Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Data Collection
2.2.1. Sample Collection
2.2.2. Remote Sensing Data
2.2.3. Statistical Data Collection
2.3. Study Methods
2.3.1. Training Sample Migration Method
2.3.2. Classification Method
2.3.3. Econometric Regression Analysis
2.4. Classification Performance Criteria and Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Training Sample Migration Method
3.2. Evaluation of the Classification Accuracy
3.3. Spatial and Temporal Variation in the Land Use and Planting Structure in the Irrigation District
3.4. The Driving Factors of the Variation in Crop Planted Area
4. Conclusions
- (1)
- The TSM method combined with the RF method has high classification accuracy in identifying historical periods of land use and planting structures in the lower YRB, and the average accuracy of classification over 2001–2022 was 93.85%. This classification method helps to map the long-term land use and planting structure in the lower YRB. It is critical to achieve high-quality development in the region;
- (2)
- The WMR-planted area has increased over the past 22 years; the rates of increase for winter wheat and summer maize were 4.74 × 103 ha and 8.57 × 103 ha per year, respectively. The cotton-planted area has decreased in WID;
- (3)
- Government policies were the driving factors affecting the change in crops planted in WID. The natural and social objective factors also affected the planted area of winter wheat and summer maize, but the effect was not significant.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC), Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, X.; Zhou, Y. The Characteristics and Influencing Factors of Coupling Coordination Between Water-soil Matching Coefficient and Grain Production in the Lower Reaches of the Yellow River. Econ. Geogr. Econ. Geogr. 2022, 42, 177–185. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Tan, D.; Han, L.; Li, D.; Wang, X.; Lu, G.; Lin, J. Review of climate change in the Yellow River Basin. J. Desert Res. 2021, 41, 235–246. (In Chinese) [Google Scholar] [CrossRef]
- Feng, K.; Siu, Y.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China, A consumption based approach. Appl. Geogr. 2012, 32, 691–701. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, A.; Liu, P.; Liu, Z. Coupling and coordinated relationship of water utilization, industrial development and ecological welfare in the Yellow River Basin, China. J. Clean. Prod. 2022, 379, 134824. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Regional mapping and monitoring land use/land cover changes, a modified approach using an ensemble machine learning and multitemporal Landsat data. Geocarto. Int. 2023, 38, 2184500. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Zhang, H.; Roy, D. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample, transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Hussain, S.; Lu, L.; Mubeen, M.; Nasim, W.; Karuppannan, S.; Fahad, S.; Tariq, A.; Mousa, B.G.; Mumtaz, F.; Aslam, M. Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data. Land 2022, 11, 595. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Yuan, L.; Liu, P.; Zhou, X.; Huang, Y. Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring. Agronomy 2019, 9, 496. [Google Scholar] [CrossRef]
- Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based Image Analysis and Random Forest. Remote Sens. 2017, 9, 1184. [Google Scholar] [CrossRef]
- Su, T.; Zhang, S. Object-based crop classification in Hetao plain using random forest. Earth Sci. Inform. 2020, 14, 119–131. [Google Scholar] [CrossRef]
- Mansaray, L.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping Rice Fields in Urban Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets. Remote Sens. 2017, 9, 257. [Google Scholar] [CrossRef]
- Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop Classification Method Based on Optimal Feature Selection and Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Luo, K.; Lu, L.; Xie, Y.; Chen, F.; Yin, F.; Li, Q. Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Comput. Electron. Agric. 2023, 205, 107577. [Google Scholar] [CrossRef]
- Zhang, W.; Brandt, M.; Prishchepov, A.V.; Li, Z.; Lyu, C.; Fensholt, R. Mapping the Dynamics of Winter Wheat in the North China Plain from Dense Landsat Time Series (1999 to 2019). Remote Sens. 2021, 13, 1170. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Liu, Z.; Li, L. Monitoring and driving force analysis of spatial and temporal change of water area of Hongjiannao Lake from 1973 to 2019. Ecol. Inform. 2021, 61, 101230. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, G.; Long, H.; Wang, C. Crop Discrimination in Shandong Province Based on Phenology Analysis of Multi-year Time Series. Intell. Autom. Soft Comput. 2013, 19, 513–523. [Google Scholar] [CrossRef]
