Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Yellow River Irrigation District

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3154 KiB  
Article
Water Saving and Environmental Issues in the Hetao Irrigation District, the Yellow River Basin: Development Perspective Analysis
by Zhuangzhuang Feng, Qingfeng Miao, Haibin Shi, José Manuel Gonçalves and Ruiping Li
Agronomy 2025, 15(7), 1654; https://doi.org/10.3390/agronomy15071654 - 8 Jul 2025
Viewed by 332
Abstract
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in [...] Read more.
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in the Hetao Irrigation District (HID) of the Yellow River Basin. This paper presents the main measures that have been applied to ensure the sustainability and modernization of Hetao, mitigating water scarcity while maintaining land productivity and environmental value. Several components of modernization projects that have already been implemented are characterized, such as the off-farm canal distribution system, the on-farm surface irrigation, innovative crop and soil management techniques, drainage, and salinity control, including the management of autumn irrigation and advances of drip irrigation at the sector and farm levels. This characterization includes technologies, farmer training, labor needs, energy consumption, water savings, and economic aspects, based on data observed and reported in official reports. Therefore, this study integrates knowledge and analyzes the most limiting aspects in some case studies, evaluating the effectiveness of the solutions used. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

21 pages, 3454 KiB  
Article
Yield Increase and Emission Reduction Effects of Alfalfa in the Yellow River Irrigation District of Gansu Province: The Coupling Mechanism of Biodegradable Mulch and Controlled-Release Nitrogen Fertilizer
by Wenjing Chang, Haiyan Li, Yaya Duan, Yi Ling, Jiandong Lu, Minhua Yin, Yanlin Ma, Yanxia Kang, Yayu Wang, Guangping Qi and Jianjun Wang
Plants 2025, 14(13), 2022; https://doi.org/10.3390/plants14132022 - 2 Jul 2025
Viewed by 367
Abstract
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this [...] Read more.
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this study, three planting patterns (conventional flat planting, FP; ridge mulching with biodegradable film, BM; and ridge mulching with conventional plastic film, PM), two nitrogen fertilizer types (urea, U, and controlled-release nitrogen fertilizer, C), and four nitrogen application rates (0, 80, 160, and 240 kg·hm−2) were applied to systematically investigate their effects on alfalfa yield and N2O emissions from grasslands. The results showed that BM and PM increased alfalfa yield by 23.49% and 18.65%, respectively, compared to FP, while C increased yield by 8.46% compared to urea. The highest yield (24.84 t·hm−2) was recorded under the BMC2 treatment, which was 97.11% higher than that of FPN0. N2O emission flux and cumulative emissions increased with nitrogen application rate. Compared with U, C reduced cumulative N2O emissions and greenhouse gas emission intensity (GHGI) by 23.89% and 25.84%, respectively. Compared to PM, BM reduced cumulative N2O emissions and GHGI by 11.58% and 20.15%, respectively. Principal component analysis indicated that the combination of ridge mulching with biodegradable film and 160 kg·hm−2 of C was optimal for simultaneously increasing alfalfa yield and reducing N2O emissions, making it a suitable planting–fertilization strategy for the Yellow River irrigation district in Gansu and similar ecological regions. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 472
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

