Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (361)

Search Parameters:
Keywords = Yangtze River protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 187
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 366
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

36 pages, 25831 KiB  
Article
Identification of Cultural Landscapes and Spatial Distribution Characteristics in Traditional Villages of Three Gorges Reservoir Area
by Jia Jiang, Zhiliang Yu and Ende Yang
Buildings 2025, 15(15), 2663; https://doi.org/10.3390/buildings15152663 - 28 Jul 2025
Viewed by 335
Abstract
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and [...] Read more.
The Three Gorges Reservoir Area (TGRA) is an important ecological barrier and cultural intermingling zone in the upper reaches of the Yangtze River, and its traditional villages carry unique information about natural changes and civilisational development, but face the challenges of conservation and development under the impact of modernisation and ecological pressure. This study takes 112 traditional villages in the TGRA that have been included in the protection list as the research objects, aiming to construct a cultural landscape identification framework for the traditional villages in the TGRA. Through field surveys, landscape feature assessments, GIS spatial analysis, and multi-source data analysis, we systematically analyse their cultural landscape type systems and spatial differentiation characteristics, and then reveal their cultural landscape types and spatial differentiation patterns. (1) The results of the study show that the spatial distribution of traditional villages exhibits significant altitude gradient differentiation—the low-altitude area is dominated by traffic and trade villages, the middle-altitude area is dominated by patriarchal manor villages and mountain farming villages, and the high-altitude area is dominated by ethno-cultural and ecologically dependent villages. (2) Slope and direction analyses further reveal that the gently sloping areas are conducive to the development of commercial and agricultural settlements, while the steeply sloping areas strengthen the function of ethnic and cultural defence. The results indicate that topographic conditions drive the synergistic evolution of the human–land system in traditional villages through the mechanisms of agricultural optimisation, trade networks, cultural defence, and ecological adaptation. The study provides a paradigm of “nature–humanities” interaction analysis for the conservation and development of traditional villages in mountainous areas, which is of practical value in coordinating the construction of ecological barriers and the revitalisation of villages in the reservoir area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 229
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

16 pages, 5691 KiB  
Article
Balancing Urban Expansion and Food Security: A Spatiotemporal Assessment of Cropland Loss and Productivity Compensation in the Yangtze River Delta, China
by Qiong Li, Yinlan Huang, Jianping Sun, Shi Chen and Jinqiu Zou
Land 2025, 14(7), 1476; https://doi.org/10.3390/land14071476 - 16 Jul 2025
Viewed by 289
Abstract
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key [...] Read more.
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key concern. This study examines the central region of the Yangtze River Delta (YRD) in China, integrating CLCD (China Land Cover Dataset) land use/cover data (2001–2023), MOD17A2H net primary productivity (NPP) data, and statistical records to evaluate the impacts of urban expansion on grain yield. The analysis focuses on three components: (1) grain yield loss due to cropland conversion, (2) compensatory yield from newly added cropland under the requisition–compensation policy, (3) yield increases from stable cropland driven by agricultural enhancement strategies. Using Sen’s slope analysis, the Mann–Kendall trend test, and hot/coldspot analysis, we revealed that urban expansion converted approximately 14,598 km2 of cropland, leading to a grain production loss of around 3.49 million tons, primarily in the economically developed cities of Yancheng, Nantong, Suzhou, and Shanghai. Meanwhile, 8278 km2 of new cropland was added through land reclamation, contributing only 1.43 million tons of grain—offsetting just 41% of the loss. In contrast, stable cropland (102,188 km2) contributed an increase of approximately 9.84 million tons, largely attributed to policy-driven productivity gains in areas such as Chuzhou, Hefei, and Ma’anshan. These findings suggest that while compensatory cropland alone is insufficient to mitigate the food security risks from urbanization, the combined strategy of “Safeguarding Grain in the Land and in Technology” can more than compensate for production losses. This study underscores the importance of optimizing land use policy, strengthening technological interventions, and promoting high-efficiency land management. It provides both theoretical insight and policy guidance for balancing urban development with regional food security and sustainable land use governance. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 327
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 244
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

30 pages, 18280 KiB  
Article
The Spatiotemporal Evolution and Multi-Scenario Simulation of Carbon Storage in the Middle Reaches of the Yangtze River Based on the InVEST-PLUS Model
by Hu Chen, Yi Sun, Diwei Tang, Jian Song, Yi Tu and Qi Zhang
Sustainability 2025, 17(13), 6067; https://doi.org/10.3390/su17136067 - 2 Jul 2025
Viewed by 416
Abstract
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon [...] Read more.
The middle reaches of the Yangtze River are important bases for high-tech, advanced manufacturing, and modern service industries in China, as well as a demonstration area for the coordination of economic and ecological construction, which plays an important role in the ecosystem carbon cycle. With the steady progress of social and economic development and urbanization, the supply capacity of ecosystem services has sharply decreased, and the carbon cycle mechanism has changed, further reducing the sustainability of regional ecosystem services. In this study, carbon storage in the middle reaches of the Yangtze River was estimated from 2000 to 2020 based on the InVEST model, and the temporal and spatial evolution characteristics of carbon storage in the middle reaches of the Yangtze River were summarized using the coefficient of variation and spatial autocorrelation. The coupled InVEST-PLUS model was used to simulate the carbon storage characteristics of the middle reaches of the Yangtze River under natural development, ecological protection, cultivated land protection, and urban development scenarios in 2035. The results show the following: (1) The main land-use types in the middle reaches of the Yangtze River are cultivated and forest land, and the land-use types in the study area show the characteristics of “two increases and four decreases” in the past 20 years. (2) The carbon storage level in the middle reaches of the Yangtze River has decreased by 83.65 × 106 t in the past 20 years (approximately 1.16%). The coefficient of variation showed that the carbon storage level in the middle reaches of the Yangtze River was high, with the fluctuating area accounting for 8.79% of the total area. The results of local spatial autocorrelation show that the high-value areas of carbon storage are mainly distributed in the west and southeast of the study area, and the low-value areas are mainly distributed in the middle of the study area, exhibiting characteristics of “high values surrounding low values” in space. (3) The simulation results of carbon storage in the middle reaches of the Yangtze River in 2035 showed that the ecological protection scenario was better than the other scenarios in terms of the mean level, functional performance, and patch presentation. Full article
Show Figures

Figure 1

16 pages, 2983 KiB  
Article
Birds as Biodiversity Beacons: Identifying Conservation Priority Areas Through Multi-Dimensional Diversity in China
by Fei Duan, Shuyi Zhu, Xiaoyun Shi, Xiaoli Shen and Sheng Li
Diversity 2025, 17(7), 442; https://doi.org/10.3390/d17070442 - 21 Jun 2025
Viewed by 374
Abstract
Biodiversity conservation plays a pivotal role in achieving sustainable development and fostering harmonious coexistence between humans and nature. This study identifies avian conservation priority areas across China by analyzing multi-dimensional biodiversity, incorporating species diversity, functional diversity, and phylogenetic diversity. Through systematic conservation planning [...] Read more.
Biodiversity conservation plays a pivotal role in achieving sustainable development and fostering harmonious coexistence between humans and nature. This study identifies avian conservation priority areas across China by analyzing multi-dimensional biodiversity, incorporating species diversity, functional diversity, and phylogenetic diversity. Through systematic conservation planning using Zonation version 4 software, we delineated priority areas across these diversity dimensions. Our results demonstrate a distinct south-to-north diversity gradient in China’s avifauna, with functional and phylogenetic diversity hotspots concentrated in Yunnan Province, the Hengduan Mountains, Hainan Island, Taiwan Island, and southeastern coastal regions. The identified priority conservation areas cover 14.6% of China’s terrestrial territory, protecting 89.8% of the country’s bird species—including 93.5% of endemic species and 88.9% of critically endangered species. Notably, existing nature reserves encompass merely 8.1% of these priority areas, revealing substantial conservation gaps within the current protection framework. Building upon China’s 3C Zoning Framework (Cities and farms, Shared landscapes, and Large wild areas), we propose zone-specific conservation strategies, with particular emphasis on strengthening protected area networks in the eastern coastal regions and the middle-lower Yangtze River basin, where urbanization pressures are most acute. These findings highlight the critical importance of incorporating multi-dimensional diversity in conservation planning and offer novel perspectives for optimizing China’s protected area system. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

