Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = XOR operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2280 KB  
Article
Analysis of Security–Reliability Tradeoff of Two-Way Hybrid Satellite–Terrestrial Relay Schemes Using Fountain Codes, Successive Interference Cancelation, Digital Network Coding, Partial Relay Selection, and Cooperative Jamming
by Nguyen Van Toan, Nguyen Thi Hau, Pham Minh Nam, Pham Ngoc Son and Tran Trung Duy
Telecom 2026, 7(1), 5; https://doi.org/10.3390/telecom7010005 - 4 Jan 2026
Viewed by 222
Abstract
In this paper, we propose a two-way hybrid satellite–terrestrial relay scheme employing Fountain codes (FCs). In the proposed model, a satellite and a ground user exchange data through a group of terrestrial relay stations, in the presence of an eavesdropper. In the first [...] Read more.
In this paper, we propose a two-way hybrid satellite–terrestrial relay scheme employing Fountain codes (FCs). In the proposed model, a satellite and a ground user exchange data through a group of terrestrial relay stations, in the presence of an eavesdropper. In the first phase, the satellite and the ground user simultaneously transmit their encoded packets to the relay stations. The relay stations then apply a successive interference cancelation (SIC) technique to decode the received packets. To reduce the quality of the eavesdropping links, a cooperative jammer is employed to transmit jamming signals toward the eavesdropper during the first phase. Next, one of the relay stations which can successfully decode the encoded packets from both the satellite and the ground user is selected for data forwarding, by using a partial relay selection method. Then, this selected relay performs an XOR operation on the two encoded packets, and then broadcasts the XOR-ed packet to both the satellite and the user in the second phase. We derive exact closed-form expressions of outage probability (OP), system outage probability (SOP), intercept probability (IP), and system intercept probability (SIP), and realize simulations to validate these expressions. This paper also studies the trade-off between OP (SOP) and IP (SIP), as well as the impact of various system parameters on the performance of the proposed scheme. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
Show Figures

Figure 1

18 pages, 60646 KB  
Article
XORSFRO: A Resource-Efficient XOR Self-Feedback Ring Oscillator-Based TRNG Architecture for Securing Distributed Photovoltaic Systems
by Wei Guo, Rui Xia, Jingcheng Wang, Bosong Ding, Chao Xiong, Yuning Zhao and Jinping Li
Electronics 2026, 15(1), 71; https://doi.org/10.3390/electronics15010071 - 23 Dec 2025
Viewed by 195
Abstract
The performance of true random number generators (TRNGs) fundamentally depends on the quality of their entropy sources (ESs). However, many FPGA-friendly designs still rely on a single mechanism and struggle to achieve both high throughput and low resource cost. To address this challenge, [...] Read more.
The performance of true random number generators (TRNGs) fundamentally depends on the quality of their entropy sources (ESs). However, many FPGA-friendly designs still rely on a single mechanism and struggle to achieve both high throughput and low resource cost. To address this challenge, we propose the exclusive OR (XOR) Self-Feedback Ring Oscillator (XORSFRO), an XORNOT-style TRNG that integrates two cross-connected XOR gates with a short inverter delay chain and clocked sampling. A unified timing model is developed to describe how arrival-time skew and gate inertial delay lead to cancellation, narrow-pulse generation, and inversion events, thereby enabling effective entropy extraction. Experimental results on Xilinx Spartan-6 and Artix-7 FPGAs demonstrate that XORSFRO maintains stable operation across standard process–voltage–temperature (PVT) variations, while achieving higher throughput and lower hardware overhead compared with recent FPGA-based TRNGs. The generated bitstreams pass both the NIST SP 800-22 and NIST SP 800-90B test suites without post-processing. Full article
(This article belongs to the Special Issue New Trends in Cybersecurity and Hardware Design for IoT)
Show Figures

Figure 1

15 pages, 632 KB  
Article
Efficient Fine-Grained LuT-Based Optimization of AES MixColumns and InvMixColumns for FPGA Implementation
by Oussama Azzouzi, Mohamed Anane, Mohamed Chahine Ghanem, Yassine Himeur and Hamza Kheddar
Electronics 2025, 14(24), 4912; https://doi.org/10.3390/electronics14244912 - 14 Dec 2025
Viewed by 320
Abstract
This paper presents fine-grained Field Programmable Gate Arrays (FPGA) architectures for the Advanced Encryption Standard (AES) MixColumns and InvMixColumns transformations, targeting improved performance and resource utilization. The proposed method reformulates these operations as boolean functions directly mapped onto FPGA Lookup-Table (LuT) primitives, replacing [...] Read more.
This paper presents fine-grained Field Programmable Gate Arrays (FPGA) architectures for the Advanced Encryption Standard (AES) MixColumns and InvMixColumns transformations, targeting improved performance and resource utilization. The proposed method reformulates these operations as boolean functions directly mapped onto FPGA Lookup-Table (LuT) primitives, replacing conventional xor-based arithmetic with memory-level computation. A custom MATLAB-R2019a-based pre-synthesis optimization algorithm performs algebraic simplification and shared subexpression extraction at the polynomial level of Galois Field GF(28), reducing redundant logic memory. This architecture, LuT-level optimization minimizes the delay of the complex InvMixColumns stage and narrows the delay gap between encryption (1.305 ns) and decryption (1.854 ns), resulting in a more balanced and power-efficient AES pipeline. Hardware implementation on a Xilinx Virtex-5 FPGA confirms the efficiency of the design, demonstrating competitive performance compared to state-of-the-art FPGA realizations. Its fast performance and minimal hardware requirements make it well suited for real-time secure communication systems and embedded platforms with limited resources that need reliable bidirectional data processing. Full article
(This article belongs to the Special Issue Cryptography and Computer Security)
Show Figures

Figure 1

24 pages, 7742 KB  
Article
Memristive Hopfield Neural Network with Hidden Multiple Attractors and Its Application in Color Image Encryption
by Zhenhua Hu and Zhuanzheng Zhao
Mathematics 2025, 13(24), 3972; https://doi.org/10.3390/math13243972 - 12 Dec 2025
Viewed by 310
Abstract
Memristor is widely used to construct various memristive neural networks with complex dynamical behaviors. However, hidden multiple attractors have never been realized in memristive neural networks. This paper proposes a novel chaotic system based on a memristive Hopfield neural network (HNN) capable of [...] Read more.
Memristor is widely used to construct various memristive neural networks with complex dynamical behaviors. However, hidden multiple attractors have never been realized in memristive neural networks. This paper proposes a novel chaotic system based on a memristive Hopfield neural network (HNN) capable of generating hidden multiple attractors. A multi-segment memristor model with multistability is designed and serves as the core component in constructing the memristive Hopfield neural network. Dynamical analysis reveals that the proposed network exhibits various complex behaviors, including hidden multiple attractors and a super multi-stable phenomenon characterized by the coexistence of infinitely many double-chaotic attractors—these dynamical features are reported for the first time in the literature. This encryption process consists of three key steps. Firstly, the original chaotic sequence undergoes transformation to generate a pseudo-random keystream immediately. Subsequently, based on this keystream, a global permutation operation is performed on the image pixels. Then, their positions are disrupted through a permutation process. Finally, bit-level diffusion is applied using an Exclusive OR(XOR) operation. Relevant research shows that these phenomena indicate a high sensitivity to key changes and a high entropy level in the information system. The strong resistance to various attacks further proves the effectiveness of this design. Full article
Show Figures

Figure 1

15 pages, 2498 KB  
Article
A Hybrid CMOS-MTJ Polymorphic Logic for Secure and Versatile IC Design
by Rajat Kumar, Yogesh Sharma and Amit Kumar Goyal
Magnetochemistry 2025, 11(12), 108; https://doi.org/10.3390/magnetochemistry11120108 - 8 Dec 2025
Viewed by 424
Abstract
Recent advancements in nanotechnology have intensified research efforts to address security concerns like hardware trojans and intellectual property (IP) piracy, particularly by exploring novel alternatives to traditional MOSFET devices. Spin-based devices, known for their low power consumption, non-volatility, and seamless integration with silicon [...] Read more.
Recent advancements in nanotechnology have intensified research efforts to address security concerns like hardware trojans and intellectual property (IP) piracy, particularly by exploring novel alternatives to traditional MOSFET devices. Spin-based devices, known for their low power consumption, non-volatility, and seamless integration with silicon substrates, have emerged as promising candidates. This research proposes a novel approach to enhance the security of integrated circuits using spin-based devices known as magnetic tunnel junctions (MTJs). A Non-volatile Polymorphic Logic (NPL) is optimized and designed to perform multiple operations, effectively concealing its true functionality. The analytical studies conducted on the Cadence Virtuoso platform using TSMC 65 nm MOS technology demonstrate the feasibility and efficacy of the proposed approach. The proposed NPL circuit enables polymorphism by allowing the circuit to perform all one- and two-input Boolean logic operations, including NOT, AND/NAND, OR/NOR, and XOR/XNOR, through adjustments of applied keys. This dynamic functionality makes it challenging for attackers to determine the circuit’s true operation. The proposed design exhibits similar timing characteristics for different logic operations, which further complicates the tampering attempts. Additionally, the circuit’s layout is designed to be symmetric, ensuring the execution of all possible operations by the same physical layout. This provides post-manufacturing security from reverse engineering and finds its applications in securing custom IC designs against the evolving landscape of hardware-based threats. Full article
(This article belongs to the Special Issue Design and Application of Spintronic Devices)
Show Figures

Figure 1

26 pages, 6322 KB  
Article
Silicon-on-Silica Microring Resonators for High-Quality, High-Contrast, High-Speed All-Optical Logic Gates
by Amer Kotb, Antonios Hatziefremidis and Kyriakos E. Zoiros
Nanomaterials 2025, 15(22), 1736; https://doi.org/10.3390/nano15221736 - 17 Nov 2025
Cited by 1 | Viewed by 973
Abstract
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength [...] Read more.
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength of 1550 nm, consisting of a circular ring resonator coupled to straight bus waveguides using Lumerical FDTD solutions. The design achieves a high Q-factor of 11,071, indicating low optical loss and strong light confinement. The evanescent coupling between the ring and waveguides, along with optimized waveguide dimensions, enables efficient interference, realizing a complete suite of AOLGs (XOR, AND, OR, NOT, NOR, NAND, and XNOR). Numerical simulations demonstrate robust performance across all gates, with high contrast ratios between 11.40 dB and 13.72 dB and an ultra-compact footprint of 1.42 × 1.08 µm2. The results confirm the device’s capability to manipulate optical signals at data rates up to 55 Gb/s, highlighting its potential for scalable, high-speed, and energy-efficient optical computing. These findings provide a solid foundation for the future experimental implementation and integration of SoS-based photonic logic circuits in next-generation optical communication systems. Full article
Show Figures

Figure 1

12 pages, 1805 KB  
Article
Experimental Demonstration of High-Security and Low-CSPR Single-Sideband Transmission System Based on 3D Lorenz Chaotic Encryption
by Chao Yu, Angli Zhu, Hanqing Yu, Yuanfeng Li, Mu Yang, Peijin Hu, Haoran Zhang, Xuan Chen, Hao Qi, Deqian Wang, Yiang Qin, Xiangning Zhong, Dong Zhao and Yue Liu
Photonics 2025, 12(11), 1042; https://doi.org/10.3390/photonics12111042 - 22 Oct 2025
Viewed by 465
Abstract
Broadcast-style downlinks (e.g., PONs and satellites) expose physical waveforms despite transport-layer cryptography, motivating physical-layer encryption (PLE). Digital chaotic encryption is appealing for its noise-like spectra, sensitivity, and DSP-friendly implementation, but in low-CSPR KK-SSB systems, common embeddings disrupt minimum-phase requirements and raise PAPR/SSBI near [...] Read more.
Broadcast-style downlinks (e.g., PONs and satellites) expose physical waveforms despite transport-layer cryptography, motivating physical-layer encryption (PLE). Digital chaotic encryption is appealing for its noise-like spectra, sensitivity, and DSP-friendly implementation, but in low-CSPR KK-SSB systems, common embeddings disrupt minimum-phase requirements and raise PAPR/SSBI near 1 dB CSPR, while finite-precision effects can leak correlation after KK reconstruction. We bridge this gap by integrating 3D Lorenz-based PLE into our low-CSPR KK-SSB receiver. A KK-compatible embedding applies a Lorenz-driven XOR mapping to I/Q bitstreams before PAM4-to-16QAM modulation, preserving the minimum phase and avoiding spectral zeros. Co-design of chaotic strength and subband usage with the KK SSBI-suppression method maintains SSBI mitigation with negligible PAPR growth. We further adopt digitization settings and fractional-digit-parity-based key derivation to suppress short periods and remove key-revealing synchronization cues. Experiments demonstrate a 1091 key space without degrading transmission quality, enabling secure, key-concealed operation on shared downlinks and offering a practical path for chaotic PLE in near-minimum-CSPR SSB systems. Full article
(This article belongs to the Special Issue Advanced Optical Transmission Techniques)
Show Figures

Figure 1

26 pages, 14657 KB  
Article
A Simple Burst-Mode Multiple-Entropy TRNG Based on Standard Logic Primitives
by Bartosz Mikołaj Szkoda and Piotr Zbigniew Wieczorek
Electronics 2025, 14(19), 3803; https://doi.org/10.3390/electronics14193803 - 25 Sep 2025
Viewed by 614
Abstract
The paper introduces the concept of a True Random Number Generator (TRNG) based on an unstable circuit that uses only two types of logic devices: XOR gates and logic inverters forming delay lines. The core circuit ensures randomness in both the voltage (logical [...] Read more.
The paper introduces the concept of a True Random Number Generator (TRNG) based on an unstable circuit that uses only two types of logic devices: XOR gates and logic inverters forming delay lines. The core circuit ensures randomness in both the voltage (logical state) and time domains (duration of autonomous operation), while utilizing very few resources. Due to its low complexity, the proposed TRNG can be easily implemented in reconfigurable devices without sophisticated components such as Digital Clock Managers (DCM), Phase Locked Loops (PLL), or dedicated IP cores. The authors present a theoretical analysis of the TRNG using a Simulink macromodel, demonstrating chaotic behavior, and describe its implementation on a Complex Programmable Logic Device (CPLD) and additional verification on an FPGA. The randomness quality of the TRNG was validated using the standard National Institute of Standards and Technology (NIST) SP 800-22 battery of tests. Full article
Show Figures

Figure 1

18 pages, 712 KB  
Article
Lightweight Quantum Authentication and Key Agreement Scheme in the Smart Grid Environment
by Zehui Jiang and Run-Hua Shi
Entropy 2025, 27(9), 957; https://doi.org/10.3390/e27090957 - 14 Sep 2025
Viewed by 718
Abstract
Smart grids leverage smart terminal devices to collect information from the user side, achieving accurate load forecasting and optimized dispatching of power systems, effectively improving power supply efficiency and reliability while reducing energy consumption. However, the development of quantum technology poses severe challenges [...] Read more.
Smart grids leverage smart terminal devices to collect information from the user side, achieving accurate load forecasting and optimized dispatching of power systems, effectively improving power supply efficiency and reliability while reducing energy consumption. However, the development of quantum technology poses severe challenges to the communication security of smart grids that rely on traditional cryptography. To address this security risk in the quantum era, this paper draws on the core idea of quantum private comparison and proposes a quantum-secure identity authentication and key agreement scheme suitable for smart grids. This scheme uses Bell states as quantum resources, combines hash functions and XOR operations, and can adapt to resource-constrained terminal devices. Through a security proof, it verifies the scheme’s ability to resist various attacks; the experimental results further show that the scheme still has good robustness in different noise environments, providing a feasible technical path for the secure communication of smart grids in the quantum environment and having clear practical engineering value. Full article
(This article belongs to the Special Issue Quantum Information Security)
Show Figures

Figure 1

22 pages, 3281 KB  
Article
A Privacy-Enhancing Image Encryption Algorithm for Securing Medical Images
by Ammar Odeh, Anas Abu Taleb, Tareq Alhajahjeh, Francisco Navarro, Aladdin Ayesh and Miad Faezipour
Symmetry 2025, 17(9), 1470; https://doi.org/10.3390/sym17091470 - 6 Sep 2025
Cited by 1 | Viewed by 1596
Abstract
The growing digitization of healthcare has amplified concerns about the privacy and security of medical images, as conventional encryption methods often fail to provide sufficient protection. To address this gap, we propose a privacy-enhancing image encryption algorithm that integrates SHA-256 hashing, block-wise processing [...] Read more.
The growing digitization of healthcare has amplified concerns about the privacy and security of medical images, as conventional encryption methods often fail to provide sufficient protection. To address this gap, we propose a privacy-enhancing image encryption algorithm that integrates SHA-256 hashing, block-wise processing (16 × 16 with zero-padding), DNA encoding with XOR operations, and logistic map-driven key generation into a unified framework. This synergistic design balances efficiency and robustness by embedding data integrity verification, ensuring high sensitivity to initial conditions, and achieving strong diffusion through dynamic DNA rules. Experimental results confirm that the scheme achieves high NPCR (0.997), UACI (0.289), entropy (7.995), and PSNR (27.89 dB), outperforming comparable approaches while maintaining scalability to large image formats and robustness under compression (JPEG quality factors 90 and 70). These findings demonstrate that the proposed method offers an efficient and resilient solution for securing medical images, ensuring confidentiality, integrity, and practical applicability in real-world healthcare environments. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Image Processing and Computer Vision)
Show Figures