31 pages, 4590 KiB  
Article
Impact of a Saline Soil Improvement Project on the Spatiotemporal Evolution of Groundwater Dynamic Field and Hydrodynamic Process Simulation in the Hetao Irrigation District
by Yule Sun, Liping Wang, Zuting Liu, Yonglin Jia and Zhongyi Qu
Agronomy 2025, 15(6), 1346; https://doi.org/10.3390/agronomy15061346 - 30 May 2025
Viewed by 414
Abstract
This study examined groundwater dynamics under saline–alkali improvement measures in a 3.66 × 107 m2 study area in Wuyuan County, Hetao Irrigation District, where agricultural sustainability is constrained by soil salinization. This work investigated the spatiotemporal evolution patterns and influencing factors [...] Read more.
This study examined groundwater dynamics under saline–alkali improvement measures in a 3.66 × 107 m2 study area in Wuyuan County, Hetao Irrigation District, where agricultural sustainability is constrained by soil salinization. This work investigated the spatiotemporal evolution patterns and influencing factors of the groundwater environment in the context of soil salinity–alkalinity improvement, as well as the impact of irrigation on the ionic characteristics of groundwater. Furthermore, based on this analysis, a groundwater numerical model and a prediction model for the study area were developed using Visual MODFLOW Flex 6.1 software to forecast the future groundwater levels in the study area and evaluate the effects of varying irrigation scenarios on these levels. The key findings are as follows: (1) The groundwater depth stabilized at 1.63 ± 0.15 m (0.4 m increase) post-improvement measures, maintaining equilibrium under current irrigation but increasing with reductions in water supply. The groundwater salinity increased by 0.59–1.2 g/L across the crop growth period. (2) Spring irrigation raised the groundwater total dissolved solids by 15.6%, as influenced by rock weathering (38.2%), evaporation (31.5%), and cation exchange (30.3%). (3) Maintaining current irrigation systems and planting structures could stabilize groundwater levels at 1.60–1.65 m over the next decade, confirming the sustainable hydrological effects of soil improvement measures. Reducing irrigation to 80% of the current water supply of the Yellow River enables groundwater level stabilization (2.05 ± 0.12 m burial depth) within 5–7 years. This approach decreases river water dependency by 20% while boosting crop water efficiency by 18.7% and reducing root zone salt stress by 32.4%. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 892 KiB  
Article
Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems
by Zhiwei Zhao, Qi Li, Fan Xia, Peng Zhang, Shuiyuan Hao, Shijun Sun, Chao Cui and Yongping Zhang
Agriculture 2025, 15(10), 1038; https://doi.org/10.3390/agriculture15101038 - 11 May 2025
Viewed by 530
Abstract
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the [...] Read more.
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the impact of regulated deficit irrigation strategies on spring wheat production, with the dual objectives of enhancing water conservation and optimizing yield–quality synergies. Through a two-year field experiment (2020~2021), four irrigation regimes were implemented: rain-fed control (W0), single irrigation at the tillering–jointing stage (W1), dual irrigation at the tillering–jointing and heading–flowering stages (W2), and triple irrigation incorporating the grain-filling stage (W3). A comprehensive analysis revealed that an incremental irrigation frequency progressively enhanced plant morphological traits (height, upper three-leaf area), population dynamics (leaf area index, dry matter accumulation), and physiological performance (flag leaf SPAD, net photosynthetic rate), all peaking under the W2 and W3 treatments. While yield components and total water consumption exhibited linear increases with irrigation inputs, grain yield demonstrated a parabolic response, reaching maxima under W2 (29.3% increase over W0) and W3 (29.1%), whereas water use efficiency (WUE) displayed a distinct inverse trend, with W2 achieving the optimal balance (4.6% reduction vs. W0). The grain quality parameters exhibited divergent responses: the starch content increased proportionally with irrigation, while protein-associated indices (wet gluten, sedimentation value) and dough rheological properties (stability time, extensibility) peaked under W2. Notably, protein content and its subcomponents followed a unimodal pattern, with the W0, W1, and W2 treatments surpassing W3 by 3.4, 11.6, and 11.3%, respectively. Strong correlations emerged between protein composition and processing quality, while regression modeling identified an optimal water consumption threshold (3250~3500 m3 ha−1) that concurrently maximized grain yield, protein output, and WUE. The W2 regime achieved the synchronization of water conservation, yield preservation, and quality enhancement through strategic irrigation timing during critical growth phases. These findings establish a scientifically validated framework for sustainable, intensive wheat production in arid irrigation districts, resolving the tripartite challenge of water scarcity mitigation, food security assurance, and processing quality optimization through precision water management. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

