Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Xestospongia sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1562 KiB  
Article
Bioactive Steroids with Structural Diversity from the South China Sea Soft Coral Lobophytum sp. and Sponge Xestospongia sp.
by Lin-Mao Ke, Zi-Ru Zhang, Song-Wei Li, Yan-Bo Zeng, Ming-Zhi Su and Yue-Wei Guo
Mar. Drugs 2025, 23(1), 36; https://doi.org/10.3390/md23010036 - 13 Jan 2025
Cited by 1 | Viewed by 1106
Abstract
A chemical investigation of the soft coral Lobophytum sp. and the sponge Xestospongia sp. from the South China Sea led to the isolation of five steroids, including two new compounds (1 and 4) and one known natural product (3). [...] Read more.
A chemical investigation of the soft coral Lobophytum sp. and the sponge Xestospongia sp. from the South China Sea led to the isolation of five steroids, including two new compounds (1 and 4) and one known natural product (3). Compounds 13 were derived from the soft coral Lobophytum sp., while 4 and 5 were obtained from the sponge Xestospongia sp. The structures of these compounds were determined by extensive spectroscopic analysis, the time-dependent density functional theory–electronic circular dichroism (TDDFT-ECD) calculation method, and comparison with the spectral data previously reported in the literature. The antibacterial and anti-inflammatory activities of isolated compounds were evaluated in vitro. Compounds 13, 4, and 5 exhibited weak antibacterial activity against vancomycin-resistant Enterococcus faecium G1, Streptococcus parauberis KSP28, Photobacterium damselae FP2244, Lactococcus garvieae FP5245, and Pseudomonas aeruginosa ZJ028. Moreover, compound 3 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced NO production in RAW 264.7 cells, with an IC50 value of 13.48 μM. Full article
(This article belongs to the Special Issue Bioactive Compounds from Soft Corals and Their Derived Microorganisms)
Show Figures

Figure 1

13 pages, 3527 KiB  
Article
Halenaquinol Blocks Staphylococcal Protein A Anchoring on Cell Wall Surface by Inhibiting Sortase A in Staphylococcus aureus
by Jaepil Lee, Jae-Hyeong Choi, Jayho Lee, Eunji Cho, Yeon-Ju Lee, Hyi-Seung Lee and Ki-Bong Oh
Mar. Drugs 2024, 22(6), 266; https://doi.org/10.3390/md22060266 - 10 Jun 2024
Cited by 2 | Viewed by 1626
Abstract
Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (16) were isolated from [...] Read more.
Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (16) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 μM (4.66 μg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

32 pages, 49487 KiB  
Article
Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer
by Zin Zin Ei, Satapat Racha, Masashi Yokoya, Daiki Hotta, Hongbin Zou and Pithi Chanvorachote
Mar. Drugs 2023, 21(12), 627; https://doi.org/10.3390/md21120627 - 30 Nov 2023
Cited by 3 | Viewed by 2860
Abstract
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations [...] Read more.
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations and clinical trials focused on CSC regulator β-catenin signaling targeted interventions in malignancies. As part of the ongoing advancements in marine-organism-derived compound development, it was observed that among the six analogs of Renieramycin T (RT), a potential lead alkaloid from the blue sponge Xestospongia sp., the compound DH_32, displayed the most robust anti-cancer activity in lung cancer A549, H23, and H292 cells. In various lung cancer cell lines, DH_32 exhibited the highest efficacy, with IC50 values of 4.06 ± 0.24 μM, 2.07 ± 0.11 μM, and 1.46 ± 0.06 μM in A549, H23, and H292 cells, respectively. In contrast, parental RT compounds had IC50 values of 5.76 ± 0.23 μM, 2.93 ± 0.07 μM, and 1.52 ± 0.05 μM in the same order. Furthermore, at a dosage of 25 nM, DH_32 showed a stronger ability to inhibit colony formation compared to the lead compound, RT. DH_32 was capable of inducing apoptosis in lung cancer cells, as demonstrated by increased PARP cleavage and reduced levels of the proapoptotic protein Bcl2. Our discovery confirms that DH_32 treatment of lung cancer cells led to a reduced level of CD133, which is associated with the suppression of stem-cell-related transcription factors like OCT4. Moreover, DH_32 significantly suppressed the ability of tumor spheroids to form compared to the original RT compound. Additionally, DH_32 inhibited CSCs by promoting the degradation of β-catenin through ubiquitin–proteasomal pathways. In computational molecular docking, a high-affinity interaction was observed between DH_32 (grid score = −35.559 kcal/mol) and β-catenin, indicating a stronger binding interaction compared to the reference compound R9Q (grid score = −29.044 kcal/mol). In summary, DH_32, a newly developed derivative of the right-half analog of RT, effectively inhibited the initiation of lung cancer spheroids and the self-renewal of lung cancer cells through the upstream process of β-catenin ubiquitin–proteasomal degradation. Full article
(This article belongs to the Special Issue Synthesis and Discovery of Marine Antitumor Molecules)
Show Figures

