Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. VORTEX Simulation Model
2.3. Reproductive System and Rates
2.4. Mortality Rates
2.5. Population Description
2.6. Sensitivity Analysis and Conservation Scenario
3. Results
3.1. Population Trend of YFPs in Poyang Lake
3.2. Sensitivity Analysis and Conservation Scenario
4. Discussion
4.1. Vulnerability of YFPs in Poyang Lake
4.2. Conservation Implications for YFPs in Poyang Lake
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaffer, M.L. Minimum population sizes for species conservation. BioScience 1981, 31, 131–134. [Google Scholar] [CrossRef]
- Cassel, A.; Windig, J.; Nylin, S.; Wiklund, C. Effects of population size and food stress on fitness-related characters in the scarce heath, a rare butterfly in Western Europe. Conserv. Biol. 2001, 15, 1667–1673. [Google Scholar] [CrossRef]
- Keller, L.F.; Waller, D.M. Inbreeding effects in wild populations. Trends Ecol. Evol. 2002, 17, 230–241. [Google Scholar] [CrossRef]
- Reed, D.H.; Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Vilas, C.; San Miguel, E.; Amaro, R.; Garcia, C. Relative contribution of inbreeding depression and eroded adaptive diversity to extinction risk in small populations of shore campion. Conserv. Biol. 2006, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Brook, B.W.; Burgman, M.; Frankham, R. Differences and congruencies between PVA packages: The importance of sex ratio for predictions of extinction risk. Conserv. Ecol. 2000, 4, 920. [Google Scholar] [CrossRef]
- Brook, B.W.; O’Grady, J.J.; Chapman, A.P.; Burgman, M.A.; Akçakaya, H.R.; Frankham, R. Predictive accuracy of population viability analysis in conservation biology. Nature 2000, 404, 385–387. [Google Scholar] [CrossRef]
- Beissinger, S.R.; McCullough, D.R. Population Viability Analysis; The University of Chicago Press: Chicago, IL, USA, 2001. [Google Scholar]
- Pilleri, G. Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus and Tursiops and description of a new Chinese porpoise (Neomeris asiaeorientalis). Investig. Cetacea 1972, 4, 107–162. [Google Scholar]
- Zhou, X.; Guang, X.; Sun, D.; Xu, S.; Li, M.; Seim, I.; Jie, W.; Yang, L.; Zhu, Q.; Xu, J.; et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 2018, 9, 1276. [Google Scholar] [CrossRef]
- Gao, A.; Zhou, K. Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol. Sin. China 1995, 15, 81–92. [Google Scholar]
- Yang, J.; Wang, K.; Mei, Z.; Xu, J.; Zheng, J.; Wan, X.; Hao, Y.; Wang, K.; Wang, D. Temporal variation in the diet of Yangtze finless porpoise calls for conservation of semi-migratory fish. Freshw. Biol. 2021, 66, 992–1001. [Google Scholar] [CrossRef]
- Li, F.G.; Sun, Y.W.; Chen, K.; Yu, J.X.; Ruan, J.M.; Kui, L.L.; Liang, X.M.; Wang, Y.H.; Dai, Y.G. Analysis of Population Genetic Differences of Yangtze Finless Porpoise in Poyang Lake Basin. Acta Agric. Univ. Jiangxiensis 2024, 46, 1298–1307. [Google Scholar]
- Mei, Z.G.; Hao, Y.J.; Zheng, J.S.; Wang, Z.T. Population status and conservation outlooks of Yangtze finless porpoise in the Lake Poyang. Chin. J. Lake Sci. 2021, 33, 1289–1298. [Google Scholar]
- Li, Q.; Lai, G.; Liu, Y.; Devlin, A.T.; Zhan, S.; Wang, S. Identifying the seasonal characteristics of likely habitats for the Yangtze finless porpoise in Poyang Lake. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 523–536. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Lai, G.; Liu, Y.; Devlin, A.T.; Wang, W.; Zhan, S. Identifying High Stranding Risk Areas of the Yangtze Finless Porpoise via Remote Sensing and Hydrodynamic Modeling. Remote Sens. 2022, 14, 2455. [Google Scholar] [CrossRef]
- Li, C.L.; Kuang, R.Y.; Wu, Q.W. Analysis of information extraction and monitoring of Poyang Lake wetland during low flow period in recent ten years. J. Jiangxi Univ. Sci. Technol. 2019, 40, 30–37. [Google Scholar]
- Dai, Z.; Xia, L.; Kong, P.; Zhan, M. Remote Sensing Monitoring and Analysis of Poyang Lake Water Area Changes over the Past 20 Years. Meteorol. Disaster Reduct. Res. China 2021, 44, 127–132. [Google Scholar]
- Lacy, R.C. Structure of the VORTEX simulation model for population viability analysis. Ecol. Bull. 2000, 48, 191–203. [Google Scholar]
- Huang, J.; Mei, Z.; Chen, M.; Han, Y.; Zhang, X.; Moore, J.E.; Zhao, X.; Hao, Y.; Wang, K.; Wang, D. Population survey showing hope for population recovery of the critically endangered Yangtze finless porpoise. Biol. Conserv. 2020, 241, 108315. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, Y.; Hao, Y.; Mei, Z.; Wang, K.; Zhao, Q.; Zheng, J.; Wang, D. Parentage-based group composition and dispersal pattern studies of the Yangtze Finless Porpoise population in Poyang Lake. Int. J. Mol. Sci. 2016, 17, 1268. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, K.X. Viability analysis of finless porpoise populations in the Yangtze River. Chin. Acta Ecol. Sin. 1999, 19, 529–533. [Google Scholar]
- Wu, B.; Wang, W.P.; He, G.; Wang, H.H. Analysis of population viability analysis of Yangtze finless porpoise in different simulated scenarios. Prog. Fish. Sci. 2021, 42, 28–35. (In Chinese) [Google Scholar]
- Burgman, M.A.; Ferson, S.; Akçakaya, H.R. Risk Assessment in Conservation Biology; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Ginzburg, L.R.; Slobodkin, L.B.; Johnson, K. Quasi-extinction probabilities as a measure of impact on population growth. Risk Anal. 1982, 2, 171–181. [Google Scholar] [CrossRef]
- Ralls, K.; Ballou, J.D.; Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 1988, 2, 185–193. [Google Scholar] [CrossRef]
- Hao, Y.J.; Wang, D.; Zhang, X.F. Review on breeding biology of Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). Acta Theriol. Sin. China 2006, 26, 191–200. [Google Scholar]
- Wu, B.; Li, H.; He, G. Reproductive characteristics and conservation implications of the Yangtze finless porpoise in Poyang Lake. Bull. Biol. 2021, 56, 3–5. (In Chinese) [Google Scholar]
- Li, Y.T. Study on the Habitat Selection, Environmental Capacity, and Population Viability of the Yangtze Finless Porpoises in Tian-E-Zhou Semi-Natural Ex-Situ Reserve. Ph.D. Thesis, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China, 2017. [Google Scholar]
- Zhang, X.F. Study on age identification, growth, and reproduction of finless porpoises. Chin. Acta Hydrobiol. Sin. 1992, 16, 289–297. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, K.Y.; Gao, A.L.; Chang, Q. Study on life table and population dynamics of finless porpoises. Acta Zool. Sin. 1998, 18, 1–7. (In Chinese) [Google Scholar]
- Mei, Z.; Huang, S.L.; Hao, Y.; Turvey, S.T.; Gong, W.; Wang, D. Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol. Conserv. 2012, 153, 192–200. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, X. Distribution and population size of Yangtze finless porpoise in Poyang Lake and its branches. Acta Theriol. Sin. 2002, 22, 7–14. [Google Scholar]
- Wei, Z.; Wang, D.; Zhang, X.; Zhao, Q.Z.; Wang, K.X.; Kuang, X.A. Population size, behavior, movement pattern and protection of Yangtze finless porpoise at Balijiang section of the Yangtze River. Resour. Environ. Yangtze Basin 2002, 11, 427–432. [Google Scholar]
- Dong, S. Studies on the Distribution and Movement of the Yangtze Finless Porpoises (Neophocaena phocaenoides asiaeorientalis) in Hukou Area Obtained by Acoustic Method. Master’s Thesis, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China, 2009. [Google Scholar]
- Kimura, S.; Akamatsu, T.; Li, S.; Dong, L.; Wang, K.; Wang, D.; Arai, N. Seasonal changes in the local distribution of Yangtze finless porpoises related to fish presence. Mar. Mammal Sci. 2012, 28, 308–324. [Google Scholar] [CrossRef]
- Liu, X.; Mei, Z.; Zhang, J.; Sun, J.; Zhang, N.; Guo, Y.; Wang, K.; Hao, Y.; Wang, D. Seasonal Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) movements in the Poyang Lake, China: Implications on flexible management for aquatic animals in fluctuating freshwater ecosystems. Sci. Total. Environ. 2022, 807, 150782. [Google Scholar] [CrossRef]
- Zhang, X.Q. Population Ecology of Yangtze Finless Porpoise in Dongting Lake and Adjacent Waters. Ph.D. Thesis, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China, 2011. [Google Scholar]
- Wang, Z. Study on the Impacts of Sand Mining Activities in Dongting Lake on Yangtze Finless Porpoise. Master’s Thesis, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China, 2015. [Google Scholar]
- Chen, M.; Fontaine, M.C.; Ben Chehida, Y.; Zheng, J.; Labbé, F.; Mei, Z.; Hao, Y.; Wang, K.; Wu, M.; Zhao, Q.; et al. Genetic footprint of population fragmentation and contemporary collapse in a freshwater cetacean. Sci. Rep. 2017, 7, 14449. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z. Study on Population Dynamics and Endangered Mechanism of Yangtze Finless Porpoise. Ph.D. Thesis, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China, 2013. [Google Scholar]
- Franklin, I.R. Evolutionary change in small populations. In Conservation Biology—An Evolutionary-Ecological Perspective; Soule, M.E., Wilcox, B.A., Eds.; Sinauer Associates: Sunderland, MA, USA, 1980; pp. 135–149. [Google Scholar]
- Jamieson, I.G.; Allendorf, F.W. How does the 50/500 rule apply to MVPs? Trends Ecol. Evol. 2012, 27, 578–584. [Google Scholar] [CrossRef]
- Mei, Z.; Zhang, X.; Huang, S.-L.; Zhao, X.; Hao, Y.; Zhang, L.; Qian, Z.; Zheng, J.; Wang, K.; Wang, D. The Yangtze finless porpoise: On an accelerating path to extinction? Biol. Conserv. 2014, 172, 117–123. [Google Scholar] [CrossRef]
- Li, Q.; Deng, M.; Li, W.; Pan, Y.; Lai, G.; Liu, Y.; Devlin, A.T.; Wang, W.; Zhan, S. Habitat configuration of the Yangtze finless porpoise in Poyang Lake under a shifting hydrological regime. Sci. Total. Environ. 2022, 838, 155954. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lai, G.; Liu, Y.; Devlin, A.T.; Zhan, S.; Wang, S. Assessing the impact of the proposed Poyang lake hydraulic project on the Yangtze finless porpoise and its calves. Ecol. Indic. 2021, 129, 107873. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H.X.; Wu, Z.J.; Zhang, G.F.; Fu, P.F.; Wan, C.L.; Zhang, Y.P.; Fu, H.Y. Fishery resources survey in Poyang Lake and its estuary from 2020 to 2021. J. Hydroecol. Chin. 2025, 46, 99–110. [Google Scholar]
- Wu, B. Study on Population Dynamics of Yangtze Finless Porpoise (YFP) and Fish Community in Its Habitat in Poyang Lake. Ph.D. Thesis, Nanjing Normal University, Nanjing, China, 2023. [Google Scholar]
- Chen, B.Y.; Chen, L.W.; Zhang, J.; You, Q.Y.; Hao, X.Q.; Liu, S. Analysis of the behavioral impacts of vessels on Yangtze finless porpoises (Neophocaena asiaeorientalis) in the Nanjing section of the Yangtze River. Acta Hydrobiol. Sin. 2024, 48, 1672–1679. (In Chinese) [Google Scholar]
Parameter | Baseline Value |
---|---|
Number of populations | 1 |
Initial population size (N) | 457 |
Carrying capacity (K) | 1250 |
Inbreeding depression | 3.14 LE |
% of the effect of inbreeding due to recessive lethal alleles | 50 |
Breeding system | Polygynous |
Age of first reproduction by males/females | 5/4 years |
Maximum reproductive age | 18 years |
Annual % of adult females breeding (SD) | 50% (10%) |
Density-dependent reproduction? | No |
Maximum litter size | 1 |
Overall offspring sex ratio | 50:50 |
Adult males in the breeding pool (%) | 70 |
Mortality rates: | |
% mortality from age 0–1 (SD) | 25 (5) |
% mortality from age 1–2 (SD) | 20 (5) |
% mortality from other ages (SD) | 10 (3) |
Catastrophe | 1.75%; 50%, 50% |
16.7%; 95%, 95% | |
Harvest | None |
Supplementation | None |
Projects | Det-r | Stoch-r | Decrease |
---|---|---|---|
Model 1 (baseline scenario) | −0.023 | −0.0338 | 91.5% |
Model 2 (Model 1 + maximum reproductive age 16 years) | −0.0305 | −0.0436 | 96.6% |
Model 3 (Model 1 + maximum reproductive age 20 years) | −0.0177 | −0.0274 | 85.0% |
Model 4 (Model 1 + breeding rate 30%) | −0.0758 | −0.0846 | 100.0% |
Model 5 (Model 1 + breeding rate 70%) | 0.0149 | 0.0082 | −70.2% |
Model 6 (Model 1 + mortality rate of 0–1 age 30%, 1–2 age group 25%) | −0.0373 | −0.0495 | 98.4% |
Model 7 (Model 1 + mortality rate of 0–1 age 20%, 1–2 age group 15%) | −0.0092 | −0.0184 | 64.2% |
Model 8 (Model 1 + initial population size 329 individuals) | −0.023 | −0.0352 | 92.40% |
Model 9 (Model 1 + initial population size 634 individuals) | −0.023 | −0.0325 | 90.92% |
Model 10 (Model 1 +sex ratio at birth, male, 60%) | −0.0467 | −0.0580 | 99.5% |
Model 11 (Model 1 + sex ratio at birth, male, 40%) | −0.0028 | −0.0111 | 36.8% |
Model 12 (Model 1 + carrying capacity, 625 individuals) | −0.023 | −0.034 | 91.8% |
Model 13 (Model 1 + carrying capacity, 2500 individuals) | −0.023 | −0.034 | 91.5% |
Model 14 (Model 1 + effects of natural catastrophes, 0.25) | −0.0279 | −0.0451 | 94.7% |
Model 15 (Model 1 + effects of man-made catastrophes, 0.90) | −0.0323 | −0.0451 | 97.1% |
Projects | Det-r | Stoch-r | Decrease |
---|---|---|---|
Model 1 (baseline scenario, no interchange) | −0.023 | −0.0338 | 91.5% |
Model 2 (Model 1 + 16 individuals interchange + age 2–3 years + sex ratio 1:1) | −0.023 | −0.0125 | 65.0% |
Model 3 (Model 2 + all male) | −0.023 | −0.0134 | 68.2% |
Model 4 (Model 2 + all female) | −0.023 | −0.0049 | 35.5% |
Model 5 (Model 3 + age after 5 years) | −0.023 | −0.0330 | 89.8% |
Model 6 (Model 4 + age after 4 years) | −0.023 | −0.0169 | 55.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Wang, W.; Wang, Y.; Zhang, Z. Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake. Diversity 2025, 17, 410. https://doi.org/10.3390/d17060410
Wu B, Wang W, Wang Y, Zhang Z. Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake. Diversity. 2025; 17(6):410. https://doi.org/10.3390/d17060410
Chicago/Turabian StyleWu, Bin, Weiping Wang, Yuehua Wang, and Zhihong Zhang. 2025. "Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake" Diversity 17, no. 6: 410. https://doi.org/10.3390/d17060410
APA StyleWu, B., Wang, W., Wang, Y., & Zhang, Z. (2025). Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake. Diversity, 17(6), 410. https://doi.org/10.3390/d17060410