Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater 2017, 2, 17050. [Google Scholar] [CrossRef]
- Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H. Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrogen Energy 2001, 26, 653–659. [Google Scholar] [CrossRef]
- Qi, M.-Y.; Conte, M.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Chapter one-photocatalytic water splitting on semiconductor-based photocatalysts. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2017; Volume 60, pp. 1–57. [Google Scholar]
- Shen, S.; Shi, J.; Guo, P.; Guo, L. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591. [Google Scholar] [CrossRef]
- Fan, Y.C.; Yang, B.; Song, X.H.; Shao, X.F.; Zhao, M.W. Direct Z-scheme photocatalytic overall water splitting on 2D CdS/InSe heterostructures. J. Phys. D Appl. Phys. 2018, 51, 395501. [Google Scholar] [CrossRef]
- Ge, M.; Yang, C.L.; Wang, M.S.; Ma, X.G. Photocatalytic hydrogen generation from overall water splitting with direct Z-scheme driven by two-dimensional InTe/Bismuthene heterostructure. Int. J. Hydrogen Energy 2023, 48, 138–146. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P.; Zhang, X.; Shen, T.; Liu, J.; Ren, J.-C.; Wang, H.; Li, S.; Liu, W. Enhanced solar-to-hydrogen efficiency for photocatalytic water splitting based on a polarized heterostructure: The role of intrinsic dipoles in heterostructures. J. Mater. Chem. A 2021, 9, 14515–14523. [Google Scholar] [CrossRef]
- Wang, G.; Gong, L.; Li, Z.; Wang, B.; Zhang, W.; Yuan, B.; Zhou, T.; Long, X.; Kuang, A. A two-dimensional CdO/CdS heterostructure used for visible light photocatalysis. Phys. Chem. Chem. Phys. 2020, 22, 9587–9592. [Google Scholar] [CrossRef]
- Wang, G.Z.; Chang, J.L.; Tang, W.Y.; Xie, W.J.; Ang, Y.S. 2D materials and heterostructures for photocatalytic water-splitting: A theoretical perspective. J. Phys. D Appl. Phys. 2022, 55, 293002. [Google Scholar] [CrossRef]
- Yuan, Y.-P.; Ruan, L.-W.; Barber, J.; Joachim Loo, S.C.; Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 2014, 7, 3934–3951. [Google Scholar] [CrossRef]
- Zhou, Z.; Niu, X.; Zhang, Y.; Wang, J. Janus MoSSe/WSeTe heterostructures: A direct Z-scheme photocatalyst for hydrogen evolution. J. Mater. Chem. A 2019, 7, 21835–21842. [Google Scholar] [CrossRef]
- Guo, H.-L.; Du, H.; Jiang, Y.-F.; Jiang, N.; Shen, C.; Zhou, X.; Liu, Y.; Xu, A.W. Artificial photosynthetic Z-scheme photocatalyst for hydrogen evolution with high quantum efficiency. J. Phys. Chem. C 2017, 121, 107–114. [Google Scholar] [CrossRef]
- Peng, Z.; Jiaguo, Y.; Mietek, J. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar]
- Tian, S.; Ding, Y.-F.; Cai, M.-Q.; Chen, L.; Au, C.-T.; Yin, S.-F. Enhanced photocatalytic activity of the direct Z-scheme black phosphorus/BiOX (X = Cl, Br, I) heterostructures. Phys. Chem. Chem. Phys. 2021, 23, 17894–17903. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Z.; Nie, H.; Kong, B. The direct Z-scheme character and roles of S vacancy in BiOCl/Bi2S3-(001) heterostructures for superior photocatalytic activity: A hybrid density functional investigation. Phys. Chem. Chem. Phys. 2024, 26, 10723–10736. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.S.; Cao, J.X.; Yin, W.J.; Yang, L.W.; Wei, X.L. A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: A first-principles study. J. Phys. D Appl. Phys. 2020, 53, 055108. [Google Scholar] [CrossRef]
- Yin, Q.-K.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. Two-dimensional heterostructures of AuSe/SnS for the photocatalytic hydrogen evolution reaction with a Z-scheme. J. Mater. Chem. C 2021, 9, 12231–12238. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef]
