Spatio-Temporal Study on Irrigation Guarantee Capacity in the Northwest Arid Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Method
2.2.1. Mathematical Model
2.2.2. Study Methods and Steps
3. Results
3.1. Characteristics of Temporal Changes of IWI, EIW, and IGCI
3.1.1. Analysis of Irrigation Water Requirement
3.1.2. Analysis of Effective Irrigation Water
3.1.3. Analysis of Irrigation Guarantee Capacity Index
3.2. Spatial-Temporal Analysis of the IWR in the ‘Three Water Lines’ Area
3.2.1. Spatial Distribution Characteristics of the IWR from 2001 to 2020
3.2.2. Characteristics of the IWR in Sub-Regions of the ‘Three Water Lines’ Area
- (1)
- Northeast Xinjiang, Southeast Xinjiang, and the Qaidam Basin
- (2)
- Northwest Xinjiang and the Semi-Arid Grassland District
- (3)
- Southwest Xinjiang and the Yellow River Basin
- (4)
- Hexi Inland River Basin
3.3. Spatial-Temporal Analysis of the EIW in the ‘Three Water Lines’ Area
3.3.1. Spatial Distribution Characteristics of the EIW from 2001 to 2020
3.3.2. Characteristics of the EWI in Sub-Regions of the ‘Three Water Lines’ Area
- (1)
- Southwest Xinjiang and Northwest Xinjiang
- (2)
- Southeast Xinjiang and Northeast Xinjiang
- (3)
- The Qaidam Basin and the Semi-Arid Grassland District
- (4)
- Yellow River Basin and the Hexi Inland River Basin
3.4. Spatial-Temporal Analysis of the IGCI in the ‘Three Water Lines’ Area
3.4.1. Spatial Distribution Characteristics of the IGCI from 2001 to 2020
3.4.2. Characteristics of the IGCI in Sub-Regions of the ‘Three Water Lines’ Area
4. Discussion
4.1. Southwest Xinjiang and Northwest Xinjiang
4.2. Southeast Xinjiang and the Yellow River Basin
4.3. Northeast Xinjiang, the Qaidam Basin, and the Semi-Arid Grassland District
4.4. Hexi Inland River Basin
5. Conclusions
- (1)
- The southwestern edge of the Yellow River Basin and the eastern part of the Qaidam Basin have sufficient rainfall to meet irrigation requirements. In the northwestern edge of the Yellow River Basin, the central part of the Hexi Inland River Basin, most of the northeastern part of Xinjiang, and the central and southeastern parts of southwestern Xinjiang, irrigation is mainly relied upon to meet agricultural water requirements. The rest of the region relies on a combination of irrigation and rainfall to meet irrigation requirements.
- (2)
- From 2001 to 2020, the average IWR and effective irrigation water in the northwest arid area were 379.32 mm and 171.29 mm, respectively. The average annual rainfall and temperature were 280.65 mm and 5.52 °C, respectively. Temperature is more sensitive to IWR and water use than rainfall. When temperature increases, plant transpiration and soil evaporation increase, increasing IWR and use.
