Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Wnt/CTNNB1 signaling pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4094 KiB  
Article
Expression of WNT Family Genes in Mesenchymal Stromal Cells of the Hematopoietic Niche in Patients with Different Responses to Multiple Myeloma Treatment
by Liubov A. Belik, Natella I. Enukashvily, Natalia Y. Semenova, Dmitrii I. Ostromyshenskii, Ekaterina V. Motyko, Anna N. Kirienko, Daria V. Kustova, Stanislav S. Bessmeltsev, Sergey V. Sidorkevich and Irina S. Martynkevich
Int. J. Mol. Sci. 2025, 26(13), 6236; https://doi.org/10.3390/ijms26136236 - 27 Jun 2025
Viewed by 382
Abstract
Mesenchymal stromal cells of the tumor microenvironment (TME) play a significant role in the progression of multiple myeloma (MM). The cells of the TME demonstrate resistance to treatment, thereby creating a favorable environment for disease relapse. The status of the TME during remission [...] Read more.
Mesenchymal stromal cells of the tumor microenvironment (TME) play a significant role in the progression of multiple myeloma (MM). The cells of the TME demonstrate resistance to treatment, thereby creating a favorable environment for disease relapse. The status of the TME during remission is poorly understood. An association between treatment response and TME status (including signaling pathways) has been suggested. One of the key players in the establishment of the MM TME is WNT signaling. In this study, we evaluated the expression of WNT family proteins in the TME and MM cells to assess their potential as TME markers and predictors of treatment response. A bioinformatic analysis of normal and malignant plasma cells, combined with an analysis of published data, revealed the following differentially expressed WNT genes: WNT5A, WNT10B, CTNNB1, and WNT3A. Immunohistochemical staining with the antibodies against the proteins encoded by the genes was conducted on trephine biopsy samples of bone marrow from healthy donors and patients with different responses to therapy. A quantitative analysis of the immunohistochemical data revealed differences in the amounts of WNT3A, WNT5A, WNT10B, and β-catenin proteins in the bone marrow before treatment depending on the subsequent responses of the patients to therapy. Multiplex fluorescent immunohistochemical staining with tyramide signal amplification revealed that WNT3A was predominantly present in mesenchymal stromal cells, whereas WNT5A and WNT10B were primarily observed in plasma cells. β-catenin was detected in both cell types. We analyzed the mRNA levels of the WNT gene family and CTNNB1 in MSC cultures from healthy donors and patients using qPCR. These genes were differentially expressed in MSC cultures derived from patients and healthy donors, as well as between patients grouped according to their response to therapy. Therefore, WNT proteins and β-catenin can be considered potential markers to assess the state of the tumor niche. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 3493 KiB  
Review
Melatonin’s Role in Hair Follicle Growth and Development: A Cashmere Goat Perspective
by Zibin Zheng, Zhenyu Su and Wei Zhang
Int. J. Mol. Sci. 2025, 26(7), 2844; https://doi.org/10.3390/ijms26072844 - 21 Mar 2025
Cited by 2 | Viewed by 1843
Abstract
Hair follicles, unique skin appendages, undergo cyclic phases (anagen, catagen, telogen) governed by melatonin and associated molecular pathways. Melatonin, synthesized in the pineal gland, skin, and gut, orchestrates these cycles through antioxidant activity and signaling cascades (e.g., Wnt, BMP). This review examines melatonin’s [...] Read more.
Hair follicles, unique skin appendages, undergo cyclic phases (anagen, catagen, telogen) governed by melatonin and associated molecular pathways. Melatonin, synthesized in the pineal gland, skin, and gut, orchestrates these cycles through antioxidant activity and signaling cascades (e.g., Wnt, BMP). This review examines melatonin’s biosynthesis across tissues, its regulation of cashmere growth patterns, and its interplay with non-coding RNAs and the gut–skin axis. Recent advances highlight melatonin’s dual role in enhancing antioxidant capacity (via Keap1-Nrf2) and modulating gene expression (e.g., Wnt10b, CTNNB1) to promote hair follicle proliferation. By integrating multi-omics insights, we construct a molecular network of melatonin’s regulatory mechanisms, offering strategies to improve cashmere yield and quality while advancing therapies for human alopecia. Full article
(This article belongs to the Special Issue Metabolism, Synthesis and Function of Melatonin)
Show Figures

Figure 1

15 pages, 38800 KiB  
Article
MicroRNA-21 as a Regulator of Cancer Stem Cell Properties in Oral Cancer
by Milica Jaksic Karisik, Milos Lazarevic, Dijana Mitic, Maja Milosevic Markovic, Nicole Riberti, Drago Jelovac and Jelena Milasin
Cells 2025, 14(2), 91; https://doi.org/10.3390/cells14020091 - 10 Jan 2025
Cited by 5 | Viewed by 1474
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy with poor prognosis, mainly due to the presence of cancer stem cells (CSCs), a small subpopulation of cells that contribute to therapy resistance and tumor progression. The principal objective of this study was [...] Read more.
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy with poor prognosis, mainly due to the presence of cancer stem cells (CSCs), a small subpopulation of cells that contribute to therapy resistance and tumor progression. The principal objective of this study was to investigate the role of miRNA-21 in the maintenance of cancer cell stemness and the possibility of altering it. The CD44 antigen was used as a marker for CSC isolation from oral cancer cell cultures. CD44+ and CD44− populations were sorted via magnetic separation. miRNA-21 inhibition was performed in CD44+ cells via transfection. CD44+ cells possessed a significantly higher migration and invasion potential compared to CD44− cells, higher levels of miRNA-21 (p = 0.004) and β-catenin (p = 0.005), and lower levels of BAX (p = 0.015). miRNA-21 inhibition in CD44+ cells reduced migration, invasion, and colony formation while increasