Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges
Abstract
:1. Introduction
2. Results and Discussion
Sponge Species | S# | Hemolytic Activity 1 | Anti-AChE Activity 2 | Cytotoxic Activity 3 | |
---|---|---|---|---|---|
V-79 cells | CaCo-2 cells | ||||
Bathydorus cf. spinosus | 8 | 0.045 | 95.2 ± 7.7 | 91.8 ± 10.9 | |
Unidentified sponge 1 | 10 | 0.014 | 97.6 ± 8.5 | 85.7 ± 8.1 ** | |
Cinachyra cf. barbata | 27 | 0.008 | 97.9 ± 11.2 | 95.0 ± 8.9 | |
Rossella sp. | 34 | 0.0025 | 101.1 ± 12.9 | 100.0 ± 10.0 | |
Latrunculia cf. lendenfeldi | 37/L | 1.3 | 0 | 2.1 ± 1.6 | |
Microcionidae spp. | 41 | 0.017 | 102.8 ± 9.9 | 102.3 ± 11.2 | |
Halichondria osculum | 45h | 0.025 | 62.9 ± 11.9 | 56.6 ± 6.7 * | |
Latrunculia cf. bocagei | 46 | 0.15 | 9 | 0 | 0 |
Xestospongia sp. | 48/1 | 0.015 | 89.0 ± 8.7 | 95.2 ± 11.7 | |
Isodictya toxophila | 51 | 84.7 ± 10.4 | 97.7 ± 8.9 ** | ||
Tetilla leptoderma | 55 | 0.014 | 91.9 ± 11.4 | 96.7 ± 11.1 | |
Demospongia sp. | 124 | 102.2 ± 12.2 | 96.2 ± 11.0 | ||
Rossella cf. racovitzae | 167 | 0.012 | 55.7 ± 11.9 | 93.5 ± 7.5 ** |
Bacterial Strain | Sponge Extract MIC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Latrunculia cf. lendenfeldi (#37L) | Demosponge (#38) | Halichondria osculum (#45h) | Isodictya setifera (#58) | Hemigellius bidens (#41a) | Rossella sp. (#4) | Myxilla sp. (#26) | Haliclona (Gellius) flagellifera (#40a) | |
Staphylococcus aureus (MRSA) S-943 A | 15 | 200 | 600 | 400 | 350 | |||
S. pseudintermedius (MRSP) S-053 A | 80 | 200 | 400 | |||||
S. pseudintermedius (MRSP) S-043 A | 80 | 50 | 200 | 400 | 30 | |||
Listeria monocytogenes | 90 | 250 | 500 | |||||
Staphylococcus epidermidis EXB-V55 | 100 | 150 | 250 | 200 | 80 | 300 | ||
Staphylococcus aureus 10F | 100 | 250 | 400 | 300 | ||||
Bacillus subtilis EXB-V68 | 8 | 2.5 | 80 | 30 | 60 | 65 | ||
Macrococcus 1F | 10 | 7 | 4 | 100 | 6 | 200 | 400 | 650 |
Micrococcus 2F | 70 | 25 | 150 | 60 | 150 | |||
Escherichia coli HB101 | 700 | 250 | 400 | |||||
Escherichia coli EXB-V1 | 700 | 400 | ||||||
ESBL- E. coli 206 (CTX-M-1; ST131) A | 750 | |||||||
ESBL- E. coli 192 (CTX-M-9; ST131) A | 750 | |||||||
ESBL- E. coli MS 30 (CTX-M-2) A | 700 | 500 | ||||||
Acinetobacter 1C | 70 | 400 | 250 | |||||
KPC- Klebsiella pneumonia A | ||||||||
Enterobacter EXB-V11 | ||||||||
Pseudomonas aeruginosa EXB-V28 | ||||||||
Pseudomonas aeruginosa 06131 A | 700 | 400 | ||||||
Pseudomonas aeruginosa 8591 A |
Bacterial Strain | Sponge Extract MIC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Latrunculia cf. lendenfeldi (#37L) | Demosponge (#38) | Halichondria osculum (#45h) | Isodictya setifera (#58) | Hemigellius bidens (#41a) | Rossella sp. (#4) | Myxilla sp. (#26) | Haliclona (Gellius) flagellifera (#40a) | |
Exignuobacterium sp. * | 1.8 | 100 | 80 | 70 | 120 | 95 | 110 | 70 |
Pseudoalteromonas sp. * | 0.36 | 90 | 65 | 110 | 100 | 90 | 70 | |
Alteromonas sp. * | 89.6 | 95 | 70 | 200 | 80 | 150 | ||
Vibrio ruber * | 0.9 | 70 | 85 | 65 | 120 | 90 | 90 | |
Janthinobacterium svalbardensis ** | 0.09 | 85 | 75 | 100 | 100 | 95 | 70 | |
Pseudomonas CR 13 ** | ||||||||
Pseudomonas CR 14 ** | ||||||||
Pseudomonas CR 285 ** |
3. Experimental Section
3.1. Sponge Collection
3.2. Preparation of Extracts
3.3. Hemolytic Activity Assay
3.4. Antibacterial Activity Assay
3.5. Acetylcholinesterase Inhibition Assay
3.6. Cytotoxic Activity
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar]
- Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marinepharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar]
- Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525. [Google Scholar] [CrossRef]
- Lebar, M.D.; Heimbegner, J.L.; Baker, B.J. Cold-water marine natural products. Nat. Prod. Rep. 2007, 24, 774–797. [Google Scholar] [CrossRef]
- Abbas, S.; Kelly, M.; Bowling, J.; Sims, J.; Waters, A.; Hamann, M. Advancement into the Arctic region for bioactive sponge secondary metabolites. Mar. Drugs 2011, 9, 2423–2437. [Google Scholar] [CrossRef]
- McClintock, J.B.; Amsler, C.D.; Baker, B.J.; van Soest, R.W.M. Ecology of Antarctic marine sponges: An overview. Integr. Comp. Biol. 2005, 45, 359–368. [Google Scholar] [CrossRef]
- Janussen, D.; Tendal, O.S. Diversity and distribution of porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res. II 2007, 54, 1864–1875. [Google Scholar]
- Wilkins, S.P.; Blum, A.J.; Burkepile, D.E.; Rutland, T.J.; Wierzbicki, A.; Kelly, M.; Hamann, M.T. Isolation of an antifreezepeptide from the Antarctic sponge Homaxinella balfourensis. Cell. Mol. Life Sci. 2002, 59, 2210–2215. [Google Scholar] [CrossRef]
- Kunzmann, K. Associated Fauna of Selected Sponges (Hexactinellida and Demospongiae) from the Weddell Sea, Antarctica; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 1996; Volume 210, pp. 1–93. [Google Scholar]
- Xin, Y.; Kanagasabhapathy, M.; Janussen, D.; Xue, S.; Zhang, W. Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biol. 2011, 34, 1501–1512. [Google Scholar] [CrossRef]
- Vetter, W.; Janussen, D. Halogenated natural products in five species of Antarctic sponges: Compounds with POP-like properties. Environ. Sci. Technol. 2005, 39, 3889–3895. [Google Scholar] [CrossRef]
- Sepčić, K.; Kauferstein, S.; Mebs, D.; Turk, T. Biologicalactivities of aqueous and organicextracts from tropical marine sponges. Mar. Drugs 2010, 8, 1550–1566. [Google Scholar] [CrossRef]
- Antunes, E.A.; Copp, B.R.; Davies-Coleman, M.T.; Samaai, T. Pyrroloiminoquinone and related metabolites from marine sponges. Nat. Prod. Rep. 2005, 22, 62–72. [Google Scholar] [CrossRef]
- Na, M.; Ding, Y.; Wang, B.; Tekwani, B.L.; Schinazi, R.F.; Franzblau, S.; Kelly, M.; Stone, R.; Li, X.C.; Ferreira, D.; et al. Anti-infective discorhabdins from a deep-water Alaskan sponge of the genus Latrunculia. J. Nat. Prod. 2010, 73, 383–387. [Google Scholar] [CrossRef]
- Yarmola, E.G.; Somasundaram, T.; Boring, T.A.; Spector, I.; Bubb, M.R. Actin-latrunculin A structure and function: Differential modulation of actin-binding protein function by latrunculin A. J. Biol. Chem. 2000, 275, 28120–28127. [Google Scholar]
- Kaur, J.; Zhang, M.Q. Molecular modelling and QSAR of reversible acetylcholinesterase inhibitors. Curr. Med. Chem. 2000, 7, 273–294. [Google Scholar] [CrossRef]
- Nèeman, I.; Fishelson, L.; Kashman, Y. Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). Mar. Biol. 1975, 30, 293–296. [Google Scholar] [CrossRef]
- Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105. [Google Scholar] [CrossRef]
- Lippert, H.; Brinkmeyer, R.; Mülhaupt, T.; Iken, K. Antimicrobial activity in sub-Arctic marine invertebrates. Polar Biol. 2003, 26, 591–600. [Google Scholar] [CrossRef]
- McClintock, J.B.; Gauthier, J.J. Antimicrobial activities of Antarctic sponges. Antarc. Sci. 1992, 4, 179–183. [Google Scholar]
- Perry, N.B.; Blunt, J.W.; Munro, M. Cytotoxic pigments from New Zealand sponges of the genus Latrunculia: Discorhabdins a, b and c. Tetrahedron 1988, 44, 1727–1734. [Google Scholar] [CrossRef]
- Copp, B.R.; Fulton, K.F.; Perry, N.B.; Blunt, J.W.; Munro, M.H.G. Natural and synthetic derivatives of discorhabdin C, a cytotoxic pigment from the New Zealand sponge Latrunculia cf. bocagei. J. Org. Chem. 1994, 59, 8233–8238. [Google Scholar]
- Ford, J.; Capon, R. Discorhabdin R: A new antibacterial pyrroloiminoquinone from two latrunculiid marine sponges, Latrunculia sp. and Negombata sp. J. Nat. Prod. 2000, 63, 1527–1528. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K.; Willis, A.C. Trunculins A and B, norsesterterpene cyclic peroxides from a marine sponge, Latrunculia brevis. J. Org. Chem. 1987, 52, 339–342. [Google Scholar] [CrossRef]
- Turk, T.; Sepčić, K.; Mancini, I.; Guella, G. 3-Akylpyridinium and 3-alkylpyridine compounds from marine sponges, their synthesis, biological activities and potential use. Stud. Nat. Prod. Chem. 2008, 35, 355–397. [Google Scholar] [CrossRef]
- Timm, C.; Mordhorst, T.; Kock, M. Synthesis of 3-alkyl pyridinium alkaloids from the arctic sponge Haliclona viscosa. Mar. Drugs 2010, 8, 483–497. [Google Scholar] [CrossRef]
- Ishiyama, H.; Hashimoto, A.; Fromont, J.; Hoshino, Y.; Mikami, Y.; Kobayashi, J. Halichonadins A–D, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron 2005, 61, 1101–1105. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Mamun, S.M.A.; Rahman, M.S.; Yasumitsu, H.; Ozeki, Y. In-vitro antibacterial and antifungal effects of a 30 kDa d-galactoside-specific lectin from the Demosponge, Halichondria okadai. Int. J. Biol. Life Sci. 2010, 6, 31–37. [Google Scholar]
- Peters, K.J.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Potential chemical defenses of Antarctic sponges against sympatric microorganisms. Polar Biol. 2010, 33, 649–658. [Google Scholar] [CrossRef]
- Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 1996, 59, 293–296. [Google Scholar] [CrossRef]
- Encarnación, D.R.; Franzblau, S.G.; Tapia, C.A.; Cedillo-Rivera, R. Screening of marine organisms for antimicrobial and antiprotozoal activity. Pharm. Biol. 2000, 38, 379–384. [Google Scholar] [CrossRef]
- Li, H.; Matsunaga, S.; Fusetani, N. Halicylindramides A–C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J. Med. Chem. 1995, 38, 338–343. [Google Scholar] [CrossRef]
- Zhang, H.J.; Sun, J.B.; Lin, H.W.; Wang, Z.L.; Tang, H.; Cheng, P.; Chen, W.S.; Yi, Y.H. A new cytotoxic cholesterol sulfate from marine sponge Halichondria rugosa. Nat. Prod. Res. 2007, 21, 953–958. [Google Scholar] [CrossRef]
- Hirata, Y.; Uemura, D. Halichondrins—Antitumor polyether macrolides from a marine sponge. Pure Appl. Chem. 1986, 58, 701–710. [Google Scholar] [CrossRef]
- Pettit, G.R.; Herald, C.L.; Boyd, M.R.; Leet, J.E.; Dufresne, C.; Doubek, D.L.; Schmidt, J.M.; Cerny, R.L.; Hooper, J.N.; Rützler, K.C. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J. Med. Chem. 1991, 34, 3339–3340. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Turk, T.; Avguštin, J.A.; Batista, U.; Strugar, G.; Kosmina, R.; Čivović, S.; Janussen, D.; Kauferstein, S.; Mebs, D.; Sepčić, K. Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges. Mar. Drugs 2013, 11, 1126-1139. https://doi.org/10.3390/md11041126
Turk T, Avguštin JA, Batista U, Strugar G, Kosmina R, Čivović S, Janussen D, Kauferstein S, Mebs D, Sepčić K. Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges. Marine Drugs. 2013; 11(4):1126-1139. https://doi.org/10.3390/md11041126
Chicago/Turabian StyleTurk, Tom, Jerneja Ambrožič Avguštin, Urška Batista, Gašper Strugar, Rok Kosmina, Sandra Čivović, Dorte Janussen, Silke Kauferstein, Dietrich Mebs, and Kristina Sepčić. 2013. "Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges" Marine Drugs 11, no. 4: 1126-1139. https://doi.org/10.3390/md11041126
APA StyleTurk, T., Avguštin, J. A., Batista, U., Strugar, G., Kosmina, R., Čivović, S., Janussen, D., Kauferstein, S., Mebs, D., & Sepčić, K. (2013). Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges. Marine Drugs, 11(4), 1126-1139. https://doi.org/10.3390/md11041126