Figure 1

17 pages, 3851 KiB  
Article
Light-Mediated Transformation of Renieramycins and Semisynthesis of 4′-Pyridinecarbonyl-Substituted Renieramycin-Type Derivatives as Potential Cytotoxic Agents against Non-Small-Cell Lung Cancer Cells
by Suwimon Sinsook, Koonchira Buaban, Iksen Iksen, Korrakod Petsri, Bhurichaya Innets, Chaisak Chansriniyom, Khanit Suwanborirux, Masashi Yokoya, Naoki Saito, Varisa Pongrakhananon, Pithi Chanvorachote and Supakarn Chamni
Mar. Drugs 2023, 21(7), 400; https://doi.org/10.3390/md21070400 - 13 Jul 2023
Viewed by 2788
Abstract
The semisynthesis of renieramycin-type derivatives was achieved under mild and facile conditions by attaching a 1,3-dioxole-bridged phenolic moiety onto ring A of the renieramycin structure and adding a 4′-pyridinecarbonyl ester substituent at its C-5 or C-22 position. These were accomplished through a light-induced [...] Read more.
The semisynthesis of renieramycin-type derivatives was achieved under mild and facile conditions by attaching a 1,3-dioxole-bridged phenolic moiety onto ring A of the renieramycin structure and adding a 4′-pyridinecarbonyl ester substituent at its C-5 or C-22 position. These were accomplished through a light-induced intramolecular photoredox reaction using blue light (4 W) and Steglich esterification, respectively. Renieramycin M (4), a bis-tetrahydroisoquinolinequinone compound isolated from the Thai blue sponge (Xestospongia sp.), served as the starting material. The cytotoxicity of the 10 natural and semisynthesized renieramycins against non-small-cell lung cancer (NSCLC) cell lines was evaluated. The 5-O-(4′-pyridinecarbonyl) renieramycin T (11) compound exhibited high cytotoxicity with half-maximal inhibitory concentration (IC50) values of 35.27 ± 1.09 and 34.77 ± 2.19 nM against H290 and H460 cells, respectively. Notably, the potency of compound 11 was 2-fold more than that of renieramycin T (7) and equal to those of 4 and doxorubicin. Interestingly, the renieramycin-type derivatives with a hydroxyl group at C-5 and C-22 exhibited weak cytotoxicity. In silico molecular docking and dynamics studies confirmed that the mitogen-activated proteins, kinase 1 and 3 (MAPK1 and MAPK3), are suitable targets for 11. Thus, the structure–cytotoxicity study of renieramycins was extended to facilitate the development of potential anticancer agents for NSCLC cells. Full article
Show Figures

Graphical abstract

20 pages, 4802 KiB  
Article
Target Identification of 22-(4-Pyridinecarbonyl) Jorunnamycin A, a Tetrahydroisoquinoline Derivative from the Sponge Xestospongia sp., in Mediating Non-Small-Cell Lung Cancer Cell Apoptosis
by Iksen Iksen, Suwimon Sinsook, Onsurang Wattanathamsan, Koonchira Buaban, Supakarn Chamni and Varisa Pongrakhananon
Molecules 2022, 27(24), 8948; https://doi.org/10.3390/molecules27248948 - 15 Dec 2022
Cited by 8 | Viewed by 2974
Abstract
A dysregulation of the cell-death mechanism contributes to poor prognosis in lung cancer. New potent chemotherapeutic agents targeting apoptosis-deregulating molecules have been discovered. In this study, 22-(4-pyridinecarbonyl) jorunnamycin A (22-(4′py)-JA), a synthetic derivative of bistetrahydroisoquinolinequinone from the Thai blue sponge, was semisynthesized by [...] Read more.
A dysregulation of the cell-death mechanism contributes to poor prognosis in lung cancer. New potent chemotherapeutic agents targeting apoptosis-deregulating molecules have been discovered. In this study, 22-(4-pyridinecarbonyl) jorunnamycin A (22-(4′py)-JA), a synthetic derivative of bistetrahydroisoquinolinequinone from the Thai blue sponge, was semisynthesized by the Steglich esterification method, and its pharmacological mechanism in non-small-cell lung cancer (NSCLC) was elucidated by a network pharmacology approach. All predicted targets of 22-(4′py)-JA and genes related to NSCLC were retrieved from drug-target and gene databases. A total of 78 core targets were identified, and their associations were analyzed by STRING and Cytoscape. Gene ontology and KEGG pathway enrichment analyses revealed that molecules in mitogen-activated protein kinase (MAPK) signaling were potential targets of 22-(4′py)-JA in the induction of NSCLC apoptosis. In silico molecular docking analysis displayed a possible interaction of ERK1/2 and MEK1 with 22-(4′py)-JA. In vitro anticancer activity showed that 22-(4′py)-JA has strong cytotoxic and apoptosis-inducing effects in H460, H292 and A549 NSCLC cells. Furthermore, immunoblotting confirmed that 22-(4′py)-JA induced apoptotic cell death in an ERK/MEK/Bcl-2-dependent manner. The present study demonstrated that 22-(4′py)-JA exhibited a potent anticancer effect that could be further developed for clinical application and showed that network pharmacology approaches are a powerful tool to illustrate the molecular pathways of new drugs or compounds. Full article
(This article belongs to the Special Issue Natural and Synthetic Anti-cancer Drug Discovery)
Show Figures

Graphical abstract

18 pages, 2814 KiB  
Article
5-O-(N-Boc-l-Alanine)-Renieramycin T Induces Cancer Stem Cell Apoptosis via Targeting Akt Signaling
by Darinthip Suksamai, Satapat Racha, Nicharat Sriratanasak, Chatchai Chaotham, Kanokpol Aphicho, Aye Chan Khine Lin, Chaisak Chansriniyom, Khanit Suwanborirux, Supakarn Chamni and Pithi Chanvorachote
Mar. Drugs 2022, 20(4), 235; https://doi.org/10.3390/md20040235 - 29 Mar 2022
Cited by 13 | Viewed by 4412
Abstract
Cancer stem cells (CSCs) drive aggressiveness and metastasis by utilizing stem cell-related signals. In this study, 5-O-(N-Boc-l-alanine)-renieramycin T (OBA-RT) was demonstrated to suppress CSC signals and induce apoptosis. OBA-RT exerted cytotoxic effects with a half-maximal inhibitory concentration [...] Read more.
Cancer stem cells (CSCs) drive aggressiveness and metastasis by utilizing stem cell-related signals. In this study, 5-O-(N-Boc-l-alanine)-renieramycin T (OBA-RT) was demonstrated to suppress CSC signals and induce apoptosis. OBA-RT exerted cytotoxic effects with a half-maximal inhibitory concentration of approximately 7 µM and mediated apoptosis as detected by annexin V/propidium iodide using flow cytometry and nuclear staining assays. Mechanistically, OBA-RT exerted dual roles, activating p53-dependent apoptosis and concomitantly suppressing CSC signals. A p53-dependent pathway was indicated by the induction of p53 and the depletion of anti-apoptotic Myeloid leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins. Cleaved poly (ADP-ribose) polymerase (Cleaved-PARP) was detected in OBA-RT-treated cells. Interestingly, OBA-RT exerted strong CSC-suppressing activity, reducing the ability to form tumor spheroids. In addition, OBA-RT could induce apoptosis in CSC-rich populations and tumor spheroid collapse. CSC markers, including prominin-1 (CD133), Octamer-binding transcription factor 4 (Oct4), and Nanog Homeobox (Nanog), were notably decreased after OBA-RT treatment. Upstream CSCs regulating active Akt and c-Myc were significantly decreased; indicating that Akt may be a potential target of action. Computational molecular modeling revealed a high-affinity interaction between OBA-RT and an Akt molecule. This study has revealed a novel CSC inhibitory effect of OBA-RT via Akt inhibition, which may improve cancer therapy. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 2.0)
Show Figures