- (3)
- Northwest ‘Three Water Lines’ areas should be adapted to local conditions, using more sprinkler irrigation, micro-irrigation, tube irrigation, and other water-saving irrigation technology while planning and constructing water-saving irrigation facilities and transformation projects to promote the development of water-saving agriculture further. It is suggested to optimize the agricultural irrigation quota in each district, reduce the planting area of crops with large water consumption, such as rice and fruit trees, and further increase the planting area of crops, such as beans and potatoes. At the same time, considering the characteristic fruit and crop intercropping mode, the rationality of irrigation water distribution should be improved to ensure the sustainable development of irrigation agriculture. Moreover, ecological restoration projects should be carried out to improve soil primary productivity and restore the natural ecological environment.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, M.J. “Three Water Lines” strategy: Its spatial patterns and effects on water resources allocation in Northwest China. Dili Xuebao/Acta Geogr. Sin. 2018, 73, 1189–1203. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.Y.; Cui, L.B.; Dou, M.; Akhtar, A. Water resources allocation model based on ecological priority in the arid region. Environ. Res. 2021, 199, 111201. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Ni, G.K.; Cong, Z.T. Spatial distribution characteristics of IWR for main crops in China. Trans. CSAE 2009, 25, 6–12. (In Chinese) [Google Scholar] [CrossRef]
- Skhiri, A.; Dechmi, F. Impact of sprinkler irrigation management on the Del Reguero river (Spain). I: Water balance and irrigation performance. Agric. Water Manag. 2012, 103, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.Y.; Ni, J.P.; Wei, C.F. A review on Water-saving agriculture crop requirement and irrigation requirement. Chin. Agric. Sci. Bull. 2004, 20, 143–147. (In Chinese) [Google Scholar]
- Nan, J.Q.; Wang, J.L.; Tao, G.T.; Xiao, J.F.; Liu, Z.D.; Ning, D.F.; Qin, A.Z. Matching patterns of agricultural soil and water resources in Northweat Arid Area. J. Irrig. Drain. 2015, 34, 41–45. (In Chinese) [Google Scholar] [CrossRef]
- Nan, J.Q.; Wang, J.L.; Qin, A.Z. Matching patterns of agricultural soil and water resources in Northweat Arid Area. J. Irrig. Drain. 2016, 35, 44–48. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.Q.; Wang, Y.C. The comprehensively analysis of development potential in husbandry and supporting capacity of water resources in northwest of China. Chin. J. Agric. Resour. Reg. Plan. 2015, 36, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Wei, X.T.; Huang, S.Z.; Huang, Q.; Liu, D.; Leng, G.Y.; Yang, H.B.; Duan, W.L.; Li, J.F.; Bai, Q.J.; Peng, J. Analysis of Vegetation Vulnerability Dynamics and Driving Forces to Multiple Drought Stresses in a Changing Environment. Remote Sens. 2022, 14, 4231. [Google Scholar] [CrossRef]
- Lou, J.P.; Xu, G.Y.; Wang, Z.J.; Yang, Z.G.; Ni, S.C. Multi-year NDVI values as indicator of the relationship between spatiotemporal vegetation dynamics and environmental factors in the Qaidam Basin, China. Remote Sens. 2021, 13, 1240. [Google Scholar] [CrossRef]
- Deng, X.J.; Hu, S.; Zhan, C.S. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 44693–44708. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Chen, H.; Wu, B.F.; Nasanbat, E.; Yan, N.N.; Davdai, B. A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sens. 2021, 13, 414. [Google Scholar] [CrossRef]
- Wang, C.L.; Si, J.H.; Zhao, C.Y.; Jia, B.; Celestin, S.; Li, D.; He, X.H.; Zhou, D.M.; Qin, J.; Zhu, X.L. Adequacy of satellite derived data for streamflow simulation in three Hexi inland river basins, Northwest China. Atmos. Res. 2022, 274, 106203. [Google Scholar] [CrossRef]
- Huang, J.X.; Li, L.; Zhang, C.; Xun, W.J.; Yang, J.Y.; Zhu, D.H. Evaluation of cultivated land irrigation guarantee capability based on remote sensing evapotranspiration data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 100–106. [Google Scholar] [CrossRef]
- Supriyasilp, T.; Pongput, K.; Boonyanupong, S.; Suwanlertcharoen, T. Enhanced Water Management for Muang Fai Irrigation Systems through Remote Sensing and SWOT Analysis. Water Resour. Manag. 2021, 35, 263–277. [Google Scholar] [CrossRef]
- Im, J. Earth observations and geographic information science for sustainable development goals. GISci. Remote Sens. 2020, 57, 591–592. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Tommaso, S.D.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Dehkordi, A.T.; Zoej, M.J.V.; Ghasemi, H.; Jafari, M.; Mehran, A. Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery. Remote Sens. 2022, 14, 4491. [Google Scholar] [CrossRef]
- Yin, S.Y.; Wu, W.J.; Zhao, X.J.; Gong, C.; Li, X.W.; Zhang, L. Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE. PLoS ONE 2020, 15, e0230098. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage From Remote Sensing to Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [Google Scholar] [CrossRef]
- Nan, X.K.; Zhao, H.P.; Wu, K.N.; Cao, L. Irrigation level evaluation and infrastructure construction zoning of basic farmland based on remote-sensing evapotranspiration data. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 29–37. (In Chinese) [Google Scholar] [CrossRef]
- Liang, S.M.; Yu, Z.Y. Technical analysis on Eurasian grassland’s inter—Basin water transfer projects and inland waterways. J. Water Resour. Water Eng. 2017, 28, 107–114. (In Chinese) [Google Scholar] [CrossRef]
- Liang, S.M.; Richard, G.; Zhu, L.Z.; Sun, W.L.; Cui, Q.F. Global large-scale inter-basin water transfer projects and potential of water resources’ agricultural development. J. Water Resour. Water Eng. 2019, 30, 236–246. (In Chinese) [Google Scholar]
- Deng, M.J.; Tao, W.H.; Wang, Q.J.; Su, L.J.; Ma, C.K.; Ning, S.R. Theory and Technical Guarantee System Construction of Modern Ecological Irrigation District in Northwest China. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.X.; Deng, M.J.; Li, P.; Li, Z.B.; Huang, H.P.; Shi, P.; Feng, C.H. Security Pattern and Regulation of Agricultural Water Resources in Northwest China from the Perspective of Virtual Water Flow. Chin. J. Eng. Sci. 2022, 24, 131–140. (In Chinese) [Google Scholar] [CrossRef]
- Liang, S.M.; Yu, Z.Y. Calculation of global IWR based on GIS and Miami model. Agric. Res. Arid Areas 2019, 37, 96–103. (In Chinese) [Google Scholar] [CrossRef]
- Tian, Z.H.; Li, F.Q.; Guo, W.L.; Zhao, X.P.; Wang, Z.H.; Wang, Y.N.; Zheng, D.W. Analysis of plant climatic production potential and it’s restricting factors of 1km2 grid of Beijing mountain area. J. China Agric. Univ. 2004, 9, 21–26. (In Chinese) [Google Scholar]
- Malmstrom, C.M.; Thompson, M.V.; Juday, G.P.; Los, S.O.; Randerson, J.T.; Field, C.B. Interannual variation in global-scale net primary production: Testing model estimates. Global Biogeochem. Cycles 1997, 11, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Bastian, B.H.; Claudine, E.; Veronika, G.; Simone, G. Agroforestry trade-offs between biomass provision and aboveground carbon sequestration in the alpine Eisenwurzen region, Austria. Reg. Environ. Chang. 2021, 21, 77. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Li, W.J.; Zhao, B.Y. Water requirement of spring maize in Northwest Liaoning Province under climate change. Resour. Sci. 2018, 40, 150–160. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Lieth, H. Modeling the primary productivity of the world. Prim. Product. Biosph. 1975, 14, 237–263. [Google Scholar] [CrossRef]
- Lieth, H. Primary production: Terrestrial ecosystems. Hum. Ecol. 1973, 1, 303–332. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data. 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.M.; Lu, X.J.; Zheng, H.X.; Wang, Y.P.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, R.; Zhang, Y.Q.; Shi, H.; Yang, Y.T.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kong, D.D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y.T. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Vörösmarty, C.J.; Schumann, A.H. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jie, F.L.; Fei, L.J.; Li, S.; Hao, K.; Liu, L.H.; Peng, Y.L. Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration. Agriculture 2022, 12, 801. [Google Scholar] [CrossRef]
- Kang, Y.; Yan, Y.T.; Yang, B. Simulation of water resource carrying capacity based on LMDI-SD model in green development irrigation areas. Trans. Chin. Soc. Agric. Eng. 2020, 36, 150–160. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.P.; Xiao, H.L. Past, Current and Future Prospect for Research on Agricultural Water Use in Irrigation Districts in the Yellow River Basin. J. Irrig. Drain. 2020, 39, 9–17. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.Y.; Wang, H.R. The evaluation method of regional agricultural water consumption based on investigation of typical irrigation district: A case study of Qujiang District. J. Northwest Univ. 2021, 51, 155–162. (In Chinese) [Google Scholar] [CrossRef]
- Lu, S.H.; Zhao, H.L.; Jiang, Y.Z.; Hao, Z.; Zhang, X.M.; Chen, G.F. Analysis of irrigation water based on multi-source remote sensing data and water balance principle. Shuili Xuebao/J. Hydraul. Eng. 2021, 52, 1126–1135. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.Y.; Sun, S.K.; Zhao, X.N.; Wang, Y.B. Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China. Agriculture 2022, 12, 1114. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yang, P.; Wu, W.B.; Li, Z.G.; You, L.Z. Spatio-temporal changes in Chinese crop patterns over the past three decades. Dili Xuebao/Acta Geogr. Sin. 2016, 5, 840–851. (In Chinese) [Google Scholar] [CrossRef]
- Zhong, Y.; Gan, L.Z. Study on the Path of Ensuring Grain Security in Northwest Arid Area Under the Constraint of Resources. Acad. J. Zhongzhou. 2022, 308, 42–50. [Google Scholar]
- Liu, F.; Zhang, H.Q.; Dong, G.L. Vegetation Dynamics and Precipitation Sensitivity in Yili Valley Grassland. Resour. Sci. 2014, 36, 1724–1731. [Google Scholar]
- Leeuwen, C.V.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; Rességuier, L.D.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Sai, B.Y.E.T.; Chen, M.P.; Feng, L. Agricultural non-point source pollution of Bosten Lake Basin. Water Resour. Prot. 2012, 28, 25–29. (In Chinese) [Google Scholar] [CrossRef]
- Xu, R.; Shi, J.W.; Hao, D.Q.; Ding, Y.; Gao, J.Z. Research on Temporal and Spatial Differentiation and Impact Paths of Agricultural Grey Water Footprints in the Yellow River Basin. Water 2022, 14, 2759. [Google Scholar] [CrossRef]
- Yu, T.; He, D.W.; Chen, J.S. Impact of Quantity and Quality of River Water by Irrigation in a Yellow River Basin. J. Agric.-Environ. Sci. 2003, 22, 664–668. (In Chinese) [Google Scholar]
- Ren, D.Y.; Xu, X.; Engel, B.; Huang, G.H. Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and tamarisk. Agric. Water Manag. 2018, 199, 93–104. [Google Scholar] [CrossRef]
- Yu, H.; Huang, M.; Zhao, T.; Wang, J.P.; Li, Z.H.; Chen, D.P.; Li, P.S.; Luo, Y.; Wang, H.Y.; Jing, Z.; et al. Analysis of Agricultural Production Potential and Enhancement Strategy in the Qaidam Basin Based on the Agro-Ecological Zone Method. Front. Environ. Sci. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Hu, C.Z.; Jia, X.P.; Ma, Q.M. Characteristics of Evapotranspiration and Water Consumption of Different Underlying Surfaces in Qaidam Basin. Water 2022, 14, 3469. [Google Scholar] [CrossRef]
- Zheng, H.H.; Sang, Z.T.; Wang, K.G.; Xu, Y.; Cai, Z.Y. Distribution of Irrigated and Rainfed Agricultural Land in a Semi-Arid Sandy Area. Land 2022, 11, 1621. [Google Scholar] [CrossRef]
- Lin, J. Spatiotemporal Pattern and Driving Factors of Soil Erosion in Hexi Region. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2020. (In Chinese). [Google Scholar]
- Pan, J.H.; Wei, S.M.; Li, Z. Spatiotemporal pattern of trade-offs and synergistic relationships among multiple ecosystem services in an arid inland river basin in NW China. Ecol. Indic. 2020, 114, 106345. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, B.F.; Fan, Y.T.; Sun, C.J.; Fang, G.H. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land 2019, 11, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.J.; Zhao, X.; Wu, J.Y.; Huang, J.M.; Qiu, D.D.; Xue, D.X.; Li, Q.Q.; Liu, C.F.; Wei, W.; Zhang, D.X.; et al. Wind speed changes and influencing factors in inland river basin of monsoon marginal zone. Ecol. Indic. 2021, 130, 108089. [Google Scholar] [CrossRef]
Data Sets | Provider | Time | Resolution | Data Sources | |
---|---|---|---|---|---|
Precipitation [33] | Terra Climate | University of California Merced | 2001–2020 | 4638.3 m | https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE (accessed on 1 November 2022) |
Temperature [34] | NCEP | Climate Data Store | 2001–2020 | 0.25° | https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_surface_temp (accessed on 1 November 2022) |
Plant transpiration water [35,36,37] | PML_V2 0.1.7 | PML_V2 | 2001–2020 | 500 m | https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017 (accessed on 1 November 2022) |
Soil evaporation water [35,36,37] | PML_V2 0.1.7 | PML_V2 | 2001–2020 | 500 m | https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017 (accessed on 1 November 2022) |
Year | IWR/mm | EIW/mm | IGCI | Year | IWR/mm | EIW/mm | IGCI |
---|---|---|---|---|---|---|---|
2001 | 384.32 | 136.04 | 0.46 | 2011 | 338.28 | 189.46 | −2.71 |
2002 | 394.30 | 159.35 | 0.48 | 2012 | 322.55 | 187.03 | 1.13 |
2003 | 347.62 | 139.22 | 0.50 | 2013 | 414.51 | 179.64 | 0.39 |
2004 | 384.11 | 148.52 | 0.68 | 2014 | 379.79 | 198.28 | 0.56 |
2005 | 365.06 | 175.36 | 0.47 | 2015 | 409.46 | 221.43 | 0.64 |
2006 | 410.80 | 165.62 | 0.48 | 2016 | 413.91 | 157.16 | 0.49 |
2007 | 404.55 | 170.40 | 0.29 | 2017 | - | - | - |
2008 | 370.94 | 167.61 | 0.48 | 2018 | 379.21 | 151.54 | −0.55 |
2009 | 375.38 | 172.88 | 0.49 | 2019 | 408.13 | 180.97 | 0.45 |
2010 | 360.43 | 177.07 | 0.59 | 2020 | 343.70 | 176.83 | 1.91 |
Year | Northwest Xinjiang | Southwest Xinjiang | Northeast Xinjiang | Southeast Xinjiang | Yellow River Basin | Qaidam Basin | Hexi Inland River Basin | Semi-Arid Grassland District |
---|---|---|---|---|---|---|---|---|
2001 | 444.20 | 354.48 | 605.96 | 542.82 | 309.49 | 523.34 | 59.32 | 408.42 |
2002 | 462.82 | 357.08 | 631.03 | 543.89 | 324.18 | 534.39 | 70.54 | 405.27 |
2003 | 387.12 | 319.85 | 543.14 | 481.15 | 286.97 | 491.30 | 68.02 | 367.11 |
2004 | 448.57 | 380.30 | 619.22 | 544.74 | 294.16 | 502.61 | 53.44 | 416.15 |
2005 | 435.89 | 363.94 | 582.68 | 549.10 | 283.76 | 493.41 | 70.84 | 355.32 |
2006 | 465.54 | 409.42 | 618.05 | 574.49 | 339.36 | 532.38 | 90.64 | 409.70 |
2007 | 469.19 | 400.34 | 632.72 | 559.04 | 315.21 | 524.94 | 72.94 | 436.59 |
2008 | 463.73 | 383.85 | 622.42 | 544.77 | 270.92 | 488.72 | 62.77 | 365.69 |
2009 | 419.79 | 369.66 | 579.20 | 522.17 | 308.87 | 520.00 | 78.79 | 374.07 |
2010 | 405.31 | 384.38 | 549.61 | 501.93 | 295.19 | 495.87 | 88.54 | 328.15 |
2011 | 397.51 | 371.56 | 546.24 | 481.69 | 248.98 | 471.75 | 71.51 | 330.90 |
2012 | 372.26 | 332.05 | 560.72 | 513.74 | 241.90 | 473.49 | 46.68 | 312.63 |
2013 | 460.34 | 391.90 | 615.05 | 583.23 | 352.06 | 565.86 | 89.61 | 413.84 |
2014 | 390.87 | 339.66 | 586.30 | 480.86 | 314.93 | 525.04 | 70.31 | 467.43 |
2015 | 473.43 | 387.69 | 664.69 | 563.86 | 335.30 | 553.73 | 87.37 | 414.07 |
2016 | 468.57 | 408.84 | 641.23 | 584.17 | 345.54 | 566.01 | 108.23 | 392.49 |
2017 | - | - | - | - | - | - | - | - |
2018 | 395.96 | 370.90 | 584.16 | 512.62 | 313.05 | 522.44 | 79.94 | 419.82 |
2019 | 468.33 | 383.38 | 657.65 | 563.64 | 329.12 | 555.35 | 65.40 | 431.71 |
2020 | 387.63 | 287.93 | 574.97 | 427.45 | 289.45 | 493.22 | 9.88 | 383.68 |
Year | Northwest Xinjiang | Southwest Xinjiang | Northeast Xinjiang | Southeast Xinjiang | Yellow River Basin | Qaidam Basin | Hexi Inland River Basin | Semi-Arid Grassland District |
---|---|---|---|---|---|---|---|---|
2001 | 170.62 | 221.26 | 140.98 | 131.73 | 100.18 | 116.81 | 78.44 | 91.23 |
2002 | 193.89 | 257.93 | 169.10 | 156.10 | 104.16 | 123.03 | 57.10 | 153.20 |
2003 | 159.19 | 279.53 | 174.29 | 161.36 | 74.40 | 133.71 | 58.05 | 104.79 |
2004 | 207.96 | 245.00 | 182.93 | 166.73 | 92.56 | 162.42 | 64.28 | 83.56 |
2005 | 240.55 | 263.89 | 215.54 | 201.82 | 109.47 | 152.42 | 75.84 | 149.43 |
2006 | 237.32 | 245.82 | 194.98 | 157.46 | 110.62 | 145.35 | 80.62 | 123.04 |
2007 | 221.94 | 260.38 | 196.69 | 175.12 | 111.16 | 130.22 | 69.41 | 159.64 |
2008 | 234.82 | 258.55 | 188.05 | 175.97 | 120.93 | 154.64 | 73.84 | 93.66 |
2009 | 236.13 | 273.09 | 207.84 | 188.93 | 101.13 | 155.37 | 69.75 | 150.63 |
2010 | 248.79 | 309.41 | 200.18 | 200.94 | 94.21 | 156.57 | 91.12 | 132.97 |
2011 | 245.32 | 307.71 | 212.96 | 207.41 | 115.50 | 169.44 | 83.58 | 163.42 |
2012 | 260.88 | 319.28 | 208.35 | 224.73 | 111.82 | 172.43 | 67.97 | 118.37 |
2013 | 252.68 | 329.78 | 219.85 | 222.07 | 93.22 | 159.69 | 78.86 | 116.99 |
2014 | 272.43 | 324.47 | 237.79 | 233.07 | 100.12 | 171.87 | 67.60 | 193.81 |
2015 | 287.59 | 331.74 | 228.83 | 225.72 | 174.01 | 183.09 | 96.50 | 144.08 |
2016 | 263.76 | 200.30 | 199.47 | 169.87 | 104.20 | 108.97 | 36.65 | 114.05 |
2017 | 253.85 | 251.54 | 218.16 | 210.48 | 105.50 | 116.08 | 36.17 | 156.41 |
2018 | 277.48 | 225.99 | 179.08 | 170.64 | 74.79 | 102.36 | 54.92 | 101.74 |
2019 | 263.21 | 238.86 | 188.29 | 189.23 | 111.59 | 176.13 | 81.48 | 173.25 |
2020 | 300.65 | 243.85 | 195.97 | 204.16 | 94.03 | 158.04 | 70.90 | 136.94 |
Year | Northwest Xinjiang | Southwest Xinjiang | Northeast Xinjiang | Southeast Xinjiang | Yellow River Basin | Qaidam Basin | Hexi Inland River Basin | Semi-Arid Grassland District |
---|---|---|---|---|---|---|---|---|
2001 | 0.27 | 0.76 | 0.23 | 0.29 | 0.59 | 0.25 | 0.83 | 0.24 |
2002 | 0.22 | 0.88 | 0.26 | 0.34 | 0.58 | 0.25 | −0.54 | 0.38 |
2003 | 0.47 | 1.07 | 0.31 | 0.40 | 0.43 | 0.29 | −0.46 | 0.27 |
2004 | 0.48 | 0.77 | 0.29 | 0.36 | 0.31 | 0.36 | 3.24 | 0.19 |
2005 | 0.53 | 0.86 | 0.36 | 0.43 | 0.31 | 0.33 | −0.14 | 0.44 |
2006 | 0.67 | 0.70 | 0.31 | 0.32 | 0.40 | 0.29 | 0.76 | 0.32 |
2007 | 0.35 | 0.76 | 0.30 | 0.36 | 0.50 | 0.25 | 0.66 | 0.37 |
2008 | 0.71 | 0.78 | 0.29 | 0.37 | 0.44 | 0.35 | −4.76 | 0.27 |
2009 | 0.31 | 0.88 | 0.35 | 0.42 | 0.47 | 0.32 | 0.28 | 0.44 |
2010 | 0.75 | 0.93 | 0.35 | 0.47 | 0.40 | 0.35 | 2.49 | 0.50 |
2011 | 0.62 | 0.96 | 0.38 | 0.52 | 0.46 | 0.40 | −0.66 | 0.53 |
2012 | 0.69 | 1.16 | 0.36 | 0.52 | 0.46 | 0.39 | −0.42 | 0.42 |
2013 | 0.34 | 0.98 | 0.35 | 0.44 | 0.24 | 0.29 | −1.29 | 0.28 |
2014 | 0.29 | 1.14 | 0.40 | 0.58 | 0.53 | 0.35 | 0.96 | 0.44 |
2015 | 0.88 | 1.01 | 0.34 | 0.47 | 0.54 | 0.37 | 0.76 | 0.35 |
2016 | 1.03 | 0.58 | 0.32 | 0.34 | 0.31 | 0.22 | 0.17 | 0.31 |
2017 | - | - | - | - | - | - | - | - |
2018 | 0.70 | 0.72 | 0.32 | 0.40 | 0.32 | 0.22 | 1.73 | 0.25 |
2019 | 0.41 | 0.74 | 0.29 | 0.40 | 0.41 | 0.38 | −1.04 | 0.42 |
2020 | 0.80 | 1.08 | 0.35 | 0.59 | 0.32 | 0.40 | −1.25 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Tao, W.; Su, L.; Sun, Y.; Qu, Z.; Mu, W.; Ma, C.; Shan, Y. Spatio-Temporal Study on Irrigation Guarantee Capacity in the Northwest Arid Region of China. Water 2023, 15, 1396. https://doi.org/10.3390/w15071396
Zhao X, Tao W, Su L, Sun Y, Qu Z, Mu W, Ma C, Shan Y. Spatio-Temporal Study on Irrigation Guarantee Capacity in the Northwest Arid Region of China. Water. 2023; 15(7):1396. https://doi.org/10.3390/w15071396
Chicago/Turabian StyleZhao, Xue, Wanghai Tao, Lijun Su, Yan Sun, Zhi Qu, Weiyi Mu, Changkun Ma, and Yuyang Shan. 2023. "Spatio-Temporal Study on Irrigation Guarantee Capacity in the Northwest Arid Region of China" Water 15, no. 7: 1396. https://doi.org/10.3390/w15071396