Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = X65 pipeline steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5186 KB  
Article
A FEM-ML Hybrid Framework for Optimizing the Cooling Schedules of Roll-Bonded Clad Plates
by Alexey G. Zinyagin, Alexander V. Muntin, Nikita R. Borisenko, Andrey P. Stepanov and Maria O. Kryuchkova
J. Manuf. Mater. Process. 2026, 10(2), 49; https://doi.org/10.3390/jmmp10020049 - 30 Jan 2026
Viewed by 70
Abstract
In the production of clad rolled plates from asymmetric sandwich-type slab for pipeline applications, achieving both target mechanical properties and high geometric flatness remains a critical challenge due to differential thermal stresses between the dissimilar steel layers during accelerated cooling. This study aims [...] Read more.
In the production of clad rolled plates from asymmetric sandwich-type slab for pipeline applications, achieving both target mechanical properties and high geometric flatness remains a critical challenge due to differential thermal stresses between the dissimilar steel layers during accelerated cooling. This study aims to develop an optimal cooling schedule for a 25 mm thick clad plate, comprising a X70-grade steel base layer and an AISI 316L cladding, to ensure required strength and minimal bending. A comprehensive approach was employed, integrating a 3D finite element model (Ansys) for simulating thermoelastic stresses with a CatBoost machine learning model trained on industrial data to predict heat transfer coefficients accurately. A parametric analysis of cooling strategies was conducted. Results showed that a standard cooling strategy caused unacceptable bending of plate after cooling exceeding 130 mm. An optimized strategy featuring delayed activation of the lower cooling headers (on the cladding side) created a compensating thermoelastic moment, successfully reducing bending to approximately 20 mm while maintaining the base layer’s requisite mechanical properties. The findings validate the efficacy of the combined FEM-machine learning methodology and propose a viable, industrially implementable cooling strategy for high-quality clad plate production. Full article
Show Figures

Figure 1

18 pages, 7911 KB  
Article
Verification of the Applicability of the FAD Method Based on Full-Scale Pressurised Tensile Tests of Large-Diameter X80 Pipelines
by Xiaoben Chen, Ying Zhen, Hongfeng Zheng, Haicheng Jin, Rui Hang, Xiaojiang Guo, Jian Xiao and Hao Zhou
Materials 2026, 19(3), 465; https://doi.org/10.3390/ma19030465 - 23 Jan 2026
Viewed by 215
Abstract
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study [...] Read more.
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study first designed and conducted two sets of full-scale pressure-tension tests on large-diameter X80 pipeline ring welded joints, considering factors such as different welding processes, joint configurations, defect dimensions, and locations. Subsequently, three widely adopted failure assessment diagram methodologies—BS 7910, API 579, and API 1104—were selected. Corresponding assessment curves were established based on material performance parameters obtained from the ring weld tests. Finally, predictive outcomes from each assessment method were compared against experimental data to investigate the applicability of failure assessment diagrams for evaluating high-strength, large-diameter, thick-walled ring welds. The research findings indicate that, under the specific material and defect assessment conditions employed in this study, the API 1104 assessment results exhibited significant conservatism (two sets matched). Conversely, the BS 7910 and API 579 assessment results showed a high degree of agreement with the experimental data (eight sets matched), with the BS 7910 assessment providing a relatively higher safety margin compared to API 579. The data from this study provides valuable experimental reference for selecting assessment methods under specific conditions, such as similar materials, defects, and loading patterns. Full article
Show Figures

Figure 1

17 pages, 2809 KB  
Article
Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel
by Shidong Zhou, Gan Qiu, Yang Liu, Wei Wang, Zhikuang Liang and Yongqing Zhang
Processes 2026, 14(3), 402; https://doi.org/10.3390/pr14030402 - 23 Jan 2026
Viewed by 167
Abstract
During the transportation of oil and gas pipelines, the adhesion and aggregation of hydrate particles on the pipe wall are prone to cause pipeline blockage, which seriously impairs the safe and efficient transportation of energy. Taking cyclopentane hydrates as the research object, this [...] Read more.
During the transportation of oil and gas pipelines, the adhesion and aggregation of hydrate particles on the pipe wall are prone to cause pipeline blockage, which seriously impairs the safe and efficient transportation of energy. Taking cyclopentane hydrates as the research object, this study investigated the effects of contact time, wall wettability, and the concentration of kinetic hydrate inhibitor poly(N-vinylcaprolactam) (PVCap) on the adhesion force between hydrates and the wall of X80 pipeline steel by combining a high-precision micromechanical force measurement system with microscopic morphology observation and analysis. The results show that the adhesion force increases with prolonged contact time: it is dominated by capillary liquid bridge force in the initial contact stage with slow growth, and after exceeding the critical time, the sintering effect becomes the dominant factor, leading to a rapid rise in adhesion force that eventually tends to stabilize. Wall wettability significantly influences the adhesion force, and enhanced wettability improves the adhesion force by increasing the liquid bridge volume and the hydrate–wall contact area. PVCap concentration exerts a non-monotonic effect on adhesion force—first decreasing and then increasing. At low concentrations (0.25–1 wt%), PVCap molecules adsorb on the hydrate surface to form a physical barrier, reducing adhesion force. At high concentrations (1.5–2 wt%), excessive PVCap damages hydrate shell integrity, releasing free water to expand the liquid bridge volume and increase adhesion force. This study provides a theoretical basis for eliminating or reducing hydrate blockage in deep-sea oil and gas pipelines. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 3467 KB  
Article
Study on the Influence of the Surface Altered Layer on Fracture Initiation and Load-Bearing Capacity of Gouged Pipelines
by Hui Yang, Can He, Enming Zhang, Fuxiang Wang, Yuguang Cao and Ying Zhen
Materials 2026, 19(3), 462; https://doi.org/10.3390/ma19030462 - 23 Jan 2026
Viewed by 226
Abstract
To clarify the influence of gouge-induced altered layers on fracture initiation and load-bearing capacity of pipelines, X70 pipeline steel is taken as the research object. The geometry and partition of the altered layer are first determined by means of a micro-Vickers hardness array [...] Read more.
To clarify the influence of gouge-induced altered layers on fracture initiation and load-bearing capacity of pipelines, X70 pipeline steel is taken as the research object. The geometry and partition of the altered layer are first determined by means of a micro-Vickers hardness array and a threshold criterion, and its mechanical parameters are then obtained from small-scale tensile tests. The altered layer is subsequently embedded into a finite element model of a gouged pipe as an independent material domain, and the Gurson–Tvergaard–Needleman (GTN) damage model is employed to simulate damage evolution and crack propagation under pure internal pressure and combined internal pressure and tensile loading. The results indicate that, compared with the base metal, the yield strength and ultimate tensile strength of the altered layer increase by about 39% and 47%, respectively, while the elongation to failure decreases from 16% to 1.8%, exhibiting a typical “high-strength–low-ductility” behavior. When the altered layer is considered, the fracture initiation location under pure internal pressure shifts from the base metal to the altered layer, and the burst pressure decreases from 19 MPa to 16.5 MPa. Under the combined internal pressure and tensile loading, the peak load changes little, whereas the ultimate displacement is reduced by about 26.5%, leading to a marked loss of pipeline ductility. These findings demonstrate that the gouge-induced altered layer has a significant effect on the fracture initiation pressure, failure mode, and load-bearing characteristics of gouged pipes. Modeling it as an independent material domain in finite element analysis can more realistically capture the failure behavior and safety margin of gouged pipelines, thereby providing a more reliable theoretical basis for improving integrity assessment criteria for externally damaged pipelines. Full article
Show Figures

Figure 1

27 pages, 6287 KB  
Article
Fatigue Life of Long-Distance Natural Gas Pipelines with Internal Corrosion Defects Under Random Pressure Fluctuations
by Zilong Nan, Liqiong Chen, Xingyu Zhou and Chuan Cheng
Buildings 2026, 16(2), 442; https://doi.org/10.3390/buildings16020442 - 21 Jan 2026
Viewed by 141
Abstract
Long-distance natural gas pipelines with internal corrosion defects are susceptible to fatigue failure under operational pressure fluctuations, posing significant risks to infrastructure integrity and safety. To address this, the present study employs a finite element methodology, utilizing Ansys Workbench to model pipelines of [...] Read more.
Long-distance natural gas pipelines with internal corrosion defects are susceptible to fatigue failure under operational pressure fluctuations, posing significant risks to infrastructure integrity and safety. To address this, the present study employs a finite element methodology, utilizing Ansys Workbench to model pipelines of various specifications with parametrically defined corrosion defects, and nCode DesignLife to predict fatigue life based on Miner’s linear cumulative damage theory. The S-N curve for X70 steel was directly adopted, while a power-function model was fitted for X80 steel based on standards. A cleaned real-world pressure-time history was used as the load spectrum. Parametric analysis reveals that defect depth is the most influential factor, with a depth coefficient increase from 0.05 to 0.25, reducing fatigue life by up to 67.5%, while the influence of defect width is minimal. An empirical formula for fatigue life prediction was subsequently developed via multiple linear regression, demonstrating good agreement with simulation results and providing a practical tool for the residual life assessment and maintenance planning of in-service pipelines. Full article
Show Figures

Figure 1

19 pages, 5077 KB  
Article
The Influence of Microstructure on Decisions Regarding Repurposing Natural Gas Pipelines for Hydrogen Service
by Jonathan Parker, Mike Gagliano and Eeva Griscom
Metals 2026, 16(1), 103; https://doi.org/10.3390/met16010103 - 16 Jan 2026
Viewed by 243
Abstract
Empirical approaches alone have significant limitations for accurate estimation of the fracture toughness of welds in gas line pipes being considered for repurposing to hydrogen service. These problems arise because most samples machined from ex-service welds contain a range of microstructures. The different [...] Read more.
Empirical approaches alone have significant limitations for accurate estimation of the fracture toughness of welds in gas line pipes being considered for repurposing to hydrogen service. These problems arise because most samples machined from ex-service welds contain a range of microstructures. The different microstructural zones have different properties and even when compact tension samples with side grooves are utilized, it is unlikely that plane strain conditions are achieved during laboratory testing. Thus, the measured toughness may not be directly relevant to assessing in-service performance. The present research has been undertaken as part of an integrated series of projects seeking to define a robust protocol for assessing the damage tolerance of piping used for the transmission of hydrogen, especially when considering repurposing existing infrastructure. The key work described in this paper involved establishing heat treatments which produced microstructures relevant to the constituents found in ex-service welds of X46 type steel. Following comprehensive microstructural characterization, these heat treatments were applied to steel sections which allowed for the fabrication of standard compact tension specimens, which were subsequently tested in hydrogen to measure fracture toughness. The results obtained showed that the fracture behavior varied for different microstructures. To identify the influence that hydrogen gas has on the performance of pipeline steels, it is important to assess microstructures relevant to the welds present, as testing only on base metal may not provide conservative information. However, the results from well-planned and carefully executed programs can be used to identify the relative performance in hydrogen. The data can also be used as critical input to models which form part of an integrated approach to structural integrity assessment. Full article
Show Figures

Figure 1

15 pages, 6954 KB  
Article
The Influence of Surface State and Weldment on the Corrosion Behavior of X65 Steel in Seawater and Production Water Environments
by Pei Li, Yulong Wei, Qingjian Liu, Yvcan Liu and Zhenhao Sun
J. Manuf. Mater. Process. 2026, 10(1), 35; https://doi.org/10.3390/jmmp10010035 - 14 Jan 2026
Viewed by 249
Abstract
In this study, the service behavior of an X65 oil and gas pipeline in seawater and production water environments was simulated by a corrosion experiment, and the influence of surface treatment (polishing and scratching) on its corrosion behavior was systematically analyzed. The corrosion [...] Read more.
In this study, the service behavior of an X65 oil and gas pipeline in seawater and production water environments was simulated by a corrosion experiment, and the influence of surface treatment (polishing and scratching) on its corrosion behavior was systematically analyzed. The corrosion resistance of the material was evaluated by means of scanning electron microscopy (SEM), an electrochemical test, and uniform corrosion rate calculations. The results show that the corrosion degree of X65 steel in an oilfield production water environment is significantly higher than that in a seawater environment. The uniform corrosion rate of the welding area is as high as 1.05 mm/y, which is more sensitive than that of the matrix material. The surface treatment has a significant effect on the corrosion behavior. The polishing treatment reduces the corrosion current density of the matrix material from 472.44 μA/cm2 to 313.10 μA/cm2, and the polarization resistance increases to 14.07 kΩ·cm2, which effectively improves its corrosion resistance. The scratch treatment significantly reduces the corrosion resistance of the material, and the corrosion current density of the welding area at the scratch site is as high as 313.00 μA/cm2, even more than that of the untreated matrix material. The study further points out that the scratches and welding areas generated during the pipeline cleaning process will significantly aggravate the tendency of local corrosion and pitting corrosion due to their microstructure heterogeneity. This study provides a clear theoretical basis and engineering guidance for the anti-corrosion design and maintenance of offshore oil and gas pipelines in complex water quality environments. Full article
Show Figures

Figure 1

10 pages, 2164 KB  
Article
Study on the Influence of Three Current Forms on the Cathodic Protection Effect of Pipeline Intelligent Test Piles
by Man Liu, Han Dong, Naixin Lv, Weijie An, Jufeng Huang, Yun Gao, Yinjuan Sun, Yuntao Xi and Lei Wang
Coatings 2026, 16(1), 99; https://doi.org/10.3390/coatings16010099 - 12 Jan 2026
Viewed by 201
Abstract
In order to explore the influence of different current forms on the protection effect of cathodic protection systems for intelligent test piles of oil and gas gathering and transportation pipelines, X80 steel was taken as the research object to simulate the soil corrosion [...] Read more.
In order to explore the influence of different current forms on the protection effect of cathodic protection systems for intelligent test piles of oil and gas gathering and transportation pipelines, X80 steel was taken as the research object to simulate the soil corrosion environment, and cathodic protection performance test experiments were carried out under three current forms: direct current (DC), conventional pulse (P) and high-frequency pulse (HP). Through a polarization curve test, electrochemical impedance spectroscopy (EIS) analysis, surface morphology observation and corrosion rate test, the effects of three current forms on cathodic polarization effect, polarization resistance, corrosion product composition and protection efficiency were compared. The results show that high-frequency pulse current can make the pipeline steel reach the protection potential in a shorter time, and under the same average current density, its polarization resistance is 23.6% and 15.8% higher than that of DC and conventional pulse, respectively. The anti-interference ability of conventional pulse current is better than that of DC. In the presence of stray current, the fluctuation amplitude of protection potential is only 21.1% of DC. The protection stability of DC is good, but the polarization speed is slow, and the phenomenon of “over protection” easily occurs in the process of long-term protection. Combined with economic analysis, high-frequency pulse current has significant advantages in high-corrosion-risk environments. Conventional pulse is suitable for stray current interference areas, while DC is more suitable for long-distance pipeline protection with low corrosion risk. The research results can provide a theoretical basis and technical support for the selection of the current form of pipeline cathodic protection systems. Full article
Show Figures

Figure 1

16 pages, 6491 KB  
Article
Hydrogen Damage Behavior of X80 Pipeline Steel Under AC Interference
by Tong Li, Zhihui Li, Kejun Jiang, Yuxiang Cai, Wan Sun, Ziyong He, Jun Zhao, Tao Cao, Junjun Jin, Wenjing Chen and Guoqing Gou
Materials 2025, 18(24), 5487; https://doi.org/10.3390/ma18245487 - 5 Dec 2025
Viewed by 357
Abstract
X80 pipeline steel is a key material in the field of oil and gas transportation. Its damage behavior in a hydrogen-filled environment directly affects pipeline safety. In this study, through hydrogen permeation experiments and slow strain rate tensile tests, the electrochemical responses and [...] Read more.
X80 pipeline steel is a key material in the field of oil and gas transportation. Its damage behavior in a hydrogen-filled environment directly affects pipeline safety. In this study, through hydrogen permeation experiments and slow strain rate tensile tests, the electrochemical responses and hydrogen-induced cracking behaviors of X80 base metal and welded joints under hydrogen filling conditions in both AC and DC were systematically compared. The results show that when the base material is filled with hydrogen at 20 mA/cm2 AC, the hydrogen permeation flux is the largest, and the overall hydrogen permeation parameter of the welded joint is lower than that of the base material. High-frequency polarization promotes hydrogen permeation, but anodic corrosion products at high current densities can impede hydrogen entry. The slow strain rate tensile test further confirmed that the mechanical properties of the material declined more significantly under direct current hydrogen charging, and the sensitivity to stress corrosion cracking was higher. Under alternating hydrogen charging conditions, due to the alternating effects of hydrogen charging at the cathode and corrosion at the anode, a relatively low hydrogen embrittlement sensitivity is exhibited. Full article
Show Figures

Figure 1

11 pages, 9420 KB  
Article
Microstructure Evolution and Toughening Mechanisms in the Nugget Zone of Friction-Stir-Welded X80 Pipeline Steel
by Miaoye Han, Min Yang, Yinhui Rao, Xiong Luo, Ruihai Duan, Sheng Guo, Ying Dong and Shujin Chen
Coatings 2025, 15(12), 1384; https://doi.org/10.3390/coatings15121384 - 26 Nov 2025
Viewed by 388
Abstract
Coarse grains and blocky M-A constituents are often generated in the heat-affected zone (HAZ) of fusion welded pipeline steel joints owing to high heat input, causing a significant deterioration of toughness. This study demonstrated the effect of heat input in friction stir welding [...] Read more.
Coarse grains and blocky M-A constituents are often generated in the heat-affected zone (HAZ) of fusion welded pipeline steel joints owing to high heat input, causing a significant deterioration of toughness. This study demonstrated the effect of heat input in friction stir welding (FSW) on the microstructure and toughness of the nugget zone (NZ), elucidating the microstructure evolution and toughening mechanism. The results revealed a marked reduction in effective grain size within the NZ at low heat input (LHI) and a significant increase in the ratio of the refined M-A constituent. Furthermore, the decreased heat input leads to weak texture components (D1, D2, and F) accompanied by a decrease in the kernel average misorientation (KAM) value. This microstructural optimization clearly enhances toughness, and an excellent toughness value of 200 J, representing 95.3% of the basal metal (BM), was achieved in the NZ at LHI. The primary reason for this improvement is the refinement of effective grains and M-A constituents resulting from reduced heat input. During crack propagation, the high proportion of effective grain boundaries and fine M-A constituents acts as a barrier, arresting and deflecting cracks and thereby enhancing toughness. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

19 pages, 7806 KB  
Article
Investigation on the Microstructure and Mechanical Properties of X70 Pipeline Steel Fabricated by Laser-Directed Energy Deposition
by Zhandong Wang, Chunke Wang, Linzhong Wu and Guifang Sun
Materials 2025, 18(21), 4997; https://doi.org/10.3390/ma18214997 - 31 Oct 2025
Viewed by 697
Abstract
The laser-directed energy deposition (L-DED) technique, with its excellent environmental adaptability and superior repair capability, shows great potential for the repair of damaged X70 pipeline steel. In this work, the microstructure and mechanical properties of L-DED repaired X70 steel were systematically investigated. The [...] Read more.
The laser-directed energy deposition (L-DED) technique, with its excellent environmental adaptability and superior repair capability, shows great potential for the repair of damaged X70 pipeline steel. In this work, the microstructure and mechanical properties of L-DED repaired X70 steel were systematically investigated. The deposited material exhibited inhomogeneity along the building direction. From the bottom to the top, the grains gradually coarsened, and the proportion of polygonal ferrite increased. This was mainly attributed to increasing thermal accumulation with deposition height, which reduced the cooling rate and promoted solid-state transformations at higher temperatures. Meanwhile, the heat accumulation and intrinsic heat treatment reduced the dislocation density and promoted Fe3C precipitation within grains and along boundaries. Microhardness was highest in the bottom region and decreased along the building direction due to the gradual coarsening of microstructure and decreasing in dislocation density. The L-DED X70 showed lower yield strength (435 MPa) and ultimate tensile strength (513 MPa) compared to the base material and API 5L requirements. The elongation of the L-DED X70 was 42.9%, which was 58% higher than that of the base material, indicating excellent ductility. These results revealed a thermal history-dependent strength–ductility trade-off in the L-DED repaired X70 steel. Therefore, more efforts are needed to control the L-DED thermal process, tailor the microstructure, enhance strength, and meet the service requirements of harsh environments. Full article
Show Figures

Figure 1

15 pages, 2156 KB  
Article
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
by Xiaopeng Yan, Xinran Lian, Jiuqing Ban, Wanjun He, Song Deng, Wei Yang and Duo Chen
Processes 2025, 13(11), 3458; https://doi.org/10.3390/pr13113458 - 28 Oct 2025
Cited by 1 | Viewed by 539
Abstract
This study investigates the performance degradation of X70 steel weld material in high-pressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments, including varying gas media (nitrogen, methane, hydrogen-blended), pressure conditions (0.1–10 [...] Read more.
This study investigates the performance degradation of X70 steel weld material in high-pressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments, including varying gas media (nitrogen, methane, hydrogen-blended), pressure conditions (0.1–10 MPa), and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests, combined with fracture morphology and microstructure analysis, reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses, including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment, while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 3885 KB  
Article
Experimental and Machine Learning-Based Assessment of Fatigue Crack Growth in API X60 Steel Under Hydrogen–Natural Gas Blending Conditions
by Nayem Ahmed, Ramadan Ahmed, Samin Rhythm, Andres Felipe Baena Velasquez and Catalin Teodoriu
Metals 2025, 15(10), 1125; https://doi.org/10.3390/met15101125 - 10 Oct 2025
Viewed by 1393
Abstract
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior [...] Read more.
Hydrogen-assisted fatigue cracking presents a critical challenge to the structural integrity of legacy carbon steel natural gas pipelines being repurposed for hydrogen transport, posing a major barrier to the deployment of hydrogen infrastructure. This study systematically evaluates the fatigue crack growth (FCG) behavior of API 5L X60 pipeline steel under varying hydrogen–natural gas (H2–NG) blending conditions to assess its suitability for long-term hydrogen service. Experiments are conducted using a custom-designed autoclave to replicate field-relevant environmental conditions. Gas mixtures range from 0% to 100% hydrogen by volume, with tests performed at a constant pressure of 6.9 MPa and a temperature of 25 °C. A fixed loading frequency of 8.8 Hz and load ratio (R) of 0.60 ± 0.1 are applied to simulate operational fatigue loading. The test matrix is designed to capture FCG behavior across a broad range of stress intensity factor values (ΔK), spanning from near-threshold to moderate levels consistent with real-world pipeline pressure fluctuations. The results demonstrate a clear correlation between increasing hydrogen concentration and elevated FCG rates. Notably, at 100% hydrogen, API X60 specimens exhibit crack propagation rates up to two orders of magnitude higher than those in 0% hydrogen (natural gas) conditions, particularly within the Paris regime. In the lower threshold region (ΔK ≈ 10 MPa·√m), the FCG rate (da/dN) increased nonlinearly with hydrogen concentration, indicating early crack activation and reduced crack initiation resistance. In the upper Paris regime (ΔK ≈ 20 MPa·√m), da/dNs remained significantly elevated but exhibited signs of saturation, suggesting a potential limiting effect of hydrogen concentration on crack propagation kinetics. Fatigue life declined substantially with hydrogen addition, decreasing by ~33% at 50% H2 and more than 55% in pure hydrogen. To complement the experimental investigation and enable predictive capability, a modular machine learning (ML) framework was developed and validated. The framework integrates sequential models for predicting hydrogen-induced reduction of area (RA), fracture toughness (FT), and FCG rate (da/dN), using CatBoost regression algorithms. This approach allows upstream degradation effects to be propagated through nested model layers, enhancing predictive accuracy. The ML models accurately captured nonlinear trends in fatigue behavior across varying hydrogen concentrations and environmental conditions, offering a transferable tool for integrity assessment of hydrogen-compatible pipeline steels. These findings confirm that even low-to-moderate hydrogen blends significantly reduce fatigue resistance, underscoring the importance of data-driven approaches in guiding material selection and infrastructure retrofitting for future hydrogen energy systems. Full article
(This article belongs to the Special Issue Failure Analysis and Evaluation of Metallic Materials)
Show Figures

Figure 1

22 pages, 4837 KB  
Article
Predictive Correlation Between Hardness and Tensile Properties of Submerged Arc Welded API X70 Steel
by Ali Lahouel, Sameh Athmani, Amel Sedik, Adel Saoudi, Regis Barille, Lotfi Khezami, Ahlem Guesmi and Mamoun Fellah
Materials 2025, 18(19), 4482; https://doi.org/10.3390/ma18194482 - 25 Sep 2025
Viewed by 1189
Abstract
This research investigates the statistical correlation between Vickers hardness and tensile properties of helical submerged arc welded high-strength low-alloy (HSLA) API X70 pipeline steel. Tensile tests were performed on cross-weld joints from 138 pipe specimens. Vickers hardness measurements were also conducted on 138 [...] Read more.
This research investigates the statistical correlation between Vickers hardness and tensile properties of helical submerged arc welded high-strength low-alloy (HSLA) API X70 pipeline steel. Tensile tests were performed on cross-weld joints from 138 pipe specimens. Vickers hardness measurements were also conducted on 138 samples to evaluate the hardness distribution across the base metal, fusion zone, and heat-affected zone. Results show that the fusion zone exhibits the highest hardness, correlating with enhanced tensile strength (R2 = 82%). Linear regression models indicate that base metal hardness significantly influences yield strength (R2 = 71%), while moderate negative correlations exist with elongation (R2 = 54%). These findings suggest that hardness measurements can serve as a non-destructive predictive tool for tensile properties, improving weld quality and mechanical performance. This research provides empirical models that enhance the application of API X70 in critical engineering applications, improving pipeline safety and reliability. Full article
Show Figures

Figure 1

16 pages, 13876 KB  
Article
Effect of Electrochemical Hydrogen Charging on the Notch Tensile Properties of Natural Gas Transportation Pipeline Steel with Electroless-Plated Coatings and Their Adhesiveness Characterization
by Ladislav Falat, Lucia Čiripová, Viktor Puchý, Ivan Petrišinec and Róbert Džunda
Metals 2025, 15(9), 1032; https://doi.org/10.3390/met15091032 - 18 Sep 2025
Cited by 1 | Viewed by 1483
Abstract
Traditional natural gas transportation pipeline steels, such as API 5L X42 grade and the higher grades, are currently receiving a lot of attention in terms of their potential implementation in hydrogen transmission infrastructure. However, the microstructural constitution of steels with a ferrite phase [...] Read more.
Traditional natural gas transportation pipeline steels, such as API 5L X42 grade and the higher grades, are currently receiving a lot of attention in terms of their potential implementation in hydrogen transmission infrastructure. However, the microstructural constitution of steels with a ferrite phase and the presence of welds, with their non-polyhedral “sharp” microstructures acting as structural notches, make these steels prone to hydrogen embrittlement (HE). In this work, the notch tensile properties of copper- or nickel–phosphorus-coated API 5L X42 grade pipeline steel were studied in both the non-hydrogenated and electrochemically hydrogen-charged conditions in order to estimate anticipated protective effects of the coatings against HE. Both the Cu and Ni–P coatings were produced using conventional coating solutions for electroless plating. To study the material systems’ HE sensitivity, electrochemical hydrogenation of cylindrical, circumferentially V-notched tensile specimens was performed in a solution of hydrochloric acid with the addition of hydrazine sulfate. Notch tensile tests were carried out for the uncoated steel, Cu-coated steel, and Ni–P-coated steel at room temperature. The HE resistance was evaluated by determination of the hydrogen embrittlement index (HEI) in terms of relative changes in notch tensile properties related to the non-hydrogenated and hydrogen-charged material conditions. The results showed that pure electroless deposition of both coatings induced some degree of HE, likely due to the presence of hydrogen ions in the coating solutions used and the lower surface quality of the coatings. However, after the electrochemical hydrogen charging, the coated systems showed improved HE resistance (lower HEIRA values) compared with the uncoated material. This behavior was accompanied by the hydrogen-induced coatings’ deterioration, including the occurrence of superficial defects, such as bubbling, flocks, and spallation. Thus, further continuing research is needed to improve the coatings’ surface quality and long-term durability, including examination of their performance under pressurized hydrogen gas charging conditions. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

Back to TopTop