26 pages, 11805 KiB  
Article
Coupling Marxan and InVEST Models to Identify Ecological Protection Areas: A Case Study of Anhui Province
by Xinmu Zhang, Xinran Zhang, Lei Zhang, Kangkang Gu and Xinchen Gu
Land 2025, 14(7), 1314; https://doi.org/10.3390/land14071314 - 20 Jun 2025
Viewed by 438
Abstract
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of [...] Read more.
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of multi-stakeholder decision-making preferences and the Marxan model. Four conservation scenarios (ecological security priority, social benefit orientation, minimum cost constraint, and balance synergy) were established to explore the spatial optimization pathways of ecological protection zones under differentiated policy objectives. The findings indicated that: (1) The ecosystem services in Anhui Province exhibited a “low north and high south” spatial gradient, with significant synergies observed in natural ecosystem services in the southern Anhui mountainous areas, while the northern Anhui agricultural areas were subjected to significant trade-offs due to intensive development. (2) High service provision in the southern Anhui mountainous areas was maintained by topographic barriers and forest protection policies (significant NPP improvement zones accounted for 50.125%), whereas soil–water services degradation in the northern Anhui plains was caused by agricultural intensification and groundwater overexploitation (slight soil retention degradation covered 24.505%, and water yield degradation areas reached 29.766%). Urbanization demonstrated a double-edged sword effect—the expansion of the Hefei metropolitan area triggered suburban biodiversity degradation (significant degradation patches occupied 0.0758%), while ecological restoration projects promoted mountain NPP growth, highlighting the necessity of synergizing natural recovery and artificial interventions. (3) Multi-scenario planning revealed that the spatial congruence between the ecological security priority scenario and traditional ecological protection redlines reached 46.57%, whereas the social benefit scenario achieved only 12.13%, exposing the inadequate responsiveness of the current conservation framework to service demands in densely populated areas. This research validated the technical superiority of multi-objective systematic planning in reconciling ecological protection and development conflicts, providing scientific support for optimizing ecological security patterns in the Yangtze River Delta region. Full article
Show Figures

Figure 1

20 pages, 3072 KiB  
Article
Effectiveness of River Training Projects in Controlling Shoal Erosion: A Case Study of the Middle Yangtze River
by Yao Yue, Weiya Huang, Yaxin Guo, Junhong Zhang, Yunping Yang, Dongdong Zhang, Linshuang Liu and Xinxin Chen
Hydrology 2025, 12(6), 148; https://doi.org/10.3390/hydrology12060148 - 12 Jun 2025
Viewed by 818
Abstract
Reservoir regulation and river training works are significant factors influencing downstream channel evolution. However, there is still a lack of systematic studies on the evolution patterns under their synergistic impacts. In particular, the adaptability of shoal training works under hydrological variability conditions needs [...] Read more.
Reservoir regulation and river training works are significant factors influencing downstream channel evolution. However, there is still a lack of systematic studies on the evolution patterns under their synergistic impacts. In particular, the adaptability of shoal training works under hydrological variability conditions needs further investigation. The main purpose of this study is to undertake a thorough analysis of the efficacy of river training works related to shoal erosion control and to identify its underlying causes and potential mitigation strategies. By reviewing completed river training works and collecting and analyzing hydrological data of the middle Yangtze River, we developed and applied a hydro-morphological model to simulate the river evolution processes. A systematic evaluation was undertaken on the impact of training works on shoal erosion. The results indicate that the river training works can influence local hydrological and hydrodynamic conditions, thereby enhancing shoals’ resistance to erosion and decelerating shoal shrinkage. However, under altered hydrologic regimes, the effectiveness of training works wanes, thus failing to fully achieve its intended effects. Specifically, the bank protection project attenuated the intensity of scour at the head of the continent by 30% (average annual scour depth reduced from 2.1 m to 1.5 m) and increased the local stability index by 14.5% (from 0.744 to 0.852), but it is still below the critical threshold (1.024). The findings of this study are expected to provide a scientific basis for the planning and implementation of river training works in the Middle Yangtze River and serve as a reference for addressing similar issues in other regions. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake
by Bin Wu, Weiping Wang, Yuehua Wang and Zhihong Zhang
Diversity 2025, 17(6), 410; https://doi.org/10.3390/d17060410 - 10 Jun 2025
Viewed by 648
Abstract
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a [...] Read more.
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a steady upward trend. The infrequent movement of YFPs between Poyang Lake and the Yangtze River represents a considerable threat to the long-term viability of this population. Additionally, serious water shortages in the lake during the dry season have led the government to consider the establishment of a hydraulic project. Therefore, a reliable risk assessment and quantitative analysis of conservation scenarios are urgently needed for this population. Population viability analysis of the YFP population in Poyang Lake was conducted using the VORTEX software. The baseline model predicted a probability of extinction of 0.241 over the next 100 years, with no probability of extinction in the first 30 years; the genetic diversity would be on a continuous downward trend and decline by 91.5%. The comprehensive protection model predicted a probability of extinction of 0.0028 and that the genetic diversity would be maintained at about 0.996 in 100 years. Breeding rate, sex ratio at birth, mortality rate, and gene flow were the factors that were sensitive to maintaining population viability. The results showed that the population of YFPs in Poyang Lake was at a high risk of extinction due to the decline in genetic diversity and the higher mortality and lower birth rate caused by habitat degradation. A total ban on productive fishing and the rescue and interchange of YFPs are conducive to enhancing the viability of the YFP population in Poyang Lake. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

20 pages, 10937 KiB  
Article
Adaptive Analysis of Ecosystem Stability in China to Soil Moisture Variations: A Perspective Based on Climate Zoning and Land Use Types
by Yuanbo Lu, Yang Yu, Xiaoyun Ding, Lingxiao Sun, Chunlan Li, Jing He, Zengkun Guo, Ireneusz Malik, Malgorzata Wistuba and Ruide Yu
Remote Sens. 2025, 17(12), 1971; https://doi.org/10.3390/rs17121971 - 6 Jun 2025
Viewed by 405
Abstract
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones [...] Read more.
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones and land cover types. Sen’s Slope Estimation and the Mann–Kendall trend test, combined with linear regression and correlation analyses, are employed to analyze the long-term trends of EVI and GPP in different climatic zones and land cover types and to assess the effects of soil moisture changes on ecosystem stability. The research reveals the following findings: (1) On a national scale, both EVI and GPP exhibit positive growth trends, with more significant increases in humid areas and relatively slower growth in arid areas. In addition, EVI and GPP of different land cover types exhibit positive inter-annual variation trends, reflecting a gradual enhancement in ecosystem productivity. (2) Cluster analysis shows that EVI has strong spatial correlation, with a distribution pattern of low–low (L-L) clusters in the north and high–high (H-H) clusters in the south. L-H clusters are concentrated in the Huaihai, Southwest Rivers, and Pearl River basins, while H-L clusters are scattered along the eastern coast. The spatial correlation of GPP is mainly concentrated in the south and the northeast, with a distribution pattern of L-L in the northeast, L-H in the Yangtze River basin, and H-H in the south. H-L clusters are dispersed in the downstream area of the Yangtze River. Both EVI and GPP show a tendency for high-value aggregation in space, with high-value areas of EVI located in the south and low-value areas in the central and western regions. High-value areas of GPP are in the south, while low-value areas are in the northeast, particularly in the Yangtze River Delta. (3) The correlation between EVI, GPP, and soil moisture varies significantly across different climatic regions. Arid and semi-humid regions show significant correlations between specific soil moisture depths and EVI and GPP, while such correlations are not significant in humid regions. The EVI and GPP values of croplands and grasslands are significantly and negatively correlated with soil moisture at depths of 150–200 cm (SM4). Conversely, wetland GPP values increase significantly with increasing soil moisture. Other vegetation types do not show significant correlations with soil moisture. The results of this study provide an important basis for understanding the impact of climate change on ecosystem stability and offer scientific guidance for ecological protection and water resource management. Full article
Show Figures

Figure 1

19 pages, 10370 KiB  
Article
Constructing a Composite Ecological Security Pattern Through Blind Zone Reduction and Ecological Risk Networks: A Case Study of the Middle Yangtze River Urban Agglomeration, China
by Xuankun Yang, Xiaojian Wei and Jin Cai
Sustainability 2025, 17(11), 5099; https://doi.org/10.3390/su17115099 - 2 Jun 2025
Viewed by 451
Abstract
The Middle Yangtze River Urban Agglomeration, a critical ecological barrier in China, faces escalating pressures from rapid urbanization and climate change, leading to fragmented landscapes and degraded ecosystem services. To address the synergistic challenges of ecological protection and risk management, this paper takes [...] Read more.
The Middle Yangtze River Urban Agglomeration, a critical ecological barrier in China, faces escalating pressures from rapid urbanization and climate change, leading to fragmented landscapes and degraded ecosystem services. To address the synergistic challenges of ecological protection and risk management, this paper takes the urban agglomeration in the middle reaches of the Yangtze River as the study area, and obtains the source patches through morphological spatial pattern analysis. Based on the spatial distribution of risky source areas, ecological blind zones are cut down by optimizing buffer zones and merging fragmented patches. Finally, a composite ecological network is constructed through circuit theory superimposed on the dual network method. The results showed that (1) there are 16 ecological source patches and 16 risk source patches in the study area. Six complementary ecological sources and four new ecological sources were obtained through the blind zone reduction strategy. The percentage of ecological blind zones reduced from 58.4% to 39.5%. (2) The integrated nodes with 11,366 connecting edges were identified. The integrated nodes are distributed around the central Jiuling-Mafushan Mountains, mainly in the western and southern areas of the Dongting Lake Plain. (3) Primary integration nodes are critical for network stability, with a 75% node failure threshold triggering systemic collapse. The proposed strategy of “mountain protection–plain control–railway monitoring” is consistent with China’s territorial and spatial planning. By incorporating the risk network into the conservation framework, this study provides feasible insights for balancing development and sustainability in ecologically fragile areas. Full article
Show Figures

Figure 1

37 pages, 4761 KiB  
Article
Evaluation of Regional Characteristics of Rural Landscapes in the Yangtze River Delta from the Perspective of the Ecological–Production–Living Concept
by Yuqing Zhang, Jiaxin Huang, Kun Zhang, Yuhan Guo, Di Hu and Zhang Wang
Sustainability 2025, 17(11), 5057; https://doi.org/10.3390/su17115057 - 30 May 2025
Cited by 1 | Viewed by 824
Abstract
The rural landscape serves as a window to showcase regional culture and can drive the development of the rural cultural tourism industry. However, driven by the rural revitalization strategy, the construction of rural landscapes in the Yangtze River Delta region faces the challenges [...] Read more.
The rural landscape serves as a window to showcase regional culture and can drive the development of the rural cultural tourism industry. However, driven by the rural revitalization strategy, the construction of rural landscapes in the Yangtze River Delta region faces the challenges of homogeneity and lack of authenticity. A regional evaluation of the rural landscape and strategic suggestions are key to solving this problem. Therefore, this study selected three representative villages in the Yangtze River Delta region and established a regional evaluation model of the rural landscape in the Yangtze River Delta from the perspective of the ecological–production–living concept, utilizing the analytic hierarchy process, a tourist questionnaire survey, IPA, and Munsell color analysis. The results show that (1) the core indicator of the rural landscape regionality is the life landscape, followed by the production landscape, and finally, the ecological landscape; (2) the overall satisfaction of the rural landscape is high, and the satisfaction of the water network landscape is significantly higher than other indicators; (3) the results of IPA show that what needs to be maintained are traditional dwellings and historical relics, and what needs to be improved are sign design and rural public art design; (4) Munsell color analysis shows that the characteristics the of rural landscape in the Yangtze River Delta region are diverse and inclusive. This study is of great significance for maintaining the characteristics of the rural landscape in the Yangtze River Delta region and promoting the protection of rural landscape style under different regional conditions. Full article
Show Figures

Figure 1

Back to TopTop