBPCA) for outlier detection combined with z-score normalization for spectral pretreatment. Subsequent data processes included three steps: (1) 100 continuous runs of UVE identified characteristic wavelengths, which were classified into three levels—high-frequency (≥90 times), medium-frequency (30–90 times), and low-frequency (≤30 times) subsets; (2) the development of the base optimal partial least squares regression (PLSR) models for each wavelength subset; and (3) the execution of adaptive weight optimization through the Adaboost ensemble algorithm. The experimental findings revealed the following: (1) The model established based on high-frequency wavelengths outperformed both full-spectrum model and full-characteristic wavelength model. (2) The optimized UVE-PLS-Adaboost model achieved the peak performance (R = 0.889, RMSEP = 1.267, MAE = 0.994). This research shows that the UVE-Adaboost fusion method enhances model prediction accuracy and generalization ability through multi-dimensional feature optimization and model weight allocation. The proposed framework enables the rapid, non-destructive detection of apricot TSSs and provides a reference for the quality evaluation of other fruits in agricultural applications. Full article
(This article belongs to the Special Issue Innovative Analytical Techniques in Food Chemistry)
Show Figures

Figure 1

17 pages, 3741 KiB  
Article
Assessing the Carasau Bread Doughs Microwave Spectra
by Elisabetta Orrù, Matteo B. Lodi and Luca Lodi
Foods 2025, 14(7), 1177; https://doi.org/10.3390/foods14071177 - 27 Mar 2025
Viewed by 423
Abstract
Carasau bread (CB) is a traditional Sardinian flatbread with significant market potential, driving the need for advanced quality monitoring solutions in its production. Recent advancements in automation and engineering have enhanced process control, but a comprehensive understanding of CB dough properties remains essential. [...] Read more.
Carasau bread (CB) is a traditional Sardinian flatbread with significant market potential, driving the need for advanced quality monitoring solutions in its production. Recent advancements in automation and engineering have enhanced process control, but a comprehensive understanding of CB dough properties remains essential. Dielectric spectroscopy (DS), particularly in the microwave (MW) range, has emerged as a non-destructive, cost-effective tool for food characterization, providing insights into microstructure and composition. MW DS has been applied to assess fermentation dynamics and ingredient influence in CB doughs, with previous studies modeling dielectric properties using a third-order Cole–Cole model up to 8.5 GHz and later extending to 20 GHz. Despite these advancements, the repeatability, reliability, and consistency of MW DS measurements on CB doughs have not been systematically assessed. This study aims to fill this gap by analyzing MW DS measurements on ten CB dough samples with standard composition (water 50%, yeast 1.5%, salt 1.5%) in the 0.5–6 GHz range, both before and after leavening, for 10 different samples and a total of 100 measurements. Even though the correlation between spectra is high, and even if the coefficient of variation is below 5% before leavening, the z-score analysis and the kernel density estimation highlighted that the distribution of dielectric data is heterogeneous, showing that variability across samples exists, especially after leavening. Finally, the influence of pressure, temperature, and relative humidity was excluded. This statistical evaluation of MW DS measurement provided critical insights into the robustness of MW DS for industrial applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop