Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (467)

Search Parameters:
Keywords = Wnt-C59

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1858 KiB  
Review
Mechanistic Insights into the Pathogenesis of Polycystic Kidney Disease
by Qasim Al-orjani, Lubna A. Alshriem, Gillian Gallagher, Raghad Buqaileh, Neela Azizi and Wissam AbouAlaiwi
Cells 2025, 14(15), 1203; https://doi.org/10.3390/cells14151203 - 5 Aug 2025
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and [...] Read more.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and function. Loss of PC1/PC2 disrupts calcium homeostasis, elevates cAMP, and activates proliferative cascades such as PKA–B-Raf–MEK–ERK, mTOR, and Wnt, driving cystogenesis via epithelial proliferation, impaired apoptosis, fluid secretion, and fibrosis. Recent evidence also implicates novel signaling axes in ADPKD progression including, the Hippo pathway, where dysregulated YAP/TAZ activity enhances c-Myc-mediated proliferation; the stimulator of interferon genes (STING) pathway, which is activated by mitochondrial DNA release and linked to NF-κB-driven inflammation and fibrosis; and the TWEAK/Fn14 pathway, which mediates pro-inflammatory and pro-apoptotic responses via ERK and NF-κB activation in tubular cells. Mitochondrial dysfunction, oxidative stress, and maladaptive extracellular matrix remodeling further exacerbate disease progression. A refined understanding of ADPKD’s complex signaling networks provides a foundation for precision medicine and next-generation therapeutics. This review gathers recent molecular insights and highlights both established and emerging targets to guide targeted treatment strategies in ADPKD. Full article
33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 332
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

16 pages, 2106 KiB  
Article
ERα36 Promotes MDR1-Mediated Adriamycin Resistance via Non-Genomic Signaling in Triple-Negative Breast Cancer
by Muslimbek Mukhammad Ugli Poyonov, Anh Thi Ngoc Bui, Seung-Yeon Lee, Gi-Ho Lee and Hye-Gwang Jeong
Int. J. Mol. Sci. 2025, 26(15), 7200; https://doi.org/10.3390/ijms26157200 - 25 Jul 2025
Viewed by 187
Abstract
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role [...] Read more.
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role of ERα36 in regulating multidrug resistance protein 1 (MDR1) in MDA-MB-231 human breast cancer cells. The activation of ERα36 by BSA-conjugated estradiol (BSA-E2) increased cell viability under Adriamycin exposure, suggesting its involvement in promoting drug resistance. BSA-E2 treatment significantly reduced the intracellular rhodamine-123 levels by activating the MDR1 efflux function, which was linked to increased MDR1 transcription and protein expression. The mechanical ERα36-mediated BSA-E2-induced activation of EGFR and downstream signaling via c-Src led to an activation of the Akt/ERK pathways and transcription factors, NF-κB and CREB. Additionally, ERα36 is involved in activating Wnt/β-catenin pathways to induce MDR1 expression. The silencing of ERα36 inhibited the BSA-E2-induced phosphorylation of Akt and ERK, thereby reducing MDR1 expression via downregulation of NF-κB and CREB as well as Wnt/β-catenin signaling. These findings demonstrated that ERα36 promotes MDR1 expression through multiple non-genomic signaling cascades, including Akt/ERK-NF-κB/CREB and Wnt/β-catenin pathways, and highlight the role of ERα36 as a promising target to enhance chemotherapeutic efficacy in TNBC. Full article
(This article belongs to the Special Issue Drug Resistance Mechanisms in Human Cancer Cells to Anticancer Drugs)
Show Figures

Figure 1

18 pages, 8559 KiB  
Article
Recombinant Type XVII Collagen Promotes Hair Growth by Activating the Wnt/β-Catenin and SHH/GLI Signaling Pathways
by Yuyao Zhang, Shiyu Yin, Ru Xu, Jiayu Xiao, Rui Yi, Jiahui Mao, Zhiguang Duan and Daidi Fan
Cosmetics 2025, 12(4), 156; https://doi.org/10.3390/cosmetics12040156 - 23 Jul 2025
Viewed by 689
Abstract
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the [...] Read more.
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the urgent need to explore safer and more effective agents to promote hair restoration. This study investigated the role of recombinant human type XVII collagen derived from the α1 chain (rhCOL17A1) in facilitating hair growth and restoration. (2) Methods: We analyzed the impact of rhCOL17A1 on the mRNA expression of several growth factors, as well as Bcl-2 and Bax, at the cellular level. Moreover, the effects of rhCOL17A1 on the expression of key proteins in the Wnt/β-catenin and Sonic Hedgehog (SHH)/GLI signaling pathways were examined by Western blotting (WB). At the organismal level, we established a model in C57BL/6 mice through chronic subcutaneous administration of 5% testosterone propionate. We subsequently assessed the effect of rhCOL17A1 on hair regrowth via histological analysis using hematoxylin and eosin (H&E) staining and immunofluorescence staining. (3) Results: rhCOL17A1 contributes to the resistance of hair follicle dermal papilla cells (HFDPCs) to apoptosis. rhCOL17A1 activates the Wnt/β-catenin and SHH/GLI signaling pathways, and increases the expression of type XVII collagen (COLXVII), thereby creating a favorable environment for hair growth. Furthermore, rhCOL17A1 exerts a significant growth-promoting effect at the animal level. (4) Conclusions: rhCOL17 promotes hair growth by activating the Wnt/β-catenin and SHH/GLI signaling pathways and upregulating COLXVII expression. Full article
Show Figures

Figure 1

19 pages, 2501 KiB  
Article
Genes Encoding Multiple Modulators of the Immune Response Are Methylated in the Prostate Tumor Microenvironment of African Americans
by Vinay Kumar, Tara Sinta Kartika Jennings, Lucas Ueta, James Nguyen, Liankun Song, Michael McClelland, Weiping Chu, Michael Lilly, Michael Ittmann, Patricia Castro, Arash Rezazadeh Kalebasty, Dan Mercola, Omid Yazdanpanah, Xiaolin Zi and Farah Rahmatpanah
Cancers 2025, 17(14), 2399; https://doi.org/10.3390/cancers17142399 - 19 Jul 2025
Viewed by 444
Abstract
Background/Objectives: Prostate cancer (PCa) is diagnosed at an earlier median age, more advanced stage, and has worse clinical outcomes in African American (AA) men compared to European Americans (EA). Methods: To investigate the role of aberrant DNA methylation in tumor-adjacent stroma [...] Read more.
Background/Objectives: Prostate cancer (PCa) is diagnosed at an earlier median age, more advanced stage, and has worse clinical outcomes in African American (AA) men compared to European Americans (EA). Methods: To investigate the role of aberrant DNA methylation in tumor-adjacent stroma (TAS), methyl binding domain sequencing (MBD-seq) was performed on AA (n = 17) and EA (n = 15) PCa patients. This was independently confirmed using the long interspersed nuclear element-1 (LINE-1) assay. Pathway analysis was performed on statistically significantly differentially methylated genes for AA and EA TAS. DNA methylation profiles of primary cultured AA and EA carcinoma-associated fibroblasts (CAFs) were compared with AA and EA TAS. AA and EA CAFs were treated with demethylating agent 5-Azacytidine (5-AzaC). Results: AA TAS exhibited higher global DNA methylation than EA TAS (p-value < 0.001). Of the 3268 differentially methylated regions identified (DMRs, p-value < 0.05), 85% (2787 DMRs) showed increased DNA methylation in AA TAS, comprising 1648 genes, of which 1379 were protein-coding genes. Based on DNA methylation levels, two AA subgroups were identified. Notably, AA patients with higher DNA methylation were predominantly those with higher Gleason scores. Pathway analysis linked methylated genes in AA TAS to several key signaling pathways (p-value < 0.05), including immune response (e.g., IL-1, IL-15, IL-7, IL-8, IL-3, and chemokine), Wnt/β-catenin, androgen, PTEN, p53, TGF-β, and circadian clock regulation. A total of 168 concordantly methylated genes were identified, with 109 genes (65%) showing increased methylation in AA CAFs and TAS (p-value < 0.05). Treatment with 5-AzaC significantly reduced DNA methylation of concordant genes in AA CAFs (p-value < 0.001). Conclusions: These findings suggest a distinct stromal methylome in AA, providing a foundation for integrating demethylating agents into standard therapies. This approach targets the tumor microenvironment, potentially addressing PCa disparities in AA men. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