Graphical abstract

26 pages, 4537 KiB  
Article
Jorunnamycin A Suppresses Stem-Like Phenotypes and Sensitizes Cisplatin-Induced Apoptosis in Cancer Stem-Like Cell-Enriched Spheroids of Human Lung Cancer Cells
by Somruethai Sumkhemthong, Supakarn Chamni, Gea U. Ecoy, Pornchanok Taweecheep, Khanit Suwanborirux, Eakachai Prompetchara, Pithi Chanvorachote and Chatchai Chaotham
Mar. Drugs 2021, 19(5), 261; https://doi.org/10.3390/md19050261 - 3 May 2021
Cited by 9 | Viewed by 4453
Abstract
It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance [...] Read more.
It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance and tumor recurrence. Herein, the suppressive effect of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from Thai blue sponge Xestospongia sp., on cancer spheroid initiation and self-renewal in the CSCs of human lung cancer cells is revealed. The depletion of stemness transcription factors, including Nanog, Oct-4, and Sox2 in the lung CSC-enriched population treated with jorunnamycin A (0.5 μM), resulted from the activation of GSK-3β and the consequent downregulation of β-catenin. Interestingly, pretreatment with jorunnamycin A at 0.5 μM for 24 h considerably sensitized lung CSCs to cisplatin-induced apoptosis, as evidenced by upregulated p53 and decreased Bcl-2 in jorunnamycin A-pretreated CSC-enriched spheroids. Moreover, the combination treatment of jorunnamycin A (0.5 μM) and cisplatin (25 μM) also diminished CD133-overexpresssing cells presented in CSC-enriched spheroids. Thus, evidence on the regulatory functions of jorunnamycin A may facilitate the development of this marine-derived compound as a novel chemotherapy agent that targets CSCs in lung cancer treatment. Full article
Show Figures

Graphical abstract

40 pages, 4623 KiB  
Review
Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review
by Ahmed M. Elissawy, Ebrahim Soleiman Dehkordi, Negin Mehdinezhad, Mohamed L. Ashour and Pardis Mohammadi Pour
Biomolecules 2021, 11(2), 258; https://doi.org/10.3390/biom11020258 - 10 Feb 2021
Cited by 43 | Viewed by 5927
Abstract
Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, [...] Read more.
Marine sponges (porifera) have proved to be a prolific source of unique bioactive secondary metabolites, among which the alkaloids occupy a special place in terms of unprecedented structures and outstanding biological activities. Identification of active cytotoxic alkaloids extracted from marine animals, particularly sponges, is an important strive, due to lack of knowledge on traditional experiential and ethnopharmacology investigations. In this report, a comprehensive survey of demospongian bioactive alkaloids in the range 1987–2020 had been performed with a special emphasis on the potent cytotoxic activity. Different resources and databases had been investigated, including Scifinder (database for the chemical literature) CAS (Chemical Abstract Service) search, web of science, Marin Lit (marine natural products research) database. More than 230 representatives of different classes of alkaloids had been reviewed and classified, different genera belonging to the phylum porifera had been shown to be a prolific source of alkaloidal molecules, including Agelas sp., Suberea sp., Mycale sp., Haliclona sp., Epipolasis sp., Monanchora sp., Crambe sp., Reniera sp., and Xestospongia sp., among others. The sufficient production of alkaloids derived from sponges is a prosperous approach that requires more attention in future studies to consider the constraints regarding the supply of drugs, attained from marine organisms. Full article
(This article belongs to the Special Issue Marine Natural Compounds with Biomedical Potential)
Show Figures

Graphical abstract

26 pages, 5854 KiB  
Article
Synergistic Cytotoxicity of Renieramycin M and Doxorubicin in MCF-7 Breast Cancer Cells
by Jortan O. Tun, Lilibeth A. Salvador-Reyes, Michael C. Velarde, Naoki Saito, Khanit Suwanborirux and Gisela P. Concepcion
Mar. Drugs 2019, 17(9), 536; https://doi.org/10.3390/md17090536 - 16 Sep 2019
Cited by 34 | Viewed by 8755
Abstract
Renieramycin M (RM) is a KCN-stabilized tetrahydroisoquinoline purified from the blue sponge Xestospongia sp., with nanomolar IC50s against several cancer cell lines. Our goal is to evaluate its combination effects with doxorubicin (DOX) in estrogen receptor positive MCF-7 breast cancer cells. [...] Read more.
Renieramycin M (RM) is a KCN-stabilized tetrahydroisoquinoline purified from the blue sponge Xestospongia sp., with nanomolar IC50s against several cancer cell lines. Our goal is to evaluate its combination effects with doxorubicin (DOX) in estrogen receptor positive MCF-7 breast cancer cells. MCF-7 cells were treated simultaneously or sequentially with various combination ratios of RM and DOX for 72 h. Cell viability was determined using the MTT assay. Synergism or antagonism was determined using curve-shift analysis, combination index method and isobologram analysis. Synergism was observed with pharmacologically achievable concentrations of DOX when administered simultaneously, but not sequentially. The IC95 values of RM and DOX after combination were reduced by up to four-fold and eight-fold, respectively. To gain insights on the mechanism of synergy, real-time profiling, cell cycle analysis, apoptosis assays, and transcriptome analysis were conducted. The combination treatment displayed a similar profile with DNA-damaging agents and induced a greater and faster cell killing. The combination treatment also showed an increase in apoptosis. DOX induced S and G2/M arrest while RM did not induce significant changes in the cell cycle. DNA replication and repair genes were downregulated commonly by RM and DOX. p53 signaling and cell cycle checkpoints were regulated by DOX while ErbB/PI3K-Akt, integrin and focal adhesion signaling were regulated by RM upon combination. Genes involved in cytochrome C release and interferon gamma signaling were regulated specifically in the combination treatment. This study serves as a basis for in vivo studies and provides a rationale for using RM in combination with other anticancer drugs. Full article
Show Figures

Graphical abstract

15 pages, 2442 KiB  
Article
Renieramycin T Induces Lung Cancer Cell Apoptosis by Targeting Mcl-1 Degradation: A New Insight in the Mechanism of Action
by Korrakod Petsri, Supakarn Chamni, Khanit Suwanborirux, Naoki Saito and Pithi Chanvorachote
Mar. Drugs 2019, 17(5), 301; https://doi.org/10.3390/md17050301 - 21 May 2019
Cited by 24 | Viewed by 5429
Abstract
Among malignancies, lung cancer is the major cause of cancer death. Despite the advance in lung cancer therapy, the five-year survival rate is extremely restricted due to therapeutic failure and disease relapse. Targeted therapies selectively inhibiting certain molecules in cancer cells have been [...] Read more.
Among malignancies, lung cancer is the major cause of cancer death. Despite the advance in lung cancer therapy, the five-year survival rate is extremely restricted due to therapeutic failure and disease relapse. Targeted therapies selectively inhibiting certain molecules in cancer cells have been accepted as promising ways to control cancer. In lung cancer, evidence has suggested that the myeloid cell leukemia 1 (Mcl-1) protein, an anti-apoptotic member of the Bcl-2 family, is a target for drug action. Herein, we report the Mcl-1 targeting activity of renieramycin T (RT), a marine-derived tetrahydroisoquinoline alkaloid that was isolated from the Thai blue sponge Xestospongia sp. RT was shown to be dominantly toxic to lung cancer cells compared to the normal cells in the lung. The cytotoxicity of this compound toward lung cancer cells was mainly exerted through apoptosis induction. For the mechanism of action, we found that RT mediated activation of p53 protein and caspase-9 and -3 activations. While others Bcl-2 family proteins (Bcl-2, Bak, and Bax) were minimally changed in response to RT, Mcl-1 protein was dramatically diminished. We further performed the cycloheximide experiment and found that the half-life of Mcl-1 was significantly shortened by RT treatment. When MG132, a potent selective proteasome inhibitor, was utilized, it could restore the Mcl-1 level. Furthermore, immunoprecipitation analysis revealed that RT significantly increased the formation of Mcl-1-ubiquitin complex compared to the non-treated control. In conclusion, we report the potential apoptosis induction of RT with a mechanism of action involving the targeting of Mcl-1 for ubiquitin-proteasomal degradation. As Mcl-1 is critical for cancer cell survival and chemotherapeutic failure, this novel information regarding the Mcl-1-targeted compound would be beneficial for the development of efficient anti-cancer strategies or targeted therapies. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Sponges 2020)
Show Figures

Figure 1

17 pages, 3512 KiB  
Article
5-O-Acetyl-Renieramycin T from Blue Sponge Xestospongia sp. Induces Lung Cancer Stem Cell Apoptosis
by Wipa Chantarawong, Supakarn Chamni, Khanit Suwanborirux, Naoki Saito and Pithi Chanvorachote
Mar. Drugs 2019, 17(2), 109; https://doi.org/10.3390/md17020109 - 11 Feb 2019
Cited by 29 | Viewed by 5228
Abstract
Lung cancer is one of the most significant cancers as it accounts for almost 1 in 5 cancer deaths worldwide, with an increasing incident rate. Management of the cancer has been shown to frequently fail due to the ability of the cancer cells [...] Read more.
Lung cancer is one of the most significant cancers as it accounts for almost 1 in 5 cancer deaths worldwide, with an increasing incident rate. Management of the cancer has been shown to frequently fail due to the ability of the cancer cells to resist therapy as well as metastasis. Recent evidence has suggested that the poor response to the current treatment drugs and the ability to undergo metastasis are driven by cancer stem cells (CSCs) within the tumor. The discovery of novel compounds able to suppress CSCs and sensitize the chemotherapeutic response could be beneficial to the improvement of clinical outcomes. Herein, we report for the first time that 5-O-acetyl-renieramycin T isolated from the blue sponge Xestospongia sp. mediated lung cancer cell death via the induction of p53-dependent apoptosis. Importantly, 5-O-acetyl-renieramycin T induced the death of CSCs as represented by the CSC markers CD44 and CD133, while the stem cell transcription factor Nanog was also found to be dramatically decreased in 5-O-acetyl-renieramycin T-treated cells. We also found that such a CSC suppression was due to the ability of the compound to deplete the protein kinase B (AKT) signal. Furthermore, 5-O-acetyl-renieramycin T was able to significantly sensitize cisplatin-mediated apoptosis in the lung cancer cells. Together, the present research findings indicate that this promising compound from the marine sponge is a potential candidate for anti-cancer approaches. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Sponges)
Show Figures

Figure 1

12 pages, 798 KiB  
Article
Novel Adociaquinone Derivatives from the Indonesian Sponge Xestospongia sp.
by Fei He, Linh H. Mai, Arlette Longeon, Brent R. Copp, Nadège Loaëc, Amandine Bescond, Laurent Meijer and Marie-Lise Bourguet-Kondracki
Mar. Drugs 2015, 13(5), 2617-2628; https://doi.org/10.3390/md13052617 - 28 Apr 2015
Cited by 26 | Viewed by 6534
Abstract
Seven new adociaquinone derivatives, xestoadociaquinones A (1a), B (1b), 14-carboxy-xestoquinol sulfate (2) and xestoadociaminals A–D (3a, 3c, 4a, 4c), together with seven known compounds (511) were isolated from [...] Read more.
Seven new adociaquinone derivatives, xestoadociaquinones A (1a), B (1b), 14-carboxy-xestoquinol sulfate (2) and xestoadociaminals A–D (3a, 3c, 4a, 4c), together with seven known compounds (511) were isolated from an Indonesian marine sponge Xestospongia sp. Their structures were elucidated by extensive 1D and 2D NMR and mass spectrometric data. All the compounds were evaluated for their potential inhibitory activity against eight different protein kinases involved in cell proliferation, cancer, diabetes and neurodegenerative disorders as well as for their antioxidant and antibacterial activities. Full article
(This article belongs to the Special Issue Marine Compounds as Protein Kinase Inhibitors)
Show Figures

Graphical abstract

14 pages, 430 KiB  
Article
Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges
by Tom Turk, Jerneja Ambrožič Avguštin, Urška Batista, Gašper Strugar, Rok Kosmina, Sandra Čivović, Dorte Janussen, Silke Kauferstein, Dietrich Mebs and Kristina Sepčić
Mar. Drugs 2013, 11(4), 1126-1139; https://doi.org/10.3390/md11041126 - 2 Apr 2013
Cited by 29 | Viewed by 8060
Abstract
We report on the screening of ethanolic extracts from 33 deep-sea Antarctic marine sponges for different biological activities. We monitored hemolysis, inhibition of acetylcholinesterase, cytotoxicity towards normal and transformed cells and growth inhibition of laboratory, commensal and clinically and ecologically relevant bacteria. The [...] Read more.
We report on the screening of ethanolic extracts from 33 deep-sea Antarctic marine sponges for different biological activities. We monitored hemolysis, inhibition of acetylcholinesterase, cytotoxicity towards normal and transformed cells and growth inhibition of laboratory, commensal and clinically and ecologically relevant bacteria. The most prominent activities were associated with the extracts from sponges belonging to the genus Latrunculia, which show all of these activities. While most of these activities are associated to already known secondary metabolites, the extremely strong acetylcholinesterase inhibitory potential appears to be related to a compound unknown to date. Extracts from Tetilla leptoderma, Bathydorus cf. spinosus, Xestospongia sp., Rossella sp., Rossella cf. racovitzae and Halichondria osculum were hemolytic, with the last two also showing moderate cytotoxic potential. The antibacterial tests showed significantly greater activities of the extracts of these Antarctic sponges towards ecologically relevant bacteria from sea water and from Arctic ice. This indicates their ecological relevance for inhibition of bacterial microfouling. Full article
(This article belongs to the Special Issue Deep-Sea Natural Products)
7 pages, 192 KiB  
Article
Antibacterial Secondary Metabolites from the Cave Sponge Xestospongia sp.
by Sridevi Ankisetty and Marc Slattery
Mar. Drugs 2012, 10(5), 1037-1043; https://doi.org/10.3390/md10051037 - 7 May 2012
Cited by 29 | Viewed by 7699
Abstract
Chemical investigation of the cave sponge Xestospongia sp. resulted in the isolation of three new polyacetylenic long chain compounds along with two known metabolites. The structures of the new metabolites were established by NMR and MS analyses. The antibacterial activity of the new [...] Read more.
Chemical investigation of the cave sponge Xestospongia sp. resulted in the isolation of three new polyacetylenic long chain compounds along with two known metabolites. The structures of the new metabolites were established by NMR and MS analyses. The antibacterial activity of the new metabolites was also evaluated. Full article
(This article belongs to the Special Issue Marine Anti-infective Agents)
Show Figures

Figure 1

8 pages, 201 KiB  
Short Note
Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp.
by Dan Li, Ying Xu, Chang-Lun Shao, Rui-Yun Yang, Cai-Juan Zheng, Yi-Yan Chen, Xiu-Mei Fu, Pei-Yuan Qian, Zhi-Gang She, Nicole J. de Voogd and Chang-Yun Wang
Mar. Drugs 2012, 10(1), 234-241; https://doi.org/10.3390/md10010234 - 19 Jan 2012
Cited by 128 | Viewed by 11909
Abstract
Four new bisabolane-type sesquiterpenoids, aspergiterpenoid A (1), (−)-sydonol (2), (−)-sydonic acid (3), and (−)-5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H- pyran-2-yl)phenol (4) together with one known fungal metabolite (5) were isolated from the fermentation broth of a marine-derived fungus [...] Read more.
Four new bisabolane-type sesquiterpenoids, aspergiterpenoid A (1), (−)-sydonol (2), (−)-sydonic acid (3), and (−)-5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H- pyran-2-yl)phenol (4) together with one known fungal metabolite (5) were isolated from the fermentation broth of a marine-derived fungus Aspergillus sp., which was isolated from the sponge Xestospongia testudinaria collected from the South China Sea. Four of them (14) are optically active compounds. Their structures and absolute configurations were elucidated by using NMR spectroscopic techniques and mass spectrometric analysis, and by comparing their optical rotations with those related known analogues. Compounds 15 showed selective antibacterial activity against eight bacterial strains with the MIC (minimum inhibiting concentrations) values between 1.25 and 20.0 µM. The cytotoxic, antifouling, and acetylcholinesterase inhibitory activities of these compounds were also examined. Full article
Show Figures

Graphical abstract

Back to TopTop