Genetic Determinants of Colonic Diverticulosis—A Systematic Review
Abstract
:1. Introduction
2. Methods and Findings
2.1. Criteria for Considering Studies for This Review
2.2. Search Strategy
2.3. Research Results
2.3.1. Genome-Wide Association Search Strategy
2.3.2. Role of Extracellular Matrix (ECM)
Tissue Inhibitors of Metalloproteinases (TIMPs)
Matrix Metalloproteinases (MMPs)
Collagen and Connective Tissue Integrity (COL)
2.3.3. Cytoskeletal Dynamics Genes (ARHGAP15)
2.3.4. Proinflammatory Cytokines (IL, TNF)
Study | Gene | Risk Allele | Population | Age | Ethnicity | Method | DICA Score | OR | SNP’s Effect * | Annotations |
---|---|---|---|---|---|---|---|---|---|---|
Nehring et al. (2025) [35] | COL3A1 rs3134646 ARHGAP15 rs4662344 | C T | 134 cases; 189 controls | Mean 65.31 ± 13.31 vs. 62.80 ± 11.81 | Poles | RT-PCR | 1 | 1.90 3.44 | Not found Not found | Both sexes |
Seo et al. (2024) [16] | JOSD1 ENTPD7 SREK1IP1 TNSF13 SIRT1 AP3M1 PHGR1 CRISPLD2 CCN3 HLA-H LDAH THEM4 | N/A | 172 cases; 232 controls | Mean 55.7 ± 7.30 vs. 53.5 ± 6.24 | Self-reported: 80% white 20% black | Transcriptomics, GWAS, cis-eQTL | 61% distal colon, 35% distal and proximal colon, 4% proximal colon | N/A | Both sexes | |
Nehring et al. (2023) [29] | MMP9 rs3918242 MMP3 rs3025058 | T 5A/5A | 59 cases; 75 controls | Mean 64.5 ± 12.6 vs. 60.9 ± 12.6 | Poles | RT-PCR | 1 | 2.62 2.25 | Not found Not found | Both sexes |
Joo et al. (2023) [37] | ARHGAP15 rs6736741 | C | 12,577 cases; 9200 controls | Cases 62.5 vs. N/A | USA | GWAS, RT-qPCR | N/A | 1.17 | Not found | Both sexes |
Nehring et al. (2021) [28] | TIMP1 rs4898 | T | 100 cases; 120 controls | Mean 64.3 ± 12.4 vs. 61.8 ± 11.1 | Poles | RT-PCR | 1 | N/A | Tolerated | Males |
Choe et al. (2019) [17] | WNT4 rs11799918 WNT4 rs75637000 WNT4 rs2473253 RHOU rs72751907 RHOU rs4993975 RHOU rs11583565 RHOU rs11580020 OAS1, OAS3 rs11066453 OAS1, OAS3 rs2072134 | A T T T C T A G A | 893 cases; 1075 controls Replication: 346 cases; 305 controls | 61.5 ± 5.4 vs. 54.6 ± 8.9 # | Koreans | GWAS; RT-PCR | Right-sided | 1.39 1.366 1.415 0.657 0.676 0.676 0.672 0.694 0.676 | Not found Not found Not found Not found Not found UTR_3 UTR_3 Not found UTR_3 | |
Schafmayer et al. (2019) [15] Listed only newly discovered comparing to Maguire et al. (2018) [14] | SCAPER rs2056544 CTAGE1 rs9960286 TNRC6B rs6001870 C1TNF7 rs4132788 PIAS1 rs387505 SNX24 rs34126945 TIMP2 rs1973232 PPP1R16B rs208814 HLA-DQA1 rs7990 PLEKHA1 rs139760870 ITBP1 rs6714546 STARD13 rs14473813 | G G C T T G G A A A A A | UK Biobank: 31,964 cases; 419,135 controls European replication: 3893 cases; 2829 controls | Median 72 (68–76) vs. 68 (60–73) | European Germans, Austrians, Lithuanians, Swedes | GWAS, RT-PCR | N/A | 0.93 1.14 1.09 1.10 1.10 0.93 1.01 1.02 1.02 0.91 1.03 0.98 | Not found Not found Not found Not found Not found Not found Not found Not found Tolerated Not found Not found Not found | Both sees |
Reichert et al. (2018) [33] | COL3A rs3134646 | A | 422 cases; 285 controls | Median 68 (32–95) vs. 57 (19–83) # | Germans, Lithuanians | RT-PCR | N/A | 1.82 | Not found | Males |
Maguire et al. (2018) [14] | ARHGAP15 rs6734367 SLC35F3 rs4333882 COLQ rs7609897 GPR1581 rs7086249 EFEMP1 rs1802575 PPP1R14A rs11667256 BDNF rs962369 FAM185A, rs6949391 LYPLAL1 rs61823192 FAM155A rs9520344, rs11619840 SLC25A28 rs7098322 WDR70 rs10472291 ABO rs582094 COL6A1 rs75434097 LINC01082 rs2280028 P2RY12 rs9856118 DISP2 rs71472433 CRISPLD2 rs2131755 ENSG00000224849 rs4839715 UNC50 rs148376933 NOV rs1381335 S100A10 rs61814883 UBTF rs8074740 SHFM1 rs3113037 CALCA rs12293535 FADD rs875107, rs72945112 ELN rs3823878 CWC27 rs10471645 CACNB2 rs1888693 HAS2 rs4871180 TRPS1 rs2049865 BMPR1B rs1544387 ENSG00000251283 rs11934833 HLX rs2784255 PCSK5 rs10120333 ZBTB4 rs12942267 NT5C1B rs62126581 UBL4B rs115490395 EDEM1 rs2470653 RBKS rs10173528 ISL2 rs2056544, rs10519134 GTPBP1 rs138699 | G G T C C T C T T A A T A T A A G C G A T A A T A A T A C A T A T G C G T A A A T A A A | UK Biobank: 27,444 cases; 382,284 controls MGI: 2572 cases; 28,649 controls | European European ancestry in USA | GWAS, RT-PCR | N/A | N/A | Not found Not found Not found Not found UTR_3 Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found Not found | Both sexes | |
Sigurdsson et al. (2017) [13] | COLQ rs7609897 ARHGAP15 rs4662344 | T T | 8734 cases; 248,971 controls | N/A | Icelanders Danes | GWAS, RT-PCR | N/A | 0.87 1.23 | Not found Not found | Both sexes |
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, W.; Geng, W.; Wang, C.; Dong, L.; Pan, S.; Yang, X.; Zippi, M.; Xu, C.; Zhou, M.; Pan, J. Prevalence of colonic diverticulosis in mainland China from 2004 to 2014. Sci. Rep. 2016, 6, 26237. [Google Scholar] [CrossRef] [PubMed]
- Peery, A.F.; Keku, T.O.; Martin, C.F.; Eluri, S.; Runge, T.; Galanko, J.A.; Sandler, R.S. Distribution and Characteristics of Colonic Diverticula in a United States Screening Population. Clin. Gastroenterol. Hepatol. 2016, 14, 980–985.e981. [Google Scholar] [CrossRef]
- Hadrian, K.A.; Basaj, A.; Nehring, P.; Ziółkowski, B.A. Prevalence and distribution of colonic diverticulosis in patients undergoing colonoscopy. Four years’ experience from a single center in Warsaw. Arch. Med. Sci. Civiliz. Dis. 2016, 1, 30–35. [Google Scholar] [CrossRef]
- Burgell, R.E.; Muir, J.G.; Gibson, P.R. Pathogenesis of colonic diverticulosis: Repainting the picture. Clin. Gastroenterol. Hepatol. 2013, 11, 1628–1630. [Google Scholar] [CrossRef]
- Ma, W.; Jovani, M.; Nguyen, L.H.; Tabung, F.K.; Song, M.; Liu, P.H.; Cao, Y.; Tam, I.; Wu, K.; Giovannucci, E.L.; et al. Association Between Inflammatory Diets, Circulating Markers of Inflammation, and Risk of Diverticulitis. Clin. Gastroenterol. Hepatol. 2020, 18, 2279–2286.e2273. [Google Scholar] [CrossRef] [PubMed]
- Strate, L.L.; Keeley, B.R.; Cao, Y.; Wu, K.; Giovannucci, E.L.; Chan, A.T. Western Dietary Pattern Increases, and Prudent Dietary Pattern Decreases, Risk of Incident Diverticulitis in a Prospective Cohort Study. Gastroenterology 2017, 152, 1023–1030.e1022. [Google Scholar] [CrossRef]
- Strate, L.L.; Liu, Y.L.; Aldoori, W.H.; Syngal, S.; Giovannucci, E.L. Obesity increases the risks of diverticulitis and diverticular bleeding. Gastroenterology 2009, 136, 115–122.e111. [Google Scholar] [CrossRef]
- Hansen, O.; Graupe, F.; Stock, W. Prognostic factors in perforating diverticulitis of the large intestine. Chirurg 1998, 69, 443–449. [Google Scholar] [CrossRef]
- Baidoo, N.; Crawley, E.; Knowles, C.H.; Sanger, G.J.; Belai, A. Total collagen content and distribution is increased in human colon during advancing age. PLoS ONE 2022, 17, e0269689. [Google Scholar] [CrossRef]
- Mastoraki, A.; Schizas, D.; Tousia, A.; Chatzopoulos, G.; Gkiala, A.; Syllaios, A.; Frountzas, M.; Vassiliu, P.; Theodoropoulos, G.E.; Felekouras, E. Evaluation of molecular and genetic predisposing parameters at diverticular disease of the colon. Int. J. Colorectal Dis. 2021, 36, 903–910. [Google Scholar] [CrossRef]
- Reichert, M.C.; Lammert, F. The genetic epidemiology of diverticulosis and diverticular disease: Emerging evidence. United European Gastroenterol. J. 2015, 3, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Alexandersson, K.F.; Sulem, P.; Feenstra, B.; Gudmundsdottir, S.; Halldorsson, G.H.; Olafsson, S.; Sigurdsson, A.; Rafnar, T.; Thorgeirsson, T.; et al. Sequence variants in ARHGAP15, COLQ and FAM155A associate with diverticular disease and diverticulitis. Nat. Commun. 2017, 8, 15789. [Google Scholar] [CrossRef] [PubMed]
- Maguire, L.H.; Handelman, S.K.; Du, X.; Chen, Y.; Pers, T.H.; Speliotes, E.K. Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease. Nat. Genet. 2018, 50, 1359–1365. [Google Scholar] [CrossRef]
- Schafmayer, C.; Harrison, J.W.; Buch, S.; Lange, C.; Reichert, M.C.; Hofer, P.; Cossais, F.; Kupcinskas, J.; von Schonfels, W.; Schniewind, B.; et al. Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut 2019, 68, 854–865. [Google Scholar] [CrossRef]
- Seo, J.; Liu, H.; Young, K.; Zhang, X.; Keku, T.O.; Jones, C.D.; North, K.E.; Sandler, R.S.; Peery, A.F. Genetic and transcriptomic landscape of colonic diverticulosis. Gut 2024, 73, 932–940. [Google Scholar] [CrossRef]
- Choe, E.K.; Lee, J.E.; Chung, S.J.; Yang, S.Y.; Kim, Y.S.; Shin, E.S.; Choi, S.H.; Bae, J.H. Genome-wide association study of right-sided colonic diverticulosis in a Korean population. Sci. Rep. 2019, 9, 7360. [Google Scholar] [CrossRef]
- Choi, U.Y.; Kang, J.S.; Hwang, Y.S.; Kim, Y.J. Oligoadenylate synthase-like (OASL) proteins: Dual functions and associations with diseases. Exp. Mol. Med. 2015, 47, e144. [Google Scholar] [CrossRef]
- Tsaousi, A.; Williams, H.; Lyon, C.A.; Taylor, V.; Swain, A.; Johnson, J.L.; George, S.J. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ. Res. 2011, 108, 427–436. [Google Scholar] [CrossRef]
- Tao, W.; Pennica, D.; Xu, L.; Kalejta, R.F.; Levine, A.J. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes. Dev. 2001, 15, 1796–1807. [Google Scholar] [CrossRef]
- Hu, G.; Mancl, M.E.; Barnes, B.J. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. Cancer Res. 2005, 65, 7403–7412. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Brun, L.; Ballabeni, P.; Pittet, V.; Prinz Vavricka, B.M.; Zeitz, J.; Rogler, G.; Schoepfer, A.M. Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am. J. Gastroenterol. 2011, 106, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Altadill, A.; Eiró, N.; González, L.O.; Junquera, S.; González-Quintana, J.M.; Sánchez, M.R.; Andicoechea, A.; Saro, C.; Rodrigo, L.; Vizoso, F.J. Comparative analysis of the expression of metalloproteases and their inhibitors in resected crohn’s disease and complicated diverticular disease. Inflamm. Bowel Dis. 2012, 18, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Bateman, A.C.; Lee, R.L.; Johnson, P.A.; McDonald, P.J.; Talbot, I.C.; Kamm, M.A.; MacDonald, T.T.; Pender, S.L. Up-regulation of collagen and tissue inhibitors of matrix metalloproteinase in colonic diverticular disease. Dis. Colon. Rectum 2004, 47, 371–378, discussion 378–379. [Google Scholar] [CrossRef] [PubMed]
- Ghomi Tabatabaee, F.A.; Vasudevan, R.; Heidari, F.; Khazaei, S.; Etemad, A.; Ismail, P. Association of MMP-1, 9, 12 and TIMP-1 gene polymorphisms in Malaysian male hypertensive subjects. Biomed. Res. 2018, 29, 1734–1742. [Google Scholar] [CrossRef]
- Meijer, M.J.; Mieremet-Ooms, M.A.; van Hogezand, R.A.; Lamers, C.B.; Hommes, D.W.; Verspaget, H.W. Role of matrix metalloproteinase, tissue inhibitor of metalloproteinase and tumor necrosis factor-alpha single nucleotide gene polymorphisms in inflammatory bowel disease. World J. Gastroenterol. 2007, 13, 2960–2966. [Google Scholar] [CrossRef]
- Lorente, L.; Martin, M.M.; Sole-Violan, J.; Blanquer, J.; Labarta, L.; Diaz, C.; Borreguero-Leon, J.M.; Orbe, J.; Rodriguez, J.A.; Jimenez, A.; et al. Association of sepsis-related mortality with early increase of TIMP-1/MMP-9 ratio. PLoS ONE 2014, 9, e94318. [Google Scholar] [CrossRef]
- Nehring, P.; Gromadzka, G.; Giermaziak, A.; Jastrzebski, M.; Przybylkowski, A. Genetic variants of tissue inhibitors of matrix metalloproteinase 1 (rs4898) and 2 (rs8179090) in diverticulosis. Eur. J. Gastroenterol. Hepatol. 2021, 33, e431–e434. [Google Scholar] [CrossRef]
- Nehring, P.; Gromadzka, G.; Jastrzebski, M.; Przybylkowski, A. Genetic Variants in Matrix Metalloproteinases MMP3 (rs3025058) and MMP9 (rs3918242) Associated with Colonic Diverticulosis. Medicina 2023, 59, 2031. [Google Scholar] [CrossRef]
- Ries, C. Cytokine functions of TIMP-1. Cell Mol. Life Sci. 2014, 71, 659–672. [Google Scholar] [CrossRef]
- Ram, M.; Sherer, Y.; Shoenfeld, Y. Matrix metalloproteinase-9 and autoimmune diseases. J. Clin. Immunol. 2006, 26, 299–307. [Google Scholar] [CrossRef]
- Rosemar, A.; Ivarsson, M.L.; Borjesson, L.; Holmdahl, L. Increased concentration of tissue-degrading matrix metalloproteinases and their inhibitor in complicated diverticular disease. Scand. J. Gastroenterol. 2007, 42, 215–220. [Google Scholar] [CrossRef]
- Reichert, M.C.; Kupcinskas, J.; Krawczyk, M.; Jungst, C.; Casper, M.; Grunhage, F.; Appenrodt, B.; Zimmer, V.; Weber, S.N.; Tamelis, A.; et al. A Variant of COL3A1 (rs3134646) Is Associated With Risk of Developing Diverticulosis in White Men. Dis. Colon. Rectum 2018, 61, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Asling, B.; Jirholt, J.; Hammond, P.; Knutsson, M.; Walentinsson, A.; Davidson, G.; Agreus, L.; Lehmann, A.; Lagerstrom-Fermer, M. Collagen type III alpha I is a gastro-oesophageal reflux disease susceptibility gene and a male risk factor for hiatus hernia. Gut 2009, 58, 1063–1069. [Google Scholar] [CrossRef]
- Nehring, P.; Placha, G.; Przybylkowski, A. Collagen (rs3134646) and AGHRP (rs4662344) genetic variants may predispose to colonic diverticulosis. Adv. Med. Sci. 2025, 70, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Bode, M.K.; Karttunen, T.J.; Makela, J.; Risteli, L.; Risteli, J. Type I and III collagens in human colon cancer and diverticulosis. Scand. J. Gastroenterol. 2000, 35, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.Y.; Pacheco, J.A.; Thompson, W.K.; Rasmussen-Torvik, L.J.; Rasmussen, L.V.; Lin, F.T.J.; Andrade, M.; Borthwick, K.M.; Bottinger, E.; Cagan, A.; et al. Multi-ancestry genome- and phenome-wide association studies of diverticular disease in electronic health records with natural language processing enriched phenotyping algorithm. PLoS ONE 2023, 18, e0283553. [Google Scholar] [CrossRef]
- Seoh, M.L.; Ng, C.H.; Yong, J.; Lim, L.; Leung, T. ArhGAP15, a novel human RacGAP protein with GTPase binding property. FEBS Lett. 2003, 539, 131–137. [Google Scholar] [CrossRef]
- Kline, B.P.; Yochum, G.S.; Brinton, D.L.; Schieffer, K.M.; Weaver, T.; Harris, L.; Deiling, S.; Berg, A.S.; Koltun, W.A. COLQ and ARHGAP15 are Associated with Diverticular Disease and are Expressed in the Colon. J. Surg. Res. 2021, 267, 397–403. [Google Scholar] [CrossRef]
- Carter, K.W.; Hung, J.; Powell, B.L.; Wiltshire, S.; Foo, B.T.; Leow, Y.C.; McQuillan, B.M.; Jennens, M.; McCaskie, P.A.; Thompson, P.L.; et al. Association of Interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum. Genet. 2008, 124, 199–206. [Google Scholar] [CrossRef]
- Virtanen, I.M.; Karppinen, J.; Taimela, S.; Ott, J.; Barral, S.; Kaikkonen, K.; Heikkila, O.; Mutanen, P.; Noponen, N.; Mannikko, M.; et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine 2007, 32, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Connelly, T.M.; Berg, A.S.; Hegarty, J.P.; Deiling, S.; Brinton, D.; Poritz, L.S.; Koltun, W.A. The TNFSF15 gene single nucleotide polymorphism rs7848647 is associated with surgical diverticulitis. Ann. Surg. 2014, 259, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Wu, D.; Wang, J.; Dong, W. Associations between TNFSF15 polymorphisms and susceptibility to ulcerative colitis and Crohn’s disease: A meta-analysis. Autoimmunity 2014, 47, 512–518. [Google Scholar] [CrossRef]
- Yang, S.K.; Lim, J.; Chang, H.S.; Lee, I.; Li, Y.; Liu, J.; Song, K. Association of TNFSF15 with Crohn’s disease in Koreans. Am. J. Gastroenterol. 2008, 103, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Swan, C.; Duroudier, N.P.; Campbell, E.; Zaitoun, A.; Hastings, M.; Dukes, G.E.; Cox, J.; Kelly, F.M.; Wilde, J.; Lennon, M.G.; et al. Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): Association with TNFSF15 and TNFalpha. Gut 2013, 62, 985–994. [Google Scholar] [CrossRef]
- Michelsen, K.S.; Thomas, L.S.; Taylor, K.D.; Yu, Q.T.; Mei, L.; Landers, C.J.; Derkowski, C.; McGovern, D.P.; Rotter, J.I.; Targan, S.R. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS ONE 2009, 4, e4719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nehring, P.; Przybyłkowski, A. Genetic Determinants of Colonic Diverticulosis—A Systematic Review. Genes 2025, 16, 581. https://doi.org/10.3390/genes16050581
Nehring P, Przybyłkowski A. Genetic Determinants of Colonic Diverticulosis—A Systematic Review. Genes. 2025; 16(5):581. https://doi.org/10.3390/genes16050581
Chicago/Turabian StyleNehring, Piotr, and Adam Przybyłkowski. 2025. "Genetic Determinants of Colonic Diverticulosis—A Systematic Review" Genes 16, no. 5: 581. https://doi.org/10.3390/genes16050581
APA StyleNehring, P., & Przybyłkowski, A. (2025). Genetic Determinants of Colonic Diverticulosis—A Systematic Review. Genes, 16(5), 581. https://doi.org/10.3390/genes16050581