- Digra, A.; Kaushal, A.; Loshali, D.C.; Kaur, S.; Bhavsar, D. Temporal Land-Use/Land-Cover Change Analysis in Kotla Sub-Watershed of Rupnagar District (Punjab) Using Remote Sensing and GIS. J. Indian Soc. Remote Sens. 2022, 50, 1371–1391. [Google Scholar] [CrossRef]
- Sarma, L.C.S.; Sarma, V.V.S. A prototype expert system for interpretation of remote sensing image data. Sādhanā 1994, 19, 93–111. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Xiao, C.; Zhang, Z.; Li, J. The Classification Method Study of Crops Remote Sensing with Deep Learning, Machine Learning, and Google Earth Engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., 3rd. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine. Remote Sens. 2021, 13, 561. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, Y.; Yao, Y.; Wang, C. Land cover change in global drylands, A review. Sci. Total Environ. 2023, 863, 160943. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Simulating Urban Land use and Cover Dynamics Using Cellular Automata and Markov Chain Approach in Addis Ababa and the Surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Y.; Tong, X.; Liu, S.; Xie, H.; Gao, C.; Lei, Z. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Sci. Total Environ. 2020, 712, 136509. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Fu, Y.; Lu, Z.; Shen, X. Urban spatial growth modeling using logistic regression and cellular automata, A case study of Hangzhou. Ecol. Indic. 2020, 113, 106200. [Google Scholar] [CrossRef]
- Guo, X.; Ye, J.; Hu, Y. Analysis of Land Use Change and Driving Mechanisms in Vietnam during the Period 2000–2020. Remote Sens. 2022, 14, 1600. [Google Scholar] [CrossRef]
- Johnston, J.; DiNardo, J. Econometrics Methods, 4th ed.; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Bollen, K.A. Latent variables in psychology and the social sciences. Annu. Rev. Psychol. 2002, 53, 605–634. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2007, 26, 217–222. [Google Scholar] [CrossRef]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The Impacts of Rapid Urbanization on the Thermal Environment, A Remote Sensing Study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Fekri, E.; Latifi, H.; Amani, M.; Zobeidinezhad, A. A Training Sample Migration Method for Wetland Mapping and Monitoring Using Sentinel Data in Google Earth Engine. Remote Sens. 2021, 13, 4169. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, X.; Wang, E.; Carberry, P.; Zhang, Y.; Zhou, S.; Zhang, X.; Hu, C.; Wang, Z. Modelling to increase the eco-efficiency of a wheat–maize double cropping system. Agric. Ecosyst. Environ. 2015, 210, 36–46. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Chen, Y.; Jin, Y.; An, R. Subpixel Land Cover Mapping Using Multiscale Spatial Dependence. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5097–5106. [Google Scholar] [CrossRef]
- Dong, S.; Zhuang, Y.; Yang, Z.; Pang, L.; Chen, H.; Long, T. Land Cover Classification from VHR Optical Remote Sensing Images by Feature Ensemble Deep Learning Network. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 1396–1400. [Google Scholar] [CrossRef]
- Niu, Q.; Liu, L.; Huang, G.; Cheng, Q.; Cheng, Y. Extraction of complex crop structure in the Hetao Irrigation District of Inner Mongolia using GEE and machine learning. Trans. Chin. Soc. Agric. Eng. 2022, 38, 165–174. (In Chinese) [Google Scholar] [CrossRef]
- Hung, S.; Wu, H.; Tseng, M. Integrating Image Quality Enhancement Methods and Deep Learning Techniques for Remote Sensing Scene Classification. Appl. Sci. 2021, 11, 11659. [Google Scholar] [CrossRef]
- Ji, Q.; Liang, W.; Fu, B.; Zhang, W.; Yan, J.; Lü, Y.; Yue, C.; Jin, Z.; Lan, Z.; Li, S.; et al. Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sens. 2021, 13, 1299. [Google Scholar] [CrossRef]
- Zhao, L. Spatio-Temporal Variations of Soil Organic Matter in Liaocheng City, Shandong Province over 1985–2005. Res. Environ. Sci. 2011, 24, 421–427+7–8. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Zhang, Z. New Technology Used in Water Saving Rehabilitation Engineering of Weishan Irrigation District. South North Water Transf. Water Sci. Technol. 2009, 7, 104–105+112. (In Chinese) [Google Scholar]
- Zhang, B.; Yuan, X.; Liu, Z.; Cao, J.; Zhang, J.; Li, H. Study on Soil Organic Matter Content Change of Farmland Productivity Monitoring Sites in Liaocheng City. Shandong Agric. Sci. 2015, 47, 78–80. (In Chinese) [Google Scholar] [CrossRef]
- Tong, X.; Hu, D.; Yang, X. Policy Effects Evaluation of Grain Minimum Purchase Prices, Evidence from the Wheat. Issues Agric. Econ. 2019, 9, 85–95. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Z.; Xi, Y.; Zhang, S. Analysis on the Implementation, Mechanisms and Effects of 2008/2009 National Corn Provisional Reserve Policy. Issues Agric. Econ. 2010, 31, 16–23+110. (In Chinese) [Google Scholar] [CrossRef]
Crops | Growth Period | Phenophase a (Days) | ||
---|---|---|---|---|
Winter wheat | October–June b | 220–240 | ||
Garlic | October–May c | 220–240 | ||
Summer maize | June–October d | 90–110 | ||
Cotton | April–October e | 150–180 |
Product | GEE ID | Dataset Availability | Usable Images |
---|---|---|---|
LANDSAT 5 ETM | LANDSAT/LT05/ C01/T1_SR | 16 March 1984– 5 May 2012 | 111 |
LANDSAT 7 ETM+ | LANDSAT/LE07/ C01/T1_SR | 28 May 1999– | 178 |
LANDSAT 8 OLI/TIRS | LANDSAT/LC08/ C01/T1_SR | 18 March 2013– | 174 |
Band | Satellite Data | Transform a | ||
---|---|---|---|---|
Landsat 5 | Landsat 7 | Landsat 8 | ||
Blue | B1 | SR_B1 | SR_B2 | L7 = 0.0183 + 0.8850 × L8 |
Green | B2 | SR_B2 | SR_B3 | L7 = 0.0123 + 0.9317 × L8 |
Red | B3 | SR_B3 | SR_B4 | L7 = 0.0123 + 0.9372 × L8 |
Near infrared (NIR) | B4 | SR_B4 | SR_B5 | L7 = 0.0448 + 0.8339 × L8 |
Shortwave infrared (SWIR) 1 | B5 | SR_B5 | SR_B6 | L7 = 0.0306 + 0.8639 × L8 |
Shortwave infrared (SWIR) 2 | B7 | SR_B7 | SR_B7 | L7 = 0.0116 + 0.9165 × L8 |
Statistical Data | Year | Sources |
---|---|---|
Crop-planted area | 2001–2020 | Weishan Irrigation District Administration in Liaocheng City |
Average temperature | 2001–2020 | China Meteorological Data of National Meteorological Center http://data.cma.cn/, accessed on 1 January 2021 |
Precipitation | 2001–2020 | China Meteorological Data of National Meteorological Center http://data.cma.cn/, 1 January 2021 |
Producer price index of agricultural products | 2001–2020 | Chinese Statistical Yearbook https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of farm hand tools | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of semi-mechanized farm implements | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of mechanized farm implements | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of chemical fertilizer | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of pesticides and pesticide instruments | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Price index of multipurpose tractor oil | 2001–2020 | Rural Statistical Yearbook of China https://www.stats.gov.cn/, accessed on 25 December 2023 |
Government policy | 2001–2020 | National Development and Reform Commission, PRC https://www.ndrc.gov.cn/, accessed on 15 December 2023 |
Factors | Winter Wheat | Summer Maize | ||
---|---|---|---|---|
Coefficient | Robust | Coefficient | Robust | |
Natural factor a | ||||
AT | 12.91 | 15.08 | 21.48 | 14.21 |
Pre | −0.01 | 0.04 | −0.01 | 0.08 |
Social subjective factor b | ||||
GP | 63.32 *** | 17.40 | 63.98 ** | 20.26 |
Social objective factors c | ||||
API | 1.24 | 0.88 | 1.00 | 0.66 |
FHTI | −0.81 | 2.13 | −1.60 | 2.68 |
SMFI | 1.64 | 5.42 | −2.13 | 4.17 |
MFI | −1.93 | 5.20 | 3.53 | 5.20 |
CFI | 0.13 | 0.60 | 0.04 | 1.07 |
PAPI | 0.88 | 2.61 | 0.34 | 1.93 |
MPTOI | 0.08 | 0.80 | 0.50 | 2.90 |
N | 20 | 20 | ||
R2 | 0.79 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Lou, Y.; Chen, X.; Huang, Q.; Yang, Q.; Zhang, X.; Li, H.; Huang, G. Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin. Remote Sens. 2024, 16, 2274. https://doi.org/10.3390/rs16132274
Hong S, Lou Y, Chen X, Huang Q, Yang Q, Zhang X, Li H, Huang G. Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin. Remote Sensing. 2024; 16(13):2274. https://doi.org/10.3390/rs16132274
Chicago/Turabian StyleHong, Shengzhe, Yu Lou, Xinguo Chen, Quanzhong Huang, Qianru Yang, Xinxin Zhang, Haozhi Li, and Guanhua Huang. 2024. "Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin" Remote Sensing 16, no. 13: 2274. https://doi.org/10.3390/rs16132274
APA StyleHong, S., Lou, Y., Chen, X., Huang, Q., Yang, Q., Zhang, X., Li, H., & Huang, G. (2024). Identification and Analysis of Long-Term Land Use and Planting Structure Dynamics in the Lower Yellow River Basin. Remote Sensing, 16(13), 2274. https://doi.org/10.3390/rs16132274