- Zhu, X.T.; Xu, Y.; Cao, Y.; Zou, D.F.; Sheng, W. Direct Z-scheme arsenene/HfS2 van der Waals heterojunction for overall photocatalytic water splitting: First-principles study. Appl. Surf. Sci. 2022, 574, 151650. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Fang, D.; Yang, D. Efficient photocatalytic hydrogen evolution of Z-scheme BiVO4/ZnIn2S4 heterostructure driven by visible light. Inorg. Chem. Commun. 2024, 169, 112971. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Zhang, Z.; Chen, X.; Ding, J.; Zhang, J.; Wan, H.; Guan, G. Constructing direct Z-scheme heterojunction g-C3N5/BiOBr for efficient photocatalytic CO2 reduction with H2O. J. Environ. Chem. Eng. 2023, 11, 109345. [Google Scholar] [CrossRef]
- Xie, K.-X.; Zhang, Y.; Qiang, Z.-B.; Ding, J.-X.; Nouguiza, H.; Chen, H.-X.; Duan, L.; Fan, J.-B.; Ni, L. A direct Z-scheme GeS/GeSe van der Waals heterojunction as a promising photocatalyst with high optical absorption, solar-to-hydrogen efficiency and catalytic activity for overall water splitting: First-principles prediction. Int. J. Hydrogen Energ. 2024, 51, 1381–1391. [Google Scholar] [CrossRef]
- Zhang, C.-F.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. Z-Scheme photocatalytic solar-energy-to-hydrogen conversion driven by the HfS2/SiSe heterostructure. J. Mater. Chem. C 2022, 10, 5474–5481. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, G.; Wang, M.; Li, B.; Dang, M.; Wang, Y.; Zhang, B.; Ren, H.; Xia, A. The formation of direct Z-scheme Ag/BiOCl/AgIO3 heterojunction and its degradation stability. Appl. Surf. Sci. 2020, 530, 147228. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Z.; Miao, L.; Shi, J.; Xiong, R. Thermoelectric Properties of Strained β-Cu2Se. ACS Appl. Mater. Interfaces 2021, 13, 34367–34373. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.-F.; Du, S. Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: A broad range of band gaps and high carrier mobilities. Nano Res. 2021, 14, 2826–2830. [Google Scholar] [CrossRef]
- Liu, H.; Gao, L.; Xue, Y.; Ye, Y.; Tian, Y.; Jiang, L.; He, S.; Ren, W.; Shai, X.; Wei, T.; et al. Two-dimensional semiconducting Ag2X (X = S, Se) with Janus-induced built-in electric fields and moderate band edges for overall water splitting. Appl. Surf. Sci. 2022, 597, 153707. [Google Scholar] [CrossRef]
- Qian, K.; Gao, L.; Chen, X.; Li, H.; Zhang, S.; Zhang, X.-L.; Zhu, S.; Yan, J.; Bao, D.; Cao, L.; et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition. Adv. Mater. 2020, 32, 1908314. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xu, W.W.; Lin, D.; Wang, J.; Zeng, X.C. Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility. J. Phys. Chem. Lett. 2019, 10, 3773–3778. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Gao, L.; Ren, W.; Shai, X.; Wei, T.; Zeng, C.; Wang, H. Prediction of 2D group-11 chalcogenides: Insights into novel auxetic M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers. Phys. Chem. Chem. Phys. 2023, 25, 32323–32329. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.-R.; Chen, L.; Guo, J.; Shen, S.; Au, C.-T.; Yin, S.-F.; Cai, M.-Q. Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action. Appl. Surf. Sci. 2019, 492, 157–165. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, P.; Zhou, W.; Hong, J. Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X = Cl, Br, I) for water splitting. J. Phys. Chem. C 2020, 124, 9696–9702. [Google Scholar] [CrossRef]
- Opoku, F.; Akoto, O.; Oppong, S.O.-B.; Adimado, A.A. Two-dimensional layered type-II MS2/BiOCl (M = Zr, Hf) van der Waals heterostructures: Promising photocatalysts for hydrogen generation. New J. Chem. 2021, 45, 20365–20373. [Google Scholar] [CrossRef]
- Pan, H.-X.; Feng, L.-P.; Zeng, W.; Zhang, Q.-C.; Zhang, X.-D.; Liu, Z.-T. Active sites in single-layer BiOX (X = Cl, Br, and I) catalysts for the hydrogen evolution reaction. Inorg. Chem. 2019, 58, 13195–13202. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Wang, J.; Yuan, Y.; Zhang, Q.; Gao, Z.; Liu, L.-M.; Chen, L. The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2014, 16, 25854–25861. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Haas, P.; Tran, F.; Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 2009, 79, 085104. [Google Scholar] [CrossRef]
- Tran, F.; Laskowski, R.; Blaha, P.; Schwarz, K. Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 2007, 75, 115131. [Google Scholar] [CrossRef]
- Zhang, G.-X.; Reilly, A.M.; Tkatchenko, A.; Scheffler, M. Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New J. Phys. 2018, 20, 063020. [Google Scholar] [CrossRef]
- Wang, G.; Luo, X.; Huang, Y.; Kuang, A.; Yuan, H.; Chen, H. BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications. RSC Adv. 2016, 6, 91508–91516. [Google Scholar] [CrossRef]
- Choudhary, K.; Tavazza, F. Predicting anomalous quantum confinement effect in van der Waals materials. Phys. Rev. Mater. 2021, 5, 054602. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.-Y.; Guo, H.; Huang, L.; Lu, H.; Lin, X.; Wang, Y.-L.; Du, S.; Gao, H.-J. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073–6100. [Google Scholar] [CrossRef]
- Li, S.; Lyu, Y.; Zheng, J.; Sofer, Z.; Zhou, H. Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis. Flat Chem. 2024, 47, 100718. [Google Scholar] [CrossRef]
- Sun, R.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. High solar-to-hydrogen efficiency photocatalytic hydrogen evolution reaction with the HfSe2/InSe heterostructure. J. Power Sources 2022, 547, 232008. [Google Scholar] [CrossRef]
- Zhao, H.; Han, L.; Jia, B.; Chen, Y.; Guan, X.; Wu, L.; Lu, P. Type-II van der Waals heterostructures based on AsP and transition metal dichalcogenides: Great promise for applications in solar cell. Phys. Status Solidi RRL 2022, 16, 2200043. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Zeng, F.; Long, L.; Cai, S. Electronic structures and optoelectronic properties of self-powered black phosphorus/InSe heterojunction: A time-domain ab initio perspective. Appl. Surf. Sci. 2025, 681, 161524. [Google Scholar] [CrossRef]
- Ahammed, R.; Jena, N.; Rawat, A.; Mohanta, M.K.; Dimple; De Sarkar, A. Ultrahigh out-of-plane piezoelectricity meets giant rashba effect in 2D Janus monolayers and bilayers of group IV transition-metal trichalcogenides. J. Phys. Chem. C 2020, 124, 21250–21260. [Google Scholar] [CrossRef]
- Bai, S.; Li, X.-Y.; Kong, Q.; Long, R.; Wang, C.; Jiang, J.; Xiong, Y. Toward enhanced photocatalytic oxygen evolution: Synergetic utilization of plasmonic effect and schottky junction via Interfacing facet selection. Adv. Mater. 2015, 27, 3444–3452. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Yang, S.-Z.; Ji, M.; Yan, C.; Gu, K.; Xia, J.; Li, H.; Li, S.; Liu, Z. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution. J. Mater. Chem. A 2017, 5, 14144–14151. [Google Scholar] [CrossRef]
- Ji, M.; Chen, R.; Di, J.; Liu, Y.; Li, K.; Chen, Z.; Xia, J.; Li, H. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J. Colloid Interface Sci. 2019, 533, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L. Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal. 2016, 6, 8276–8285. [Google Scholar] [CrossRef]
- Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E.A.; Li, R.; Li, C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water Splitting. Angew. Chem. 2020, 59, 6590–6595. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, L.; Wang, J.; Li, Q.; He, W.; Yin, J.J. Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Gao, L.; Gao, W.; Hao, J.; Zeng, C.; Wang, H. Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation. Nanomaterials 2025, 15, 844. https://doi.org/10.3390/nano15110844
Deng Q, Gao L, Gao W, Hao J, Zeng C, Wang H. Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation. Nanomaterials. 2025; 15(11):844. https://doi.org/10.3390/nano15110844
Chicago/Turabian StyleDeng, Qiyun, Lei Gao, Wuyi Gao, Jiali Hao, Chunhua Zeng, and Hua Wang. 2025. "Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation" Nanomaterials 15, no. 11: 844. https://doi.org/10.3390/nano15110844
APA StyleDeng, Q., Gao, L., Gao, W., Hao, J., Zeng, C., & Wang, H. (2025). Direct Z-Scheme M2X/BiOY (M = Ag, Au; X = S, Se; Y = Cl, Br, I) Heterojunctions for Solar-Driven Photocatalytic Water Splitting Applications: A First-Principles Investigation. Nanomaterials, 15(11), 844. https://doi.org/10.3390/nano15110844