35 pages, 1672 KiB  
Review
Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives
by Xingmei Mao, Sixue Peng, Yan Lu and Linjiang Song
Cells 2025, 14(14), 1073; https://doi.org/10.3390/cells14141073 - 14 Jul 2025
Viewed by 631
Abstract
Cancer represents a significant global health hazard marked by elevated morbidity and mortality rates. Furthermore, the majority of tumor therapies encounter challenges, including metastasis, recurrence, and drug resistance. Consequently, it is essential to identify a specific and efficient tumor treatment approach. In recent [...] Read more.
Cancer represents a significant global health hazard marked by elevated morbidity and mortality rates. Furthermore, the majority of tumor therapies encounter challenges, including metastasis, recurrence, and drug resistance. Consequently, it is essential to identify a specific and efficient tumor treatment approach. In recent years, the ongoing investigation and comprehension of tumors have led to significant attention towards cancer stem cells (CSCs). CSCs can facilitate tumor progression via self-renewal, differentiation capabilities, and multidrug resistance. Their function as a fundamental contributor to tumor heterogeneity, drug resistance, recurrence, and metastasis has emerged as a significant focus in cancer therapy research. In recent years, microRNAs (miRNAs) have been identified as crucial post-transcriptional regulators in biological processes, including chemosensitivity, self-renewal, apoptosis, invasion, and metastasis of cancer stem cells (CSCs). This paper systematically reviews the molecular mechanisms through which miRNAs influence the characteristics of cancer stem cells by targeting essential genes (e.g., SOX2, EGFR, c-Met) and modulating signaling pathways, including Wnt/β-catenin, Notch, Hedgehog, and PI3K/Akt. Furthermore, we investigated the viability of miRNAs as non-invasive biomarkers for cancer diagnosis and prognosis evaluation, examined the similarities and attributes of pivotal miRNAs in modulating cancer stem cell functionality, and deliberated on therapeutic approaches stemming from miRNA regulation of cancer stem cell activity. We anticipate that this research will yield novel insights into targeted cancer therapy. Full article
(This article belongs to the Collection Cancer Stem Cells and Drug Resistance)
Show Figures

Figure 1

13 pages, 406 KiB  
Article
Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension
by Yahn-Bor Chern, Po-Sheng Lee, Ji-Hung Wang, Jen-Pi Tsai and Bang-Gee Hsu
Medicina 2025, 61(7), 1204; https://doi.org/10.3390/medicina61071204 - 1 Jul 2025
Viewed by 337
Abstract
Background and Objectives: Sclerostin and dickkopf-1 (DKK1), which are Wnt inhibitors, are involved in vascular calcification and atherosclerosis. Atherosclerotic peripheral artery disease (PAD) is highly prevalent, particularly in patients with hypertension. This study aimed to explore the association between serum concentrations of [...] Read more.
Background and Objectives: Sclerostin and dickkopf-1 (DKK1), which are Wnt inhibitors, are involved in vascular calcification and atherosclerosis. Atherosclerotic peripheral artery disease (PAD) is highly prevalent, particularly in patients with hypertension. This study aimed to explore the association between serum concentrations of Wnt pathway inhibitors and PAD in patients with hypertension. Materials and Methods: This cross-sectional trial recruited 92 patients with hypertension. PAD was defined as an ankle-brachial index < 0.9. The levels of sclerostin, DKK1, C-reactive protein (CRP), and other biochemical markers were assessed using fasting blood samples. Univariate and multivariate logistic regression and receiver operating characteristic curve analyses were conducted. Results: Patients with PAD (15.2%) had significantly higher serum sclerostin (p < 0.001) and CRP (p = 0.001) levels than those without PAD. However, the two groups did not significantly differ in terms of the DKK1 levels. Based on the multivariate analysis, sclerostin was an independent predictor of PAD (odds ratio: 1.054 per 1 pmol/L increase, 95% confidence interval: 1.019–1.090, p = 0.002) after adjusting for body mass index, fasting glucose levels, diabetes, smoking, and CRP levels. Sclerostin had a strong discriminatory power for diagnosing PAD according to the receiver operating characteristic curve analysis (area under the curve: 0.806, p < 0.001), with the best cutoff value of 71.5 pmol/L (sensitivity: 71.4%, specificity: 78.2%). Further, sclerostin was negatively associated with the ankle-brachial index, renal function, and dyslipidemia markers. Conclusions: Serum sclerostin levels are independently related to an increased risk for PAD in patients with hypertension. Therefore, it can be a potential biomarker for risk stratification and early diagnosis. Full article
(This article belongs to the Special Issue Current Advances in Cardiovascular Disease Research)
Show Figures

Figure 1

46 pages, 3995 KiB  
Review
Addressing Immune Response Dysfunction in an Integrated Approach for Testing and Assessment for Non-Genotoxic Carcinogens in Humans: A Targeted Analysis
by Annamaria Colacci, Emanuela Corsini and Miriam Naomi Jacobs
Int. J. Mol. Sci. 2025, 26(13), 6310; https://doi.org/10.3390/ijms26136310 - 30 Jun 2025
Viewed by 376
Abstract
Most known chemical carcinogens induce the direct activation of DNA damage, either directly or following metabolic activation. However, carcinogens do not always operate directly through genotoxic mechanisms but can do so via non-genotoxic carcinogenic (NGTxC) mechanisms. Immune dysfunction is one of these key [...] Read more.
Most known chemical carcinogens induce the direct activation of DNA damage, either directly or following metabolic activation. However, carcinogens do not always operate directly through genotoxic mechanisms but can do so via non-genotoxic carcinogenic (NGTxC) mechanisms. Immune dysfunction is one of these key events that NGTxCs have been shown to modify. The immune system is a first line of defence against transformed cells, with an innate immune response against cancer cells and mechanisms of immune evasion. Here, we review the key events of immune dysfunction. These include immunotoxicity, immune evasion, immune suppression and inflammatory-mediated immune responses, and the key players in the molecular disruption of immune anti-cancer molecular signalling pathways, particularly those mediated by cytokines and the Aryl hydrocarbon Receptor, in relation to the identification of NGTxC. The plasticity of cytokines towards functional flexibility in response to environmental stressors is also discussed from an evolutionary heritage perspective. This is combined with a critical assessment of the suitability for the regulatory application of currently available test method tools and is corroborated by the key biomarkers of, e.g., MAPK, mTOR, PD-L1, TIL and Tregs, CD8+, FoxP3+, WNT, IL-17, IL-11, IL-10, and TNFα, as identified from robust cancer biopsy studies. Finally, an understanding of how to address these endpoints for chemical hazard regulatory purposes, within an integrated approach to testing and assessment for NGTxC, is proposed. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 3850 KiB  
Article
Mitogen-Activated Protein Kinase Kinase Kinase 1 Overexpression Disrupts Development of the Ocular Surface Epithelium
by Maureen Mongan, Bo Xiao, Antonius Christianto, Yueh-Chiang Hu and Ying Xia
Cells 2025, 14(12), 894; https://doi.org/10.3390/cells14120894 - 13 Jun 2025
Viewed by 424
Abstract
Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is a key signaling molecule essential for eyelid closure during embryogenesis. In mice, Map3k1 knockout leads to a fully penetrant eye-open at birth (EOB) phenotype due to disrupted MAPK signaling, abnormal epithelial differentiation, and morphogenesis. To [...] Read more.
Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is a key signaling molecule essential for eyelid closure during embryogenesis. In mice, Map3k1 knockout leads to a fully penetrant eye-open at birth (EOB) phenotype due to disrupted MAPK signaling, abnormal epithelial differentiation, and morphogenesis. To further explore the roles of MAP3K1 in ocular development, we generated a Cre-inducible gain-of-function transgenic mouse, designated as Map3k1TG, and crossed it with Lens epithelial (Le)-Cre mice to drive MAP3K1 overexpression in developing ocular surface epithelium (OSE). Map3k1TG;Le-Cre embryos exhibited ocular defects including premature eyelid closure, lens degeneration, and corneal edema. While corneal epithelial differentiation remained intact, the lens epithelium degenerated with lens formation compromised. Eyelid epithelium was markedly thickened, containing cells with aberrant keratin (K)14/K10 co-expression. Genetic rescue experiments revealed that Map3k1TG;Le-Cre restored eyelid closure in Map3k1 knockout mice, whereas MAP3K1 deficiency attenuated the epithelial thickening caused by transgene expression. Mechanistically, MAP3K1 overexpression enhanced c-Jun phosphorylation in vivo and activated JNK-c-Jun, WNT, TGFβ, and Notch signaling and promoted keratinocyte proliferation and migration in vitro. These findings highlight a dose-sensitive role for MAP3K1 in regulating epithelial proliferation, differentiation, and morphogenesis during eyelid development. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 577 KiB  
Article
Molecular Crosstalk Between SIRT1, Wnt/β-Catenin Signaling, and Inflammatory Pathways in Renal Transplant Rejection: Role of miRNAs, lncRNAs, IL-1, IL-6, and Tubulointerstitial Inflammation
by Nurhak Aksungur, Murat Kizilkaya, Necip Altundaş, Eda Balkan, Salih Kara, Elif Demirci and Abdullah Uyanik
Medicina 2025, 61(6), 1073; https://doi.org/10.3390/medicina61061073 - 11 Jun 2025
Viewed by 774
Abstract
Background/Objectives: This study aimed to evaluate the relationship between sirtuin family members (SIRT1, SIRT3, and SIRT6) and Wnt/β-catenin pathways with inflammation during the rejection process following kidney transplantation, as well as to explore their potential roles as candidate biomarkers. Materials and Methods [...] Read more.
Background/Objectives: This study aimed to evaluate the relationship between sirtuin family members (SIRT1, SIRT3, and SIRT6) and Wnt/β-catenin pathways with inflammation during the rejection process following kidney transplantation, as well as to explore their potential roles as candidate biomarkers. Materials and Methods: Blood samples were collected from 35 kidney transplant rejection patients and 30 healthy controls. The gene expression levels of SIRT1, SIRT3, SIRT6, and Wnt/β-catenin pathway components were measured using real-time PCR, and miRNA and lncRNA expression levels were analyzed. Statistical analyses were performed using SPSS version 23. Results: Significant alterations in SIRT1, SIRT3, and SIRT6 expression levels were observed in rejection patients, suggesting their potential role in disease pathogenesis and as therapeutic biomarkers. Key altered genes included hsa-miR-34c-1, hsa-miR-122b-5b, MALAT1, HOTAIR, LINC00473, TUG, PVT1, SIRT1, SIRT3, SIRT6, WNT1, TCF-LEF, LRP, AXIN1, IL1B, IL6, and IFNB1, all showing significant changes. However, no significant differences were found for miRNAs such as hsa-miR-21-2, hsa-miR-155-5p, and hsa-miR-200b-3p. SIRT1 expression was significantly decreased in the cellular rejection group, with a more pronounced reduction in these patients. Significant differences in SIRT1 expression were observed with interstitial inflammation and glomerulitis. Increased inflammation severity correlated with decreased SIRT1 and increased TCF-LEF, TUG, and miR-21 levels, while tubulitis severity was associated with elevated TCF-LEF and miR-155 expression. Conclusions: Along with the activation of Wnt/β-catenin pathways and increased levels of certain miRNAs and long non-coding RNAs (lncRNAs) associated with TCF-LEF transcription factors, the observed decrease in SIRT1 expression may be related to the severity of inflammation and tubulitis. These findings suggest that SIRT1, Wnt/β-catenin pathways, and non-coding RNAs play a role in the rejection process following kidney transplantation and could be considered as potential biomarkers or therapeutic target candidates for future research. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

19 pages, 28236 KiB  
Article
Ano5 Deficiency Leads to Abnormal Bone Formation via miR-34c-5p/KLF4/β-Catenin in Gnathodiaphyseal Dysplasia
by Shengnan Wang, Shuai Zhang, Huichong Xu, Mingyue Zhang, Xiu Liu, Sirui Liu, Hongyu Li and Ying Hu
Int. J. Mol. Sci. 2025, 26(11), 5267; https://doi.org/10.3390/ijms26115267 - 30 May 2025
Viewed by 546
Abstract
Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease, mainly characterized by enlargement of the mandible, osteosclerosis, and frequent fracture of tubular bone. GDD is caused by heterozygous mutations in Anoctamin 5 (ANO5). We have previously generated an Ano5 knockout [...] Read more.
Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease, mainly characterized by enlargement of the mandible, osteosclerosis, and frequent fracture of tubular bone. GDD is caused by heterozygous mutations in Anoctamin 5 (ANO5). We have previously generated an Ano5 knockout (KO) mice model and validated the phenotypes consistent with GDD patients, including enhanced bone formation and alkaline phosphatase (ALP) activity. Experiments have identified that Ano5 deficiency elevated the osteogenesis of calvaria-derived osteoblasts (mCOBs). In this study, we found that Ano5 deficiency notably inhibited miR-34c-5p expression. Krüppel-Like Factor 4 (Klf4), a target gene of miR-34c-5p confirmed by dual luciferase reporter assay, was up-regulated in Ano5−/− mCOBs, accompanied by activated downstream canonical Wnt/β-catenin signaling and increased expression of β-catenin. Overexpression of miR-34c-5p in Ano5−/− mCOBs inhibited osteogenic capacity by suppressing proliferative capacity, osteoblast-related factor levels, ALP activity, and matrix calcification through regulating KLF4/β-catenin signaling axis. Furthermore, miR-34c-5p adeno-associated virus (AAV) treatment in vivo rescued the abnormally thickened cortical bone and enhanced biomechanical properties in Ano5−/− mice. Importantly, the serum level of P1NP, a marker of bone formation, was also significantly declined. We conclude that dysregulation of miR-34c-5p contributes to the enhanced osteogenesis in GDD by excessive activation of KLF4/β-catenin signaling axis under Ano5-deficient conditions. This study elucidates the pathogenesis of GDD and provides novel insights into the therapeutic strategies. Full article
(This article belongs to the Special Issue Exploring Rare Diseases: Genetic, Genomic and Metabolomic Advances)
Show Figures

Graphical abstract

20 pages, 3657 KiB  
Article
RNA-Seq and WGCNA Identify Key Regulatory Modules and Genes Associated with Water-Holding Capacity and Tenderness in Sheep
by Liming Zhao, Fadi Li, Xiaoxue Zhang, Huibin Tian, Zongwu Ma, Xiaobin Yang, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaolong Li and Weimin Wang
Animals 2025, 15(11), 1569; https://doi.org/10.3390/ani15111569 - 27 May 2025
Viewed by 619
Abstract
Meat quality traits, particularly WHC and tenderness, are pivotal for consumer satisfaction and economic value in the sheep industry. However, their genetic regulatory mechanisms remain unclear. We used RNA-Seq and WGCNA to identify genes regulating WHC and tenderness. Sixty longissimus thoracis samples were [...] Read more.
Meat quality traits, particularly WHC and tenderness, are pivotal for consumer satisfaction and economic value in the sheep industry. However, their genetic regulatory mechanisms remain unclear. We used RNA-Seq and WGCNA to identify genes regulating WHC and tenderness. Sixty longissimus thoracis samples were classified into high/low WHC (HWHC vs. LWHC) and high/low tenderness (HTN vs. LTN) groups. Comparative transcriptomics identified 270 differentially expressed genes (DEGs) linked to WHC, enriched in pathways like the regulation of the ATP metabolic process and the inhibition of canonical Wnt signaling. Key DEGs (e.g., SORBS1, FOXO1, PDE4B, CDH1) correlated significantly with WHC-associated traits. For tenderness, 165 DEGs were identified, including LEP, FABP4, PLIN1, and GLP1R, enriched in PPAR signaling, fat cell differentiation, and cAMP signaling pathways. WGCNA revealed modules associated with WHC and tenderness, with hub genes (ATP2C1, GSKIP, PATL1, PPARA, CYLD) involved in ATP metabolism, lipid biosynthesis, and myofibril assembly. Tissue-specific gene integration prioritized muscle-enriched candidates (METTL21C and ACTC1) with strong trait correlations. Our findings unveil interconnected gene networks governing WHC and tenderness, highlighting some candidate genes as potential biomarkers for precision breeding. This study provides novel insights into the molecular determinants of meat quality, offering actionable targets to enhance mutton production sustainability and consumer appeal. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2889 KiB  
Article
Exploring the Bone–Liver Axis: Impact of Acute Ethanol Intoxication on Post-Traumatic Liver Inflammation and Damage Following Femur Fracture
by Jasmin Maria Bülow, Helen Rinderknecht, Nils Becker, Kernt Köhler, Alessa Wagner, Yuntao Yang, Katrin Bundkirchen, Claudia Neunaber and Borna Relja
Int. J. Mol. Sci. 2025, 26(10), 4923; https://doi.org/10.3390/ijms26104923 - 21 May 2025
Viewed by 499
Abstract
Bone fracture activates the immune system and induces inflammation crucial for fracture healing but may also affect trauma-distant organs like the liver. Acute alcohol intoxication (AAI) dysregulates immune responses and affects organ damage post-trauma. However, the bone–liver axis and alcohol’s role in this [...] Read more.
Bone fracture activates the immune system and induces inflammation crucial for fracture healing but may also affect trauma-distant organs like the liver. Acute alcohol intoxication (AAI) dysregulates immune responses and affects organ damage post-trauma. However, the bone–liver axis and alcohol’s role in this process remain poorly understood. This study explores liver inflammation and damage following fracture, with and without prior AAI. Twenty-four male C57BL/6J mice were randomly assigned to four groups (n = 6) and received either NaCl (control) or 35% ethanol via gavage. Mice underwent femur osteotomy with external fixation or sham surgery. After 24 h, liver damage was assessed using hematoxylin–eosin and activated caspase-3 staining. Liver inflammation was evaluated through CXCL1 and polymorphonuclear leukocyte (PMNL) immunostaining, cytokine gene and protein expression analyses, and immune cell profiling in the liver via flow cytometry. Western blotting assessed NF-κB and Wnt signaling. Neither fracture alone nor with AAI caused significant liver damage. However, fracture significantly increased PMNL infiltration and altered monocyte populations, effects that were amplified by AAI. The hepatic neutrophil-to-monocyte ratio significantly decreased after fracture and was absent in the fracture AAI group. CXCL1 increased post-fracture, while MCP-1 and IL-10 decreased significantly, with AAI further significantly amplifying these changes. Wnt1 and Wnt3a levels increased significantly after fracture and were further strongly elevated by AAI. AAI completely abolished fracture-induced significant β-catenin reduction and significantly increased its phosphorylation, effects that potentially involve an AAI-induced β-catenin stabilization as well as its increased degradation. NF-κB activation was significantly decreased, while A20 expression significantly increased after fracture and AAI. Fracture influences the inflammatory liver response and signaling pathways, effects which were further modulated by AAI. Full article
(This article belongs to the Special Issue Immune-Liver Axis—from Disease Pathogenesis to Therapeutic Target)
Show Figures