20 pages, 6419 KiB  
Article
Ecological Health Evaluation of Yellow River Irrigation Districts in Henan Province: A Case Study of the Zhaokou Irrigation District
by Yong Wu, Yubo Jia, Ling Li, Chi Sun, Jiwei Li and Jie Lu
Water 2025, 17(8), 1184; https://doi.org/10.3390/w17081184 - 15 Apr 2025
Cited by 1 | Viewed by 440
Abstract
Irrigation districts play a crucial role in guaranteeing agricultural production, and their ecological health and sustainable development are of great importance for regional economic and environmental security. Taking the Zhaokou irrigation district in Henan Province as the research object, this paper firstly constructs [...] Read more.
Irrigation districts play a crucial role in guaranteeing agricultural production, and their ecological health and sustainable development are of great importance for regional economic and environmental security. Taking the Zhaokou irrigation district in Henan Province as the research object, this paper firstly constructs a health evaluation system consisting of 26 indicators from the perspective of a “nature–economy–society–ecology” composite system. Then, the fuzzy hierarchical comprehensive evaluation method and the ArcGIS spatial analysis technique are combined to systematically evaluate the ecological health status of the irrigation district and the spatial differentiation characteristics of its functional zoning. According to the findings of this paper, the overall health level of the Zhaokou irrigation district has a membership score of 0.495, which is at a “good” grade. However, some regions are inadequate in terms of environmental quality and water resources utilization. Zonal health evaluation shows that Shangqiu and Xuchang areas have the highest comprehensive health level (grade I), that the health level of Zhengzhou area is grade II, and that Kaifeng and Zhoukou areas, due to insufficient water-saving benefits and significant ecological constraints, have relatively low health levels (grades III–IV). Under the framework of functional zoning, the irrigation district is divided into three types, namely, ecological–water-saving–social composite areas, ecological–water-saving composite areas, and water-saving–social composite areas. Among them, the ecological–water-saving–social composite areas only account for 3.7%, so optimized transformation is pressing. The findings can provide references for the sustainable development and management of Yellow River irrigation districts in Henan Province, boosting the high-quality development of irrigation districts. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

22 pages, 11426 KiB  
Article
The Characteristics and Driving Factors of Soil Salinisation in the Irrigated Area on the Southern Bank of the Yellow River in Inner Mongolia: A Assessment of the Donghaixin Irrigation District
by Ziyuan Qin, Tangzhe Nie, Ying Wang, Hexiang Zheng, Changfu Tong, Jun Wang, Rongyang Wang and Hongfei Hou
Agriculture 2025, 15(5), 566; https://doi.org/10.3390/agriculture15050566 - 6 Mar 2025
Viewed by 865
Abstract
Soil salinisation is a critical problem in northern China’s arid and semi-arid irrigated regions, posing a substantial impediment to the sustainable advancement of agriculture in these areas. This research utilises the Donghaixin Irrigation District, located on the southern bank of the Yellow River [...] Read more.
Soil salinisation is a critical problem in northern China’s arid and semi-arid irrigated regions, posing a substantial impediment to the sustainable advancement of agriculture in these areas. This research utilises the Donghaixin Irrigation District, located on the southern bank of the Yellow River in Inner Mongolia, as a case study. This study examines the spatial distribution and determinants of soil salinisation through macro-environmental variables and micro-ion composition, integrating regression models and groundwater ion characteristics to elucidate the patterns and causes of soil salinisation systematically. The findings demonstrate that soil salinisation in the study region displays notable spatial clustering, with surface water-irrigated regions exhibiting greater salinisation levels than groundwater-irrigated areas. More than 80% of the land exhibits moderate salinity, predominantly characterised by the ions Cl, HCO3, and SO42−. The hierarchy of ion concentration variation with escalating soil salinity is as follows: Na+ > K+ > SO42− > Cl > Mg2+ > HCO3 + CO32− > Ca2+. The susceptibility of ions to soil salinisation is ordered as follows: Ca2+ > Na+ > HCO3 + CO32− > Mg2+ > K+ > Cl > SO42−. In contrast to the ordinary least squares (OLS) model, the geographic weighted regression (GWR) model more effectively elucidates the geographical variability of salinity, evidenced by an adjusted R2 of 0.68, particularly in high-salinity regions, where it more precisely captures the trend of observed values. Ecological driving elements such as organic matter (OM), pH, groundwater depth (GD), total dissolved solids (TDS), digital elevation model (DEM), normalised difference vegetation index (NDVI), soil moisture (SM), and potential evapotranspiration (PET) govern the distribution of salinisation. In contrast, anthropogenic activities affect the extent of salinisation variation. Piper’s trilinear diagram demonstrates that Na cations mainly characterise groundwater and soil water chemistry. In areas irrigated by surface water, the concentration of SO42− is substantially elevated and significantly affected by agricultural practises; conversely, in groundwater-irrigated regions, Cl and HCO3 are more concentrated, primarily driven by evaporation and ion exchange mechanisms. Full article
Show Figures

Figure 1

19 pages, 2627 KiB  
Article
Spatio-Temporal Differentiation and Driving Factors of County-Level Food Security in the Yellow River Basin: A Case Study of Ningxia, China
by Guiming Wu, Bing Xia, Suocheng Dong, Jing Zhang, Zehong Li and Guiqing Yang
Land 2024, 13(11), 1885; https://doi.org/10.3390/land13111885 - 11 Nov 2024
Cited by 3 | Viewed by 1017
Abstract
Food security is the primary condition for the development of human society. The Great River Basin is very important to ensure the accessibility and availability of agricultural irrigation, which is vital for food security. The Yellow River Basin plays a significant role in [...] Read more.
Food security is the primary condition for the development of human society. The Great River Basin is very important to ensure the accessibility and availability of agricultural irrigation, which is vital for food security. The Yellow River Basin plays a significant role in China’s food security, with counties serving as key administrative units for guaranteeing this security. This study uses the Yellow River Basin in China as a case study to construct an evaluation index system for county-level food security. It assesses the food security of 22 counties (districts) in Ningxia from 2013 to 2022, applying spatial correlation theories and driving factor analysis methods to explore the factors influencing county-level food security. The results reveal the following: (1) Overall, the food security index in Ningxia has been on the rise, but there is significant internal variation among counties. (2) Spatially, the food security index is relatively low in administrative centers, while the irrigation areas along the Yellow River play a crucial role in maintaining food security, and the overall food security index in the central arid areas is improving. (3) Food security is driven by multiple factors including economic, social, and climatic influences. To enhance food security in the Yellow River Basin, it is necessary to manage land resources systematically, improve grain production technology, and balance ecological protection with food security. Full article
Show Figures

Figure 1

18 pages, 8123 KiB  
Article
Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin
by Shengzhe Hong, Yu Lou, Xinguo Chen, Quanzhong Huang, Qianru Yang, Xinxin Zhang, Haozhi Li and Guanhua Huang
Remote Sens. 2024, 16(13), 2274; https://doi.org/10.3390/rs16132274 - 21 Jun 2024
Cited by 2 | Viewed by 1241
Abstract
Accurate identification of the spatio-temporal planting structure and analysis of its driving factors in an irrigation district are the important bases for scientific and reasonable utilization of irrigation water resources. In pursuit of this goal, the training sample migration method combined with the [...] Read more.
Accurate identification of the spatio-temporal planting structure and analysis of its driving factors in an irrigation district are the important bases for scientific and reasonable utilization of irrigation water resources. In pursuit of this goal, the training sample migration method combined with the random forest algorithm were used to classify land use and planting structure over 2001–2022 in the lower Yellow River Basin. Moreover, an econometric regression model was applied to quantify the driving factors of the change in the crop-planted area. The results illustrated that the identification method has relatively high accuracy in identifying historical periods of land use and planting structures, with the average kappa coefficient equating to 0.953. From 2001 to 2022, the area of cultivated land was the largest, with the proportion of the total area increasing from 45.72% to 58.12%. The planted area of winter wheat–summer maize rotation increased from 74.84% to 88.11% of the cultivated land. While the planted area of cotton declined by 96.36%, about 50% of cotton planting was converted to the winter wheat–summer maize rotation planting. The government policies about grain purchase and storage were the dominant factors for the change in the crop-planted area. This resulted in an increase of 63.32 × 103 ha and 63.98 × 103 ha in the planted area of winter wheat and summer maize, respectively. The findings are of great significance to the allocation of water resources in irrigation districts of the lower Yellow River Basin. Full article
(This article belongs to the Special Issue State-of-the-Art in Land Cover Classification and Mapping)
Show Figures

Figure 1

17 pages, 16259 KiB  
Article
Analysis of Spatial and Temporal Changes in FVC and Their Driving Forces in the Inner Mongolia Section of the Yellow River Basin
by Danni He, Yong Wang, Dengji Wang, Yahui Yang, Wenya Fang and Yu Wang
Atmosphere 2024, 15(6), 736; https://doi.org/10.3390/atmos15060736 - 20 Jun 2024
Cited by 3 | Viewed by 1019
Abstract
To investigate the spatial and temporal changes in fractional vegetation coverage (FVC) and their driving forces in different regions of the Inner Mongolia section of the Yellow River Basin, this paper observed the spatial trends and stability of FVC in these regions based [...] Read more.
To investigate the spatial and temporal changes in fractional vegetation coverage (FVC) and their driving forces in different regions of the Inner Mongolia section of the Yellow River Basin, this paper observed the spatial trends and stability of FVC in these regions based on the MOD13Q1 information regarding the 2000–2020 period as a data source. It used the dimidiate pixel model to invert FVC, and based on the centre of gravity migration model, the coefficient of variation and the Mann–Kendall and Sen’s slope estimator test, it studied the spatial variation trend and stability of FVC in the four relevant areas of the Inner Mongolia section; an attribution analysis using a geodetector was also conducted. The following results were found: (1) in terms of temporal FVC change in the relevant areas, from 2000 to 2020, the overall FVC showed an increasing trend, indicating an obvious hierarchy of change as per different seasonal scales (summer > growing season > fall > spring). There is a mutation point in FVC in different areas, and the FVC sequence is random. (2) Regarding spatial change, the overall FVC showed a trend of being high in the eastern regions and low in the western regions and low–high–low from the north to the south; the stability of the Hetao Irrigation District–Wuliangsuhai Area changed more significantly with the successive seasons, and the degraded areas of FVC were mainly distributed in the city centre of the Kundulun River–Daheihe River Area and in the Hetao Irrigation District in the summer. (3) In terms of driving factors, soil type had a relatively higher explanatory power regarding the Hetao Irrigation District–Wuliangsuhai Area, rainfall had a relatively higher explanatory power regarding the Morin River–Wuding River Area and the Kundulun River–Daheihe River Area, and land use had a relatively higher explanatory power regarding the Ten Kongtui–Heidaigou Area. Full article
Show Figures

Figure 1

23 pages, 14264 KiB  
Article
Study on Water and Salt Transport Characteristics of Sunflowers under Different Irrigation Amounts in the Yellow River Irrigation Area
by Changfu Tong, Rui He, Jun Wang and Hexiang Zheng
Agronomy 2024, 14(5), 1058; https://doi.org/10.3390/agronomy14051058 - 16 May 2024
Cited by 4 | Viewed by 1413
Abstract
The control of irrigation volume is of significant importance in arid regions of northwest China. Particularly, it has a crucial impact on the salinization of shallow groundwater areas. In 2022 and 2023, field experiments were conducted to test three distinct under-membrane irrigation treatments. [...] Read more.
The control of irrigation volume is of significant importance in arid regions of northwest China. Particularly, it has a crucial impact on the salinization of shallow groundwater areas. In 2022 and 2023, field experiments were conducted to test three distinct under-membrane irrigation treatments. These treatments were assigned water quotas of HW (27 mm), MW (22.5 mm), and LW (18 mm). The HYDRUS-2D model was integrated with a field experiment to accurately simulate the dynamic fluctuations of soil water and salt in the sunflower root zone. The model’s performance was assessed and verified using real-field data from 2022 and 2023, and the simulation results closely matched the measured values. This research also used stable hydroxide isotopes to assess the water supply from various soil layers at different time intervals in sunflower plants. The results indicated that the three different levels of irrigation applied under the membrane had a significant impact on soil water content. Specifically, there was a significant difference in soil water content at a depth of 0–40 cm (p < 0.05), while there was little effect on the water content at a depth of 40–60 cm (p > 0.05). After irrigation, the average salt content in the top 0–20 cm of soil decreased by 7.0% compared to the medium and low irrigation levels, and by 10.8% compared to the medium irrigation level. Additionally, the medium irrigation level resulted in a 10.8% decrease in salt content compared to the low irrigation level, and a 4.1% decrease compared to the medium irrigation level. During the same period, the soil salinity levels at depths of 0–20 cm, 20–40 cm, 40–60 cm, and 60–100 cm in the area outside the membrane were measured to be 2.7~4.8 g·kg−1, 2.8~4.0 g·kg−1, 2.7~3.4 g·kg−1, and 1.7~2.6 g·kg−1, respectively. These levels decreased by 13.1~55.5%, 0.7~42.8%, −0.4~16.2%, and −72.7~7.5%, respectively. Following irrigation, the HW treatment mostly absorbed water in the 0–40 cm soil layer, while the MW and LW treatments absorbed water in both the 0–40 cm and 60–80 cm soil levels. The results indicated that the most optimal drip irrigation method beneath the membrane in this location was achieved when the amount of water applied was between 25–30 mm. This method demonstrated a combination of water conservation, high crop yield, and effective salt suppression. Full article
Show Figures

Figure 1

20 pages, 38835 KiB  
Article
Coupled DSSAT and HYDRUS-1D Simulation of the Farmland–Crop Water Cycling Process in the Dengkouyangshui Irrigation District
by Jie Zhou, Delong Tian, Haibin Shi, Bing Xu, Zhonghou Zheng, Fan Wang, Guoshuai Wang and Xiangyang Miao
Water 2024, 16(7), 1049; https://doi.org/10.3390/w16071049 - 5 Apr 2024
Cited by 1 | Viewed by 2020
Abstract
(1) Background: Effective water management in agricultural systems poses a significant challenge, particularly in the Dengkouyangshui irrigation district. Inefficiencies and insufficient detail in water usage across crop growth stages have resulted in suboptimal water cycling. Recent infrastructure improvements and technological interventions necessitate a [...] Read more.
(1) Background: Effective water management in agricultural systems poses a significant challenge, particularly in the Dengkouyangshui irrigation district. Inefficiencies and insufficient detail in water usage across crop growth stages have resulted in suboptimal water cycling. Recent infrastructure improvements and technological interventions necessitate a reevaluation of water usage, especially concerning changes in irrigation and seepage dynamics. (2) Methods: This study addresses these concerns by employing an integrated modeling approach that combines the DSSAT with the HYDRUS-1D soil hydrology model to simulate complex interactions among soil, crop growth, and irrigation practices within the district. Observational data were used to calibrate and validate the integrated model, including soil moisture, LAI, and crop yields from the 2022 and 2023 agricultural seasons. (3) Results: The simulation results strongly align with the empirical data, highlighting the ability of the model to capture the intricate dynamics of soil–water–atmosphere–plant interactions. (4) Conclusions: The soil’s retention and moisture-holding characteristics exhibited resilience during periods without water supplementation, with measurable declines in soil moisture at various depths, indicating the soil’s capacity to support crops in water-limited conditions. This study delineates water consumption by maize crops throughout their growth cycle, providing insights into evapotranspiration partitioning and quantifying seepage losses. An in-depth analysis of water balances at different growth stages informs irrigation strategies, suggesting optimal volumes to enhance efficiency during critical crop development phases. This integrative modeling approach is valuable for providing actionable data to optimize the water cycling process and improve agricultural sustainability in the Dengkouyangshui irrigation district. Full article
Show Figures

Figure 1

22 pages, 10408 KiB  
Article
Characteristics and Influence Factors of Soil Water and Salt Movement in the Yellow River Irrigation District
by Kangkang He, Qiuying Zhang, Zhipin Ai, Ning Xu, Yunfeng Qiao, Chao Tian, Peifang Leng, Hefa Cheng, Gang Chen and Fadong Li
Agronomy 2024, 14(1), 92; https://doi.org/10.3390/agronomy14010092 - 29 Dec 2023
Cited by 2 | Viewed by 2005
Abstract
Climate change and human activities lead to freshwater shortage, soil salinization, and food security crises in arable land. To explore the natural and irrigation factors on soil water and salt movement, this study quantitatively analyzed the dynamic characteristics of soil water and salt [...] Read more.
Climate change and human activities lead to freshwater shortage, soil salinization, and food security crises in arable land. To explore the natural and irrigation factors on soil water and salt movement, this study quantitatively analyzed the dynamic characteristics of soil water and salt movement under precipitation, groundwater irrigation, and brackish water irrigation conditions for the next 30 years using Hydrus-1D model-based parameters obtained from the winter wheat–summer maize rotation experiments in the Yellow River Irrigation District. The results showed that precipitation was the key factor of climate change affecting soil water and salt migration, especially in the 0–20 cm soil layer. Under both SSP585 and SSP245 climate scenarios, rainfall in normal and wet years promoted salt leaching up to 1 m below the surface soil. But in dry years, salt washing treatment was required for the tillage layer to prevent salt accumulation. The higher the groundwater level was, the higher the soil water and salt content was in the 0–100 cm soil layer. In this soil layer, a 2 m groundwater level contributed 30% to wheat water needs, while a 3 m groundwater level contributed 18%, and no significant contribution was observed for a 4 m groundwater level. The salinity of the soil profile showed an overall increasing trend with irrigation using 1–3 g/L brackish water for 30 years. However, the salinity in the 0–100 cm soil layer was below the salt tolerance threshold of winter wheat and summer maize with salts accumulated in the 1–2 m soil layer. Considering the salinization of the root zone and crop water needs, it is recommended that the safe groundwater level for brackish water irrigation should be 3 m in the study region. This study provides scientific reference for groundwater–farmland ecosystems to utilize brackish water and treat saline–alkali lands. Full article
Show Figures

Graphical abstract

23 pages, 5387 KiB  
Article
Determination of Winter Irrigation Quotas for Corn and Oil Sunflower Considering Crop Salt Tolerance Threshold under Subsurface Pipe Drainage Technology
by Shengjie Wang, Yan Mo, Jingling Li, Juan Xiao and Xinwang Liu
Water 2024, 16(1), 72; https://doi.org/10.3390/w16010072 - 24 Dec 2023
Cited by 1 | Viewed by 1567
Abstract
Subsurface pipe drainage (SPD) is an important technique for the improvement of saline–alkali lands in China. Winter irrigation after crop harvest is a key measure used in the Yellow River irrigation area in northwest China to reduce soil salinity in the root zone [...] Read more.
Subsurface pipe drainage (SPD) is an important technique for the improvement of saline–alkali lands in China. Winter irrigation after crop harvest is a key measure used in the Yellow River irrigation area in northwest China to reduce soil salinity in the root zone of crops. To optimize winter irrigation under SPD, the calibrated HYDRUS-2D model was utilized in this study to investigate the effects of soil texture (clay loam, silt loam, loam, and sandy loam), initial soil salinity (1, 3, 5 g/kg), and the winter irrigation quotas (80, 100, 120, 150, 180 mm) on the rate of soil desalination. In this study, soil salinity levels during the stable production of common crops such as sunflower and corn in the Yinbei Irrigation District in Ningxia, China, were taken as the thresholds, efficient utilization of irrigation water was considered, and suitable crops and appropriate winter irrigation quotas for different soil textures and levels of soil salinity were proposed. Soil with a salt content of 1~3 g/kg is suitable for the planting of corn with 80 mm of irrigation water. Sandy loam soil with a salt content of 3~5 g/kg is suitable for sunflower–corn intercropping with 120 mm of irrigation water. Sandy loam soil with a salt content exceeding 5 g/kg is suitable for the planting of sunflower with 80 mm of irrigation water. Other types of soils need to be improved by reducing the spacing between subsurface pipes, using desulfurized gypsum, biochar, and other additives. People engaged in agriculture can utilize this research to determine the appropriate volumes of irrigation water, crop types, planting systems, and subsurface pipe parameters based on local conditions. Full article
Show Figures

Figure 1

21 pages, 5505 KiB  
Article
Spatio-Temporal Study on Irrigation Guarantee Capacity in the Northwest Arid Region of China
by Xue Zhao, Wanghai Tao, Lijun Su, Yan Sun, Zhi Qu, Weiyi Mu, Changkun Ma and Yuyang Shan
Water 2023, 15(7), 1396; https://doi.org/10.3390/w15071396 - 4 Apr 2023
Cited by 6 | Viewed by 2130
Abstract
Irrigation guarantee capacity is the critical factor in evaluating the development level of irrigated agriculture and is also a future development trend. It is necessary to carry out scientific planning and reasonable allocation of irrigation water resources to ensure the sustainable development of [...] Read more.
Irrigation guarantee capacity is the critical factor in evaluating the development level of irrigated agriculture and is also a future development trend. It is necessary to carry out scientific planning and reasonable allocation of irrigation water resources to ensure the sustainable development of irrigated agriculture and improve the efficiency and effectiveness of water resource utilization. This study is based on remote sensing meteorological data and the principles of the Miami model and water balance. We calculated the annual irrigation water requirement and effective irrigation water, and used the ratio between the effective irrigation water and irrigation water requirement as the basis for evaluating an irrigation guarantee capability index. By using irrigation guarantee capability evaluation indicators from multiple years, we evaluated and assessed the irrigation guarantee capability in the arid region of northwest China. In addition, we analyzed three indicators (i.e., irrigation water requirement IWR, effective irrigation water EIW, and irrigation guarantee capacity index IGCI) to explore the rational allocation of water resources in the northwest arid area. IWR, EIW, and ICGI in northwest China from 2001 to 2020 were analyzed, and the average values were 379.32 mm, 171.29 mm, and 0.50, respectively. Simultaneously, an analysis was conducted on the temporal and spatial distribution of IWR, EIW, and IGCI in the northwest region of China from 2001 to 2020. The results indicated that the rainfall in the southwestern edge of the Yellow River Basin and the eastern part of the Qaidam Basin could meet the irrigation water demand. The northwest edge of the Yellow River Basin, the central Hexi Inland River Basin, most of Northeast Xinjiang, central and southeastern Xinjiang, and other regions mainly rely on irrigation to meet agricultural water requirements. The rest of the region needs to rely on irrigation for supplementary irrigation to increase crop yield. All districts in the ‘Three Water Lines’ area of northwest China should vigorously develop sprinkler irrigation, micro-irrigation, pipe irrigation, and other irrigation water-saving technologies and support engineering construction. Under the premise of ensuring national food security, they should reduce the planting area of rice, corn, and orchards, and increase the planting area of economic crops such as beans and tubers in the ’Three Water Lines’ area. That is conducive to further reducing the agricultural irrigation quota and improving the matching degree of irrigation water resources. It provides a scientific reference for optimizing water resource allocation and improving irrigation water-use efficiency in northwest arid areas. Full article
(This article belongs to the Special Issue Sustainable Management of Agricultural Water)
Show Figures

Figure 1

Back to TopTop