Figure 1

19 pages, 641 KB  
Article
Lightweight Hash Function Design for the Internet of Things: Structure and SAT-Based Cryptanalysis
by Kairat Sakan, Kunbolat Algazy, Nursulu Kapalova and Andrey Varennikov
Algorithms 2025, 18(9), 550; https://doi.org/10.3390/a18090550 - 1 Sep 2025
Viewed by 1390
Abstract
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on [...] Read more.
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on simple logical operations (XOR, cyclic shifts, and S-boxes) and incorporates a preliminary diffusion transformation function G, along with the Davis–Meyer compression scheme, to enhance irreversibility and improve cryptographic robustness. A comparative analysis of hardware implementation demonstrates that LWH-128 exhibits balanced characteristics in terms of circuit complexity, memory usage, and processing speed, making it competitive with existing lightweight hash algorithms. As part of the cryptanalytic evaluation, a Boolean SATisfiability (SAT) Problem-based model of the compression function is constructed in the form of a conjunctive normal form of Boolean variables. Experimental results using the Parkissat SAT solver show an exponential increase in computational time as the number of unknown input bits increased. These findings support the conclusion that the LWH-128 algorithm exhibits strong resistance to preimage attacks based on SAT-solving techniques. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

18 pages, 3021 KB  
Article
Secure LoRa Drone-to-Drone Communication for Public Blockchain-Based UAV Traffic Management
by Jing Huey Khor, Michail Sidorov and Melissa Jia Ying Chong
Sensors 2025, 25(16), 5087; https://doi.org/10.3390/s25165087 - 15 Aug 2025
Cited by 1 | Viewed by 2821
Abstract
Unmanned Aerial Vehicles (UAVs) face collision risks due to Beyond Visual Line of Sight operations. Therefore, UAV Traffic Management (UTM) systems are used to manage and monitor UAV flight paths. However, centralized UTM systems are susceptible to various security attacks and are inefficient [...] Read more.
Unmanned Aerial Vehicles (UAVs) face collision risks due to Beyond Visual Line of Sight operations. Therefore, UAV Traffic Management (UTM) systems are used to manage and monitor UAV flight paths. However, centralized UTM systems are susceptible to various security attacks and are inefficient in managing flight data from different service providers. It further fails to provide low-latency communication required for UAV real-time operations. Thus, this paper proposes to integrate Drone-to-Drone (D2D) communication protocol into a secure public blockchain-based UTM system to enable direct communication between UAVs for efficient collision avoidance. The D2D protocol is designed using SHA256 hash function and bitwise XOR operations. A proof of concept has been built to verify that the UTM system is secure by enabling authorized service providers to view sensitive flight data only using legitimate secret keys. The security of the protocol has been analyzed and has been proven to be secure from key disclosure, adversary-in-the-middle, replay, and tracking attacks. Its performance has been evaluated and is proven to outperform existing studies by having the lowest computation cost of 0.01 ms and storage costs of 544–800 bits. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

19 pages, 8180 KB  
Article
Weighted Color Image Encryption Algorithm Based on RNA Extended Dynamic Coding and Quantum Chaotic System
by Xiangyu Zhang, Heping Wen, Wei Feng, Shenghao Kang, Zhiyu Xie, Xuexi Zhang and Yiting Lin
Entropy 2025, 27(8), 852; https://doi.org/10.3390/e27080852 - 11 Aug 2025
Viewed by 1048
Abstract
The rapid development of Internet technology, while providing convenient services for users, has also aroused deep concern among the public about the issue of privacy leakage during image data transmission. To address this situation, this article proposes a color image encryption algorithm based [...] Read more.
The rapid development of Internet technology, while providing convenient services for users, has also aroused deep concern among the public about the issue of privacy leakage during image data transmission. To address this situation, this article proposes a color image encryption algorithm based on RNA extended dynamic coding and quantum chaos (CIEA-RQ). This algorithm significantly improves the ability of the system to withstand cryptographic attacks by introducing RNA extended dynamic encoding with 384 encoding rules. The employed quantum chaotic map improves the randomness of chaotic sequences and increases the key space. First, the algorithm decomposes the plaintext image into bit planes and obtains two parts, high 4-bit and low 4-bit planes, based on different weights of information. Then, the high 4-bit planes are partitioned into blocks and scrambled, and the scrambled planes are confused using RNA extended coding rules. Meanwhile, the low 4-bit planes employ a lightweight XOR operation to improve encryption efficiency. Finally, the algorithm performs cross-iterative diffusion on the processed high 4-bit and low 4-bit planes and then synthesizes a color ciphertext image. Experimental simulations and security assessments demonstrate the superior numerical statistical outcomes of the CIEA-RQ. According to the criteria of cryptanalysis, it can effectively resist known-plaintext attacks and chosen-plaintext attacks. Therefore, the CIEA-RQ presented in this article serves as an efficient digital image privacy safeguard technique, promising extensive applications in image secure transmission for the upcoming generation of networks. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

28 pages, 6199 KB  
Article
Dual Chaotic Diffusion Framework for Multimodal Biometric Security Using Qi Hyperchaotic System
by Tresor Lisungu Oteko and Kingsley A. Ogudo
Symmetry 2025, 17(8), 1231; https://doi.org/10.3390/sym17081231 - 4 Aug 2025
Cited by 1 | Viewed by 784
Abstract
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many [...] Read more.
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many existing chaos-based encryption schemes exhibit inherent shortcomings including deterministic randomness and constrained key spaces, often failing to balance security robustness with computational efficiency. To address this, we propose a novel dual-layer cryptographic framework leveraging a four-dimensional (4D) Qi hyperchaotic system for protecting biometric templates and facilitating secure feature matching operations. The framework implements a two-tier encryption mechanism where each layer independently utilizes a Qi hyperchaotic system to generate unique encryption parameters, ensuring template-specific encryption patterns that enhance resistance against chosen-plaintext attacks. The framework performs dimensional normalization of input biometric templates, followed by image pixel shuffling to permutate pixel positions before applying dual-key encryption using the Qi hyperchaotic system and XOR diffusion operations. Templates remain encrypted in storage, with decryption occurring only during authentication processes, ensuring continuous security while enabling biometric verification. The proposed system’s framework demonstrates exceptional randomness properties, validated through comprehensive NIST Statistical Test Suite analysis, achieving statistical significance across all 15 tests with p-values consistently above 0.01 threshold. Comprehensive security analysis reveals outstanding metrics: entropy values exceeding 7.99 bits, a key space of 10320, negligible correlation coefficients (<102), and robust differential attack resistance with an NPCR of 99.60% and a UACI of 33.45%. Empirical evaluation, on standard CASIA Face and Iris databases, demonstrates practical computational efficiency, achieving average encryption times of 0.50913s per user template for 256 × 256 images. Comparative analysis against other state-of-the-art encryption schemes verifies the effectiveness and reliability of the proposed scheme and demonstrates our framework’s superior performance in both security metrics and computational efficiency. Our findings contribute to the advancement of biometric template protection methodologies, offering a balanced performance between security robustness and operational efficiency required in real-world deployment scenarios. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

29 pages, 476 KB  
Article
On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme
by Arifuzzaman, Syed Shakaib Irfan and Iqbal Ahmad
Mathematics 2025, 13(15), 2447; https://doi.org/10.3390/math13152447 - 29 Jul 2025
Cited by 1 | Viewed by 524
Abstract
This article studies the structure and properties of real-ordered Hilbert spaces, highlighting the roles of the XOR and XNOR logical operators in conjunction with the Yosida and Cayley approximation operators. These fundamental elements are utilized to formulate the Yosida–Cayley Variational Inclusion Problem (YCVIP) [...] Read more.
This article studies the structure and properties of real-ordered Hilbert spaces, highlighting the roles of the XOR and XNOR logical operators in conjunction with the Yosida and Cayley approximation operators. These fundamental elements are utilized to formulate the Yosida–Cayley Variational Inclusion Problem (YCVIP) and its associated Yosida–Cayley Resolvent Equation Problem (YCREP). To address these problems, we develop and examine several solution methods, with particular attention given to the convergence behavior of the proposed algorithms. We prove both the existence of solutions and the strong convergence of iterative sequences generated under the influence of the aforesaid operators. The theoretical results are supported by a numerical result, demonstrating the practical applicability and efficiency of the suggested approaches. Full article
Show Figures

Figure 1

Back to TopTop