Figure 1

22 pages, 10999 KiB  
Article
The Development and Assessment of a Unique Disulfidptosis-Associated lncRNA Profile for Immune Microenvironment Prediction and Personalized Therapy in Gastric Adenocarcinoma
by Jiyue Zhu, Xiang Zhu, Tingting Su, Huiqing Zhou, Shouhua Wang and Weibin Shi
Biomedicines 2025, 13(5), 1224; https://doi.org/10.3390/biomedicines13051224 - 19 May 2025
Viewed by 717
Abstract
Background: Long non-coding RNAs (lncRNAs) are crucial factors affecting the occurrence, progression, and prognosis of gastric carcinoma (GC). The accumulation of disulfide bonds to excessive levels in cells expressing high SLC7A11 triggers disulfidptosis, which functions as a regulated form of cellular death. Research [...] Read more.
Background: Long non-coding RNAs (lncRNAs) are crucial factors affecting the occurrence, progression, and prognosis of gastric carcinoma (GC). The accumulation of disulfide bonds to excessive levels in cells expressing high SLC7A11 triggers disulfidptosis, which functions as a regulated form of cellular death. Research has demonstrated that upregulated SLC7A11 is common in human cancers, but the effect of disulfidptosis on GC remains unclear. Identifying lncRNAs associated with disulfidptosis (drlncRNAs) and establishing a prognostic risk profile holds considerable importance for advancing GC research and treatment. Methods: Clinical records and transcriptomic datasets from individuals with GC were acquired from The Cancer Genome Atlas (TCGA) repository. A three-drlncRNA risk model was built using three common regression analysis methods. Then we used receiver operating characteristic (ROC) curves, independent prognostic analysis, and additional statistical approaches to assess the precision of the model. This investigation additionally encompassed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, immune cell infiltration evaluation, and pharmacological sensitivity predictions. To further investigate immunotherapy response disparities between patient cohorts with elevated- and reduced-risk scores, analyses of tumor mutational burden (TMB), tumor immune dysfunction and exclusion (TIDE), and microsatellite instability (MSI) were implemented. Results: We constructed a unique model composed of three drlncRNAs (AC107021.2, AC016394.2, and AC129507.1). Its independent prognostic capability for GC patients was validated through both single-variable and multivariable Cox regression analyses. GO and KEGG pathway assessments revealed predominant enrichment within the elevated-risk cohort, particularly in pathways involving sulfur compound interactions, traditional Wnt signaling mechanisms, cell-substrate adherens junctions, and cAMP signaling cascades, among others. Tumor microenvironment (TME) evaluation demonstrated elevated ImmuneScores, StromalScores, and ESTIMATEScores within the high-risk patient population. Concurrently, this elevated-risk cohort exhibited enhanced immune cell infiltration patterns, whereas the reduced-risk group displayed superior expression of immune checkpoints (ICPs). Additional investigations revealed that patients categorized into the reduced-risk classification possessed greater tumor mutational burden, increased MSI-high proportions, and diminished tumor immune dysfunction and exclusion scores compared to their high-risk counterparts. Pharmacological sensitivity assessments confirmed the superior efficacy of several therapeutic agents, including gemcitabine and veliparib (ABT.888), in patients with lower risk classifications. Conclusions: Our established risk stratification system demonstrates independent prognostic predictive capacity while offering personalized clinical intervention guidance for individuals diagnosed with GC. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 638 KiB  
Systematic Review
Genetic Determinants of Colonic Diverticulosis—A Systematic Review
by Piotr Nehring and Adam Przybyłkowski
Genes 2025, 16(5), 581; https://doi.org/10.3390/genes16050581 - 15 May 2025
Viewed by 837
Abstract
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim [...] Read more.
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim of this systematic review was to summarize genetic determinants of colonic diverticulosis. Methods: The PubMed® database was searched for original studies in humans. The inclusion criteria were named genetic factor and confirmed diverticulosis. Patients with diverticulitis and diverticular diseases were excluded from this review. Results: Out of 137 publications, 10 articles met the inclusion criteria: six large association studies (GWAS) and four cross-sectional studies. The genes regulating ECM turnover, including TIMP1, MMP3, and MMP9, are involved in diverticulosis development. The TIMP1 (rs4898) T allele has been associated with increased susceptibility, potentially due to its role in ECM remodeling. Similarly, MMP3 (rs3025058) and MMP9 (rs3918242) polymorphisms contribute to altered collagen degradation. The COL3A1 (rs3134646) variant coding modified collagen type III may promote diverticular formation. Other genes, such as ARHGAP15 (rs4662344, rs6736741), affect cytoskeletal dynamics. Identified in GWAS studies, gene candidates may be grouped into blood group and immune system-related genes (ABO, HLA-DQA1, HLA-H, OAS1, TNFSF13, FADD), extracellular matrix and connective tissue genes (COL6A1, COLQ, EFEMP1, ELN, HAS2, TIMP2), signaling and cell communication (BMPR1B, WNT4, RHOU, PHGR1, PCSK5), nervous system and neurodevelopment (BDNF, CACNB2, GPR158, SIRT1, SCAPER, TRPS1), metabolism and transporters (SLC25A28, SLC35F3, RBKS, PPP1R14A, PPP1R16B), lipids and cholesterol (LDAH, LYPLAL1, STARD13), transcription and gene regulation (ZBTB4, UBTF, TNRC6B), apoptosis (FADD, PIAS1), and poorly characterized genes (C1TNF7, ENSG00000224849, ENSG00000251283, LINC01082, DISP2, SNX24, THEM4, UBL4B, UNC50, WDR70, SREK1IP1). Conclusions: There are a number of gene variants that probably predispose to colonic diverticulosis. Detailed characterization of the multigene background of diverticulosis will enable appropriate therapeutic or preventive interventions in the future. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop