Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = XMCD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1507 KB  
Article
Implementation and Performance of a Synchronized Undulator–Monochromator Scanning System at a Soft X-Ray Beamline
by Shuo Zhao, Ying Zhao, Yamei Wang, Chun Hu, Jiefeng Cao, Zhaohong Zhang and Chunpeng Wang
Appl. Sci. 2025, 15(24), 12931; https://doi.org/10.3390/app152412931 - 8 Dec 2025
Viewed by 286
Abstract
The performance of synchrotron beamlines critically depends on the optimal coupling between the undulator and the monochromator. This work presents the implementation and quantitative characterization of a synchronized scanning system for the elliptically polarizing undulator (EPU) and the variable-line-spacing plane-grating monochromator at the [...] Read more.
The performance of synchrotron beamlines critically depends on the optimal coupling between the undulator and the monochromator. This work presents the implementation and quantitative characterization of a synchronized scanning system for the elliptically polarizing undulator (EPU) and the variable-line-spacing plane-grating monochromator at the BL07U beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system ensures that the monochromator’s narrow bandwidth dynamically tracks the brilliant central cone of the undulator radiation. A linear correlation between the monochromator energy and the undulator gap, justified theoretically for small scan ranges and reinforced by a robust real-time calibration procedure, forms the control basis. The automation is built upon a standard software stack comprising EPICS for device control, the Bluesky Suite for experimental orchestration, and Phoebus for the human–machine interface. Through comparative X-ray absorption spectroscopy (XAS) measurements at the Fe L2,3-edges, the synchronized mode is shown to enhance beam brilliance by 37% and stabilize the incident flux, reducing its variation from 4.2% to 1.8%. This directly results in absorption spectra with superior lineshape fidelity, a 40% reduction in noise, and the elimination of pre- and post-edge artifacts, unequivocally isolating the synchronization effect. This advancement provides a stable, high-brilliance photon source essential for high-quality XAS and X-ray magnetic circular/linear dichroism (XMCD/XMLD) studies. Full article
Show Figures

Figure 1

12 pages, 8210 KB  
Article
Structural and Magnetic Properties of Sputtered Chromium-Doped Sb2Te3 Thin Films
by Joshua Bibby, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Julio Alves do Nascimento, Connor Murrill, Vlado K. Lazarov, Gerrit van der Laan and Thorsten Hesjedal
Crystals 2025, 15(10), 896; https://doi.org/10.3390/cryst15100896 - 16 Oct 2025
Viewed by 685
Abstract
Magnetron sputtering offers a scalable route to magnetic topological insulators (MTIs) based on Cr-doped Sb2Te3. We combine a range of X-ray diffraction (XRD), reciprocal-space mapping (RSM), scanning transmission electron microscopy (STEM), scanning TEM-energy-dispersive X-ray spectroscopy (STEM-EDS), and X-ray absorption [...] Read more.
Magnetron sputtering offers a scalable route to magnetic topological insulators (MTIs) based on Cr-doped Sb2Te3. We combine a range of X-ray diffraction (XRD), reciprocal-space mapping (RSM), scanning transmission electron microscopy (STEM), scanning TEM-energy-dispersive X-ray spectroscopy (STEM-EDS), and X-ray absorption spectroscopy, and X-ray magnetic circular dichroism (XAS/XMCD) techniques to study the structure and magnetism of Cr-doped Sb2Te3 films. Symmetric θ-2θ XRD and RSM establish a solubility window. Layered tetradymite order persists up to ∼10 at.-% Cr, while higher doping yields CrTe/Cr2Te3 secondary phases. STEM reveals nanocrystalline layered stacking at low Cr and loss of long-range layering at higher Cr concentrations, consistent with XRD/RSM. Magnetometry on a 6% film shows soft ferromagnetism at 5 K. XAS and XMCD at the Cr L2,3 edges exhibits a depth dependence: total electron yield (TE; surface sensitive) shows both nominal Cr2+ and Cr3+, whereas fluorescence yield (FY; bulk sensitive) shows a much higher Cr2+ weight. Sum rules applied to TEY give mL=(0.20±0.04) μB/Cr, and mS=(1.6±0.2) μB/Cr, whereby we note that the applied maximum field (3 T) likely underestimates mS. These results define a practical growth window and outline key parameters for MTI films. Full article
(This article belongs to the Special Issue Advances in Thin-Film Materials and Their Applications)
Show Figures

Figure 1

16 pages, 3759 KB  
Article
Exploring Single-Molecular Magnets for Quantum Technologies
by Wei Wu, Tianhong Huang, Jianhua Zhu, Taoyu Zou and Hai Wang
Molecules 2025, 30(12), 2522; https://doi.org/10.3390/molecules30122522 - 9 Jun 2025
Cited by 1 | Viewed by 2331
Abstract
A single-molecule magnet (SMM) is a molecule that functions as a magnet. SMMs can be explored not only for emerging technology but also the fundamental science of their quantum nature, nanometer sizes, and their ease of engineering. This review encompasses the state-of-the-art experiments [...] Read more.
A single-molecule magnet (SMM) is a molecule that functions as a magnet. SMMs can be explored not only for emerging technology but also the fundamental science of their quantum nature, nanometer sizes, and their ease of engineering. This review encompasses the state-of-the-art experiments and theories developed so far for SMMs. We briefly explore their experimental synthesis and characterization. In the experimental synthesis, we cover ‘Click Chemistry’ and supramolecular chemistry. The main experimental characterizations comprise superconducting quantum interference devices, electron paramagnetic resonance, neutron scattering, and X-ray magnetic circular dichroism. The theoretical and computational works based on the density functional theory, the post-Hartree–Fock methods, and the theory of open quantum systems are discussed. Moreover, we exemplify the numerous promising research areas for SMMs by discussing quantum technologies. We envision a brilliant future for the fundamental research and emerging applications of SMMs. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 649 KB  
Article
High-Coercivity Ferrimagnet Co₂FeO₂BO₃: XMCD Insights into Charge-Ordering and Cation Distribution
by Mikhail S. Platunov
Inorganics 2025, 13(1), 24; https://doi.org/10.3390/inorganics13010024 - 15 Jan 2025
Viewed by 1700
Abstract
The multi-sublattice ferrimagnet Co2FeO2BO3, a prominent example of lanthanide-free magnets, was the subject of element-selective studies using X-ray magnetic circular dichroism (XMCD) observations at the L- and K- X-ray absorption edges. Research findings indicate that [...] Read more.
The multi-sublattice ferrimagnet Co2FeO2BO3, a prominent example of lanthanide-free magnets, was the subject of element-selective studies using X-ray magnetic circular dichroism (XMCD) observations at the L- and K- X-ray absorption edges. Research findings indicate that the distinct magnetic characteristics of Co2FeO2BO3, namely its remarkable high coercivity (which surpasses 7 Tesla at low temperatures), originate from an atypical arrangement of magnetic ions in the crystal structure (sp.gr. Pbam). The antiferromagnetic nature of the Co2+-O-Fe3+ exchange interaction was confirmed by identifying the spin and orbital contributions to the total magnetization from Co (mL = 0.27 ± 0.1 μB/ion and meffS = 0.53 ± 0.1 μB/ion) and Fe (mL = 0.05 ± 0.1 μB/ion and meffS = 0.80 ± 0.1 μB/ion) ions through element-selective XMCD analysis. Additionally, the research explicitly revealed that the strong magnetic anisotropy is a result of the significant unquenched orbital magnetic moment of Co, a feature that is also present in the related compound Co3O2BO3. A complex magnetic structure in Co2FeO2BO3, with infinite Co²⁺O6 layers in the bc-plane and strong antiferromagnetic coupling through Fe3⁺ ions, is suggested by element-selective hysteresis data, which revealed that Co²⁺ ions contribute both antiferromagnetic and ferromagnetic components to the total magnetization. The findings underline the suitability of Co2FeO2BO3 for applications in extreme environments, such as low temperatures and high magnetic fields, where its unique magnetic topology and anisotropy can be harnessed for advanced technologies, including materials for space exploration and quantum devices. This XMCD study opens the door to the production of novel high-coercivity, lanthanide-free magnetic materials by showing that targeted substitution at specific crystallographic sites can significantly enhance the magnetic properties of such materials. Full article
(This article belongs to the Special Issue Inorganic Materials for Applications in Extreme Environments)
Show Figures

Graphical abstract

24 pages, 6781 KB  
Article
A Structure and Magnetism Study of {MnII3MnIVLnIII3} Coordination Complexes with Ln = Dy, Yb
by Victoria Mazalova, Tatiana Asanova, Igor Asanov and Petra Fromme
Inorganics 2024, 12(11), 286; https://doi.org/10.3390/inorganics12110286 - 31 Oct 2024
Viewed by 1959
Abstract
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their [...] Read more.
We report the research results of polynuclear complexes consisting of 3d-4f mixed-metal cores that are maintained by acetate ligands and multidentate Schiff base ligands with structurally exposed thioether groups. The presence of the latter at the periphery of these neutral compounds enables their anchoring onto substrate surfaces. Specifically, we investigated the electronic and magnetic properties as well as the structural arrangement in {MnII3MnIVLnIII3} with Ln = Dy, Yb coordination complexes using various complementary methods. We studied the electronic and atomic structure of the target compounds using the XAS and XES techniques. The molecular structures of the compounds were determined using density functional theory, and the magnetic data were obtained as a function of the magnetic field. Using the XMCD method, we followed the changes in the electronic and magnetic properties of adsorbed magnetic compounds induced by the reaction of ligands through interaction with the substrate. The complexes show antiferromagnetic exchange interactions between Mn and Ln ions. The spectroscopic analyses confirmed the structural and electronic integrity of complexes in organic solution. This study provides important input for a full understanding of the dependence of the magnetic properties and the molecule–substrate interaction of single adsorbed molecules on the type of ligands. It highlights the importance of chemical synthesis for controlling and tailoring the magnetic properties of metalorganic molecules for their use as optimized building blocks of future molecular spin electronics. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

11 pages, 17591 KB  
Article
Measurement of the Induced Magnetic Polarisation of Rotated-Domain Graphene Grown on Co Film with Polarised Neutron Reflectivity
by Razan Omar M. Aboljadayel, Christy John Kinane, Carlos Antonio Fernandes Vaz, David Michael Love, Marie-Blandine Martin, Andrea Cabrero-Vilatela, Philipp Braeuninger-Weimer, Adrian Ionescu, Andrew John Caruana, Timothy Randall Charlton, Justin Llandro, Pedro Manuel da Silva Monteiro, Crispin Henry William Barnes, Stephan Hofmann and Sean Langridge
Nanomaterials 2023, 13(19), 2620; https://doi.org/10.3390/nano13192620 - 22 Sep 2023
Viewed by 1822
Abstract
In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C K-edge. From [...] Read more.
In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C K-edge. From the XMCD sum rules an estimated magnetic moment of 0.3 μB/C atom, while a more accurate estimation of 0.49 μB/C atom was obtained by carrying out a PNR measurement at 300 K. The results indicate that the higher magnetic moment in Co is counterbalanced by the larger lattice mismatch between the Co-C (1.6%) and the slightly longer bond length, inducing a magnetic moment in graphene that is similar to that reported in Ni/graphene heterostructures. Full article
(This article belongs to the Special Issue Graphene and Related 2D Materials)
Show Figures

Figure 1

20 pages, 4120 KB  
Article
X-ray Absorption Spectroscopy Study of Thickness Effects on the Structural and Magnetic Properties of Pr2−δNi1−xMn1+xO6−y Double Perovskite Thin Films
by Mónica Bernal-Salamanca, Javier Herrero-Martín, Zorica Konstantinović, Lluis Balcells, Alberto Pomar, Benjamín Martínez and Carlos Frontera
Nanomaterials 2022, 12(23), 4337; https://doi.org/10.3390/nano12234337 - 6 Dec 2022
Cited by 2 | Viewed by 3516
Abstract
In this work, we report a systematic study of the influence of film thickness on the structural and magnetic properties of epitaxial thin films of Pr2−δNi1−xMn1+xO6−y (PNMO) double perovskite grown on top of two different (001)-SrTiO [...] Read more.
In this work, we report a systematic study of the influence of film thickness on the structural and magnetic properties of epitaxial thin films of Pr2−δNi1−xMn1+xO6−y (PNMO) double perovskite grown on top of two different (001)-SrTiO3 and (001)-LaAlO3 substrates by RF magnetron sputtering. A strong dependence of the structural and magnetic properties on the film thickness is found. The ferromagnetic transition temperature (TC) and saturation magnetization (Ms) are found to decrease when reducing the film thickness. In our case, the thinnest films show a loss of ferromagnetism at the film-substrate interface. In addition, the electronic structure of some characteristic PNMO samples is deeply analyzed using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements and compared with theoretical simulations. Our results show that the oxidation states of Ni and Mn ions are stabilized as Ni2+ and Mn4+, thus the ferromagnetism is mainly due to Ni2+-O-Mn4+ superexchange interactions, even in samples with poor ferromagnetic properties. XMCD results also make evident large variations on the spin and orbital contributions to the magnetic moment as the film’s thickness decreases. Full article
Show Figures

Figure 1

15 pages, 2340 KB  
Article
Self-Assembly and Magnetic Order of Bi-Molecular 2D Spin Lattices of M(II,III) Phthalocyanines on Au(111)
by Miloš Baljozović, Xunshan Liu, Olha Popova, Jan Girovsky, Jan Nowakowski, Harald Rossmann, Thomas Nijs, Mina Moradi, S. Fatemeh Mousavi, Nicholas C. Plumb, Milan Radović, Nirmalya Ballav, Jan Dreiser, Silvio Decurtins, Igor A. Pašti, Natalia V. Skorodumova, Shi-Xia Liu and Thomas A. Jung
Magnetochemistry 2021, 7(8), 119; https://doi.org/10.3390/magnetochemistry7080119 - 19 Aug 2021
Cited by 4 | Viewed by 5061
Abstract
Single layer low-dimensional materials are presently of emerging interest, including in the context of magnetism. In the present report, on-surface supramolecular architecturing was further developed and employed to create surface supported two-dimensional binary spin arrays on atomically clean non-magnetic Au(111). By chemical programming [...] Read more.
Single layer low-dimensional materials are presently of emerging interest, including in the context of magnetism. In the present report, on-surface supramolecular architecturing was further developed and employed to create surface supported two-dimensional binary spin arrays on atomically clean non-magnetic Au(111). By chemical programming of the modules, different checkerboards were produced combining phthalocyanines containing metals of different oxidation and spin states, diamagnetic zinc, and a metal-free ‘spacer’. In an in-depth, spectro-microscopy and theoretical account, we correlate the structure and the magnetic properties of these tunable systems and discuss the emergence of 2D Kondo magnetism from the spin-bearing components and via the physico-chemical bonding to the underlying substrate. The contributions of the individual elements, as well as the role of the electronic surface state in the bottom substrate, are discussed, also looking towards further in-depth investigations. Full article
(This article belongs to the Special Issue Stimuli-Responsive Magnetic Molecular Materials)
Show Figures

Graphical abstract

11 pages, 2170 KB  
Review
Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure
by Takafumi Miyanaga
Symmetry 2021, 13(8), 1315; https://doi.org/10.3390/sym13081315 - 22 Jul 2021
Cited by 6 | Viewed by 2828
Abstract
X-ray absorption fine structure (XAFS) is a powerful technique used to analyze a local electronic structure, local atomic structure, and structural dynamics. In this review, I present examples of XAFS that apply to the local structure and dynamics of functional materials: (1) structure [...] Read more.
X-ray absorption fine structure (XAFS) is a powerful technique used to analyze a local electronic structure, local atomic structure, and structural dynamics. In this review, I present examples of XAFS that apply to the local structure and dynamics of functional materials: (1) structure phase transition in perovskite PbTiO3 and magnetic FeRhPd alloys; (2) nano-scaled fluctuations related to their magnetic properties in Ni–Mn alloys and Fe/Cr thin films; and (3) the Debye–Waller factors related to the chemical reactivity for catalysis in polyanions and ligand exchange reaction. This study shows that the local structure and dynamics are related to the characteristic function of the materials. Full article
(This article belongs to the Special Issue X-ray Absorption Fine Structure and Symmetry)
Show Figures

Figure 1

11 pages, 3069 KB  
Article
Microstructures and Interface Magnetic Moments in Mn2VAl/Fe Layered Films Showing Exchange Bias
by Takahide Kubota, Yusuke Shimada, Tomoki Tsuchiya, Tomoki Yoshikawa, Keita Ito, Yukiharu Takeda, Yuji Saitoh, Toyohiko J. Konno, Akio Kimura and Koki Takanashi
Nanomaterials 2021, 11(7), 1723; https://doi.org/10.3390/nano11071723 - 30 Jun 2021
Cited by 4 | Viewed by 2702
Abstract
Heusler alloys are a material class exhibiting various magnetic properties, including antiferromagnetism. A typical application of antiferromagnets is exchange bias that is a shift of the magnetization curve observed in a layered structure consisting of antiferromagnetic and ferromagnetic films. In this study, a [...] Read more.
Heusler alloys are a material class exhibiting various magnetic properties, including antiferromagnetism. A typical application of antiferromagnets is exchange bias that is a shift of the magnetization curve observed in a layered structure consisting of antiferromagnetic and ferromagnetic films. In this study, a layered sample consisting of a Heusler alloy, Mn2VAl and a ferromagnet, Fe, is selected as a material system exhibiting exchange bias. Although the fully ordered Mn2VAl is known as a ferrimagnet, with an optimum fabrication condition for the Mn2VAl layer, the Mn2VAl/Fe layered structure exhibits exchange bias. The appearance of the antiferromagnetic property in the Mn2VAl is remarkable; however, the details have been unclear. To clarify the microscopic aspects on the crystal structures and magnetic moments around the Mn2VAl/Fe interface, cross-sectional scanning transmission electron microscope (STEM) observation, and synchrotron soft X-ray magnetic circular dichroism (XMCD) measurements were employed. The high-angle annular dark-field STEM images demonstrated clusters of Mn2VAl with the L21 phase distributed only around the interface to the Fe layer in the sample showing the exchange bias. Furthermore, antiferromagnetic coupling between the Mn- and Fe-moments were observed in element-specific hysteresis loops measured using the XMCD. The locally ordered L21 phase and antiferromagnetic Mn-moments in the Mn2VAl were suggested as important factors for the exchange bias. Full article
Show Figures

Figure 1

10 pages, 2088 KB  
Article
Chemical Structure and Magnetism of FeOx/Fe2O3 Interface Studied by X-ray Absorption Spectroscopy
by Ahmed Yousef Mohamed, Won Goo Park and Deok-Yong Cho
Magnetochemistry 2020, 6(3), 33; https://doi.org/10.3390/magnetochemistry6030033 - 14 Aug 2020
Cited by 21 | Viewed by 7124
Abstract
The chemical and magnetic states of Fe/Fe2O3 thin films prepared by e-beam evaporation were investigated by using element-specific techniques, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). It was clearly shown that the Fe layers are oxidized to [...] Read more.
The chemical and magnetic states of Fe/Fe2O3 thin films prepared by e-beam evaporation were investigated by using element-specific techniques, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). It was clearly shown that the Fe layers are oxidized to form an antiferromagnetic (AFM) FeOx<1, while the bottom oxide remained a weak ferromagnet (wFM) (α+γ)-type Fe2O3. Dependences of the peak intensities and lineshapes on the Fe thickness and measurement geometry further demonstrate that FeOx<1 layers reside mostly at the interface realizing an FM (Fe)/AFM (FeOx)/wFM (Fe2O3), whilst the spin directions lie in the sample plane for all the samples. The self-stabilized intermediate oxide can act as a physical barrier for spins to be injected into the wFM oxide, implying a substantial influence on tailoring the spin tunneling efficiency for spintronics application. Full article
(This article belongs to the Section Spin Crossover and Spintronics)
Show Figures

Figure 1

13 pages, 2719 KB  
Article
Extracting the Dynamic Magnetic Contrast in Time-Resolved X-Ray Transmission Microscopy
by Taddäus Schaffers, Thomas Feggeler, Santa Pile, Ralf Meckenstock, Martin Buchner, Detlef Spoddig, Verena Ney, Michael Farle, Heiko Wende, Sebastian Wintz, Markus Weigand, Hendrik Ohldag, Katharina Ollefs and Andreas Ney
Nanomaterials 2019, 9(7), 940; https://doi.org/10.3390/nano9070940 - 28 Jun 2019
Cited by 11 | Viewed by 5744
Abstract
Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM), we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10 GHz and a spatial resolution down to 20 nm at two different synchrotrons. We present different methods to separate [...] Read more.
Using a time-resolved detection scheme in scanning transmission X-ray microscopy (STXM), we measured element resolved ferromagnetic resonance (FMR) at microwave frequencies up to 10 GHz and a spatial resolution down to 20 nm at two different synchrotrons. We present different methods to separate the contribution of the background from the dynamic magnetic contrast based on the X-ray magnetic circular dichroism (XMCD) effect. The relative phase between the GHz microwave excitation and the X-ray pulses generated by the synchrotron, as well as the opening angle of the precession at FMR can be quantified. A detailed analysis for homogeneous and inhomogeneous magnetic excitations demonstrates that the dynamic contrast indeed behaves as the usual XMCD effect. The dynamic magnetic contrast in time-resolved STXM has the potential be a powerful tool to study the linear and nonlinear, magnetic excitations in magnetic micro- and nano-structures with unique spatial-temporal resolution in combination with element selectivity. Full article
Show Figures

Figure 1

13 pages, 4543 KB  
Article
X-ray Absorption and Magnetic Circular Dichroism in CVD Grown Carbon Nanotubes
by Stefano Bellucci, Antonino Cataldo, Alberto Tagliaferro, Mauro Giorcelli and Federico Micciulla
Materials 2019, 12(7), 1073; https://doi.org/10.3390/ma12071073 - 1 Apr 2019
Cited by 2 | Viewed by 3289
Abstract
Nowadays, a deep knowledge of procedures of synthesis of nanostructured materials plays an important role in achieving nano-materials with accurate and wanted properties and performances. Carbon-based nanostructured materials continue to attract a huge amount of research efforts, because of their wide-ranging properties. Using [...] Read more.
Nowadays, a deep knowledge of procedures of synthesis of nanostructured materials plays an important role in achieving nano-materials with accurate and wanted properties and performances. Carbon-based nanostructured materials continue to attract a huge amount of research efforts, because of their wide-ranging properties. Using X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy in the soft X-ray regime, by the synchrotron radiation, we studied the L3,2 absorption edges of iron (Fe) nanoparticles, when they are embedded in oriented Multi Wall Carbon Nanotube (MWCNTs) layers grown by thermal Chemical Vapor Deposition (CVD) technique catalyzed by this transition metal. This could allow us to understand the valence state and role of catalysts and thus their electronic and magnetic structures. It is important to note that the control of the size of these tethered nanoparticles is of primary importance for the purpose of tailoring the physical and chemical properties of these hierarchical materials. The MWCNTs samples used in XAS and XMCD measurements were synthesized by the CVD technique. The actual measurements were carried out by the group NEXT of the INFN- LNF with the logistic experimental support of the INFM-CNR and the Synchrotron Elettra Trieste. Full article
(This article belongs to the Special Issue Unique Properties of Carbon Nanomaterials and Their Applications)
Show Figures

Figure 1

18 pages, 1783 KB  
Article
Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
by María Blanco-Rey, Ane Sarasola, Corneliu Nistor, Luca Persichetti, Christian Stamm, Cinthia Piamonteze, Pietro Gambardella, Sebastian Stepanow, Mikhail M. Otrokov, Vitaly N. Golovach and Andres Arnau
Molecules 2018, 23(4), 964; https://doi.org/10.3390/molecules23040964 - 20 Apr 2018
Cited by 13 | Viewed by 7662
Abstract
The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers [...] Read more.
The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system. Full article
(This article belongs to the Special Issue Electronic Structure Calculations Applied to Magnetic Phenomena)
Show Figures

Figure 1

19 pages, 6318 KB  
Article
Heptanuclear [FeIII6CrIII]3+ Complexes Experimentally Studied by Means of Magnetometry, X-ray Diffraction, XAS, XMCD and Spin-Polarized Electron Spectroscopy in Cross-Comparison with [MnIII6CrIII]3+ Single-Molecule Magnets
by Niklas Dohmeier, Andreas Helmstedt, Norbert Müller, Aaron Gryzia, Armin Brechling, Ulrich Heinzmann, Maik Heidemeier, Erich Krickemeier, Anja Stammler, Hartmut Bögge, Thorsten Glaser, Loïc Joly and Karsten Kuepper
Magnetochemistry 2016, 2(1), 5; https://doi.org/10.3390/magnetochemistry2010005 - 5 Feb 2016
Cited by 5 | Viewed by 7000
Abstract
Subsequent to the similar [MnIII6CrIII]3+ single-molecule magnets (SMM), the recently studied [FeIII6CrIII]3+ structural type adsorbed thin films prepared on Si and gold-coated glass substrates have been experimentally studied by means of [...] Read more.
Subsequent to the similar [MnIII6CrIII]3+ single-molecule magnets (SMM), the recently studied [FeIII6CrIII]3+ structural type adsorbed thin films prepared on Si and gold-coated glass substrates have been experimentally studied by means of spin-polarized electron spectroscopy (SPES) and X-ray magnetic circular dichroism (XMCD) at the Fe L3,2 edge using circularly-polarized synchrotron radiation. The results are cross-compared to the corresponding data obtained from the recently published measurements with Mn-based SMM [1], also in terms of the local spin and orbital magnetic moments obtained. Furthermore, [FeIII6CrIII]3+ single crystals have been experimentally studied by means of magnetometry and X-ray diffraction. Full article
(This article belongs to the Special Issue Single Molecule and Single Chain Magnets)
Show Figures

Figure 1

Back to TopTop