On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme
Abstract
1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- (vi)
- If , then ;
- (vii)
- , for any scalar ;
- (viii)
- If , then ;
- (ix)
- If , then if and only if .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- If then .
- (i)
- The mapping Δ is said to be Lipschitz continuous in the first argument if there exists a constant such that, for any
- (ii)
- The mapping Δ is said to be Lipschitz continuous in the second argument if there exists a constant such that, for any
- (i)
- The mapping p is called a comparison mapping if for all such that , and and , it holds that
- (ii)
- The comparison mapping Δ is said to be an α-non-ordinary difference mapping, if there exists and such that
- (iii)
- The comparison mapping Δ is called a ρ-ordered rectangular mapping if there exists and such that
- (iv)
- The mapping Δ is a -weak-ordered different mapping if there exists a constant and elements and , such that
3. The Yosida–Cayley Variational Inclusion Problem (YCVIP)
4. Fixed-Point Formulation and Iterative Algorithms
5. Main Result
6. Yosida–Cayley Resolvent Equation Problem (YCREP)
7. Numerical Result
- (i)
- Suppose is a -ordered rectangular mapping; then, there existThen, we getThus, is a -ordered rectangular mapping.
- (ii)
- Suppose p is -Lipschitz continuous and -ordered non-extended mapping.We have,Hence, p is a -Lipschitz continuous mapping. Also we have,Thus, p is the -ordered nonextended mapping.
- (iii)
- Let be a single-valued mapping and be multi-valued mappings such thatThus, we obtainThus, is -Lipschitz continuous with constant . Similarly, we can show that andTherefore, is Lipschitz continuous in all the three arguments with constants Consequently, we obtain
- (iv)
- Consider then evaluate the resolvent operator asNow, we haveTherefore, is Lipschitz continuous; here, , andAlso, we haveThen, we have the Lipschitz constant
- (v)
- Again, we have from the Yosida approximation operatorAlso, we getThat is, is Lipschitz continuous with constant where andAgain, we get,Thus, we get the Lipschitz constant
- (vi)
- Now, we evaluate the Cayley approximation operator.Now, we haveThat is, is Lipschitz continuous with constant where , and .And also, we haveTherefore the Lipschitz constant
- (vii)
- We consider the interval and .
- (viii)
- All values of the constants fulfill the requirements (14) and (46) stated in Theorems 1 and 2.
- (ix)
- Obtain from Iterative Algorithm 3
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartman, P.; Stampacchia, G. On some non-linear elliptic differential-functional equations. Acta Math. 1966, 115, 271–310. [Google Scholar] [CrossRef]
- Fechner, W. Functional inequalities motivated by the Lax–Milgram theorem. J. Math. Anal. Appl. 2013, 402, 411–414. [Google Scholar] [CrossRef]
- Rockafellar, R. Monotone operators and the proximal point algorithm. SIAM J. Cont. Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Kegl, M.; Butinar, B.J.; Kegl, B. An efficient gradient-based optimization algorithm for mechanical systems. Commun. Numer. Methods Eng. 2002, 18, 363–371. [Google Scholar] [CrossRef]
- Salahuddin. Solutions of Variational Inclusions over the Sets of Common Fixed Points in Banach Spaces. J. Appl. Non. Dy. 2021, 11, 75–85. [Google Scholar]
- Akram, M.; Dilshad, M. A Unified Inertial Iterative Approach for General Quasi Variational Inequality with Application. Fractal Fract. 2022, 6, 395. [Google Scholar] [CrossRef]
- AlNemer, G.; Rehan Ali, R.; Farid, M. On the Strong Convergence of Combined Generalized Equilibrium and Fixed Point Problems in a Banach Space. Axioms 2025, 14, 428. [Google Scholar] [CrossRef]
- Sitthithakerngkiet, K.; Rehman, H.U.; Ioannis, K.; Argyros, I.K.; Seangwattana, T. Strong convergence of dual inertial fixed point algorithms for computing fixed points over the solution set of a variational inequality problem in real Hilbert spaces. Rend. Circ. Mat. Di Palermo 2025, 74, 82. [Google Scholar] [CrossRef]
- Daoud, S.M.; Shehab, M.; Al-Mimi, M.H.; Abualigah, L.; Zitar, A.R.; Shambour, M.K.Y. Gradient-Based Optimizer (GBO): A Review, Theory, Variants, and Applications. Arch. Comput. Methods Eng. 2023, 30, 2431–2449. [Google Scholar] [CrossRef]
- Rehman, H.U.; Sitthithakerngkiet, K.; Seangwattana, T. Dual-Inertial Viscosity-Based Subgradient Extragradient Methods for Equilibrium Problems Over Fixed Point Sets. Math. Methods Appl. Sci. Anal. Appl. 2025, 48, 6866–6888. [Google Scholar] [CrossRef]
- Altbawi, S.M.A.; Khalid, S.B.A.; Mokhtar, A.S.B.; Hussain Shareef, H.; Husain, N.; Ashraf Yahya, A.; Haider, S.A.; Moin, L.; Alsisi, H.R. An Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems. Processes 2023, 11, 498. [Google Scholar] [CrossRef]
- Hassouni, A.; Moudafi, A. A perturbed algorithm for variational inclusions. J. Math. Anal. Appl. 1994, 185, 706–712. [Google Scholar] [CrossRef]
- Ahmad, I.; Irfan, S.S.; Farid, M.; Shukla, P. Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings. J. Inequal. Appl. 2020, 2020, 36. [Google Scholar] [CrossRef]
- Ahmad, I.; Pang, C.T.; Ahmad, R.; Ishtyak, M. System of Yosida inclusions involving XOR-operation. J. Nonlinear Convex Anal. 2017, 18, 831–845. [Google Scholar]
- Li, H.G.; Pan, X.B.; Deng, Z.Y.; Wang, C.Y. Solving GNOVI frameworks involving (γG, λ)-weak-GRD set-valued mappings in positive Hilbert spaces. Fixed Point Theory Appl. 2014, 2014, 146. [Google Scholar] [CrossRef]
- Iqbal, J.; Rajpoot, A.K.; Islam, M.; Ahmad, R.; Wang, Y. System of Generalized variational inclusions involving Cayley operators and XOR-operation in q-uniformly smooth Banach spaces. Mathematics 2022, 10, 2837. [Google Scholar] [CrossRef]
- Ali, I.; Ahmad, R.; Wen, C.F. Cayley inclusion problem involving XOR-operation. Mathematics 2019, 7, 302. [Google Scholar] [CrossRef]
- Iqbal, J.; Wang, Y.; Rajpoot, A.K.; Ahmad, R. Generalized Yosida inclusion problem involving multi-valued operator with XOR operation. Demonstr. Math. 2024, 57, 20240011. [Google Scholar] [CrossRef]
- Noor, M.A. Generalized set-valued variational inclusions and resolvent equations. J. Math. Anal. Appl. 1998, 228, 206–220. [Google Scholar] [CrossRef]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Chang, S.; Yao, J.C.; Wang, L.; Liu, M.; Zhao, L. On the inertial forward-backward splitting technique for solving a system of inclusion problems in Hilbert spaces. Optimization 2021, 70, 2511–2525. [Google Scholar] [CrossRef]
- Gebrie, A.G.; Bedane, S.D. A simple computational algorithm with inertial extrapolation for generalized split common fixed point problems. Heliyon 2021, 7, e08373. [Google Scholar] [CrossRef] [PubMed]
- Rajpoot, A.K.; Istiak, M.; Ahmed, R.; Wang, Y.; Yao, J.C. Convergence analysis for Yosida variational inclusion problem with its corresponding Yosida resolvent equation problem through inertial extrapolation scheme. Mathematics 2023, 11, 763. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. General bivariational inclusions and iterative methods. Int. J. Nonlinear Anal. Appl. 2023, 14, 309–324. [Google Scholar]
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.43243 | −0.32433 | −0.10811 | 0.10811 | 0.32433 | 0.43243 |
2 | −0.13587 | −0.1019 | −0.033967 | 0.033967 | 0.1019 | 0.13587 |
3 | −0.05304 | −0.03978 | −0.01326 | 0.01326 | 0.03978 | 0.05304 |
6 | −0.00651 | −0.00488 | −0.00162 | 0.00162 | 0.00488 | 0.00651 |
8 | −0.00145 | −0.00108 | −0.00036 | 0.00036 | 0.00108 | 0.00145 |
10 | −0.00064 | −0.00048 | −0.00016 | 0.00016 | 0.00048 | 0.00064 |
13 | −0.00023 | −0.00017 | −0.00005 | 0.00005 | 0.00017 | 0.00023 |
17 | −0.00007 | −0.00005 | −0.00001 | 0.00001 | 0.00005 | 0.00007 |
20 | −0.00003 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00003 |
23 | −0.00001 | −0.00001 | −0.00000 | 0.00000 | 0.00001 | 0.00001 |
26 | −0.00001 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00001 |
27 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
30 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.35406 | −0.26554 | −0.08851 | 0.08851 | 0.26554 | 0.35406 |
2 | −0.08916 | −0.06687 | −0.02229 | 0.02229 | 0.06687 | 0.08916 |
3 | −0.02801 | −0.02101 | −0.00700 | 0.00700 | 0.02101 | 0.028015 |
4 | −0.01028 | −0.00771 | −0.00257 | 0.00257 | 0.00771 | 0.01028 |
5 | −0.00423 | −0.00317 | −0.00105 | 0.00105 | 0.00317 | 0.00423 |
6 | −0.00191 | −0.00143 | −0.00047 | 0.00047 | 0.00143 | 0.00191 |
8 | −0.00047 | −0.00035 | −0.00011 | 0.00011 | 0.00035 | 0.00047 |
10 | −0.00008 | −0.00006 | −0.00002 | 0.00002 | 0.000006 | 0.00008 |
12 | −0.00003 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00003 |
15 | −0.00001 | −0.00001 | −0.00000 | 0.00000 | 0.00001 | 0.00001 |
16 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
20 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.31185 | −0.23389 | −0.07796 | 0.07796 | 0.23389 | 0.31185 |
2 | −0.06742 | −0.05057 | −0.01685 | 0.01685 | 0.05057 | 0.06742 |
3 | −0.01810 | −0.01357 | −0.00452 | 0.00452 | 0.01357 | 0.01810 |
4 | −0.00568 | −0.00426 | −0.00142 | 0.00142 | 0.00426 | 0.00568 |
5 | −0.00201 | −0.00151 | −0.00050 | 0.00050 | 0.00151 | 0.00201 |
6 | −0.00078 | −0.00059 | −0.00019 | 0.00019 | 0.00059 | 0.00078 |
8 | −0.00015 | −0.00011 | −0.00003 | 0.00003 | 0.00011 | 0.00015 |
10 | −0.00003 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00003 |
12 | −0.00001 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00001 |
13 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
15 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.24433 | −0.18324 | −0.061082 | 0.061082 | 0.18324 | 0.24433 |
2 | −0.03809 | −0.02857 | −0.00952 | 0.00952 | 0.02857 | 0.03809 |
3 | −0.00713 | −0.0053 | −0.00178 | 0.00178 | 0.00534 | 0.00713 |
4 | −0.00154 | −0.00115 | −0.00038 | 0.00038 | 0.00115 | 0.00154 |
5 | −0.00037 | −0.00028 | −0.00009 | 0.00009 | 0.00028 | 0.00037 |
6 | −0.00010 | −0.00007 | −0.00002 | 0.00002 | 0.00007 | 0.00010 |
7 | −0.00002 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00002 |
8 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
10 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.21807 | −0.16355 | −0.05451 | 0.05451 | 0.16355 | 0.21807 |
2 | −0.02863 | −0.02147 | −0.00715 | 0.00715 | 0.02147 | 0.02863 |
3 | −0.00436 | −0.00327 | −0.00109 | 0.00109 | 0.00327 | 0.00436 |
4 | −0.00075 | −0.00056 | −0.00018 | 0.00018 | 0.00056 | 0.00075 |
5 | −0.00014 | −0.00010 | −0.00003 | 0.00003 | 0.00010 | 0.00014 |
6 | −0.00003 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00003 |
7 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
8 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Number of | ||||||
---|---|---|---|---|---|---|
Iterations, n | ||||||
1 | −0.18965 | −0.14223 | −0.047412 | 0.047412 | 0.14223 | 0.18965 |
2 | −0.01970 | −0.01477 | −0.00492 | 0.00492 | 0.01477 | 0.01970 |
3 | −0.00222 | −0.00166 | −0.00055 | 0.00055 | 0.00166 | 0.00222 |
4 | −0.00026 | −0.00020 | −0.00006 | 0.00006 | 0.00020 | 0.00026 |
5 | −0.00003 | −0.00002 | −0.00000 | 0.00000 | 0.00002 | 0.00003 |
6 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
7 | −0.00000 | −0.00000 | −0.00000 | 0.00000 | 0.00000 | 0.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arifuzzaman; Irfan, S.S.; Ahmad, I. On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme. Mathematics 2025, 13, 2447. https://doi.org/10.3390/math13152447
Arifuzzaman, Irfan SS, Ahmad I. On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme. Mathematics. 2025; 13(15):2447. https://doi.org/10.3390/math13152447
Chicago/Turabian StyleArifuzzaman, Syed Shakaib Irfan, and Iqbal Ahmad. 2025. "On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme" Mathematics 13, no. 15: 2447. https://doi.org/10.3390/math13152447
APA StyleArifuzzaman, Irfan, S. S., & Ahmad, I. (2025). On the Convergence of the Yosida–Cayley Variational Inclusion Problem with the XOR Operation and Inertial Extrapolation Scheme. Mathematics, 13(15), 2447. https://doi.org/10.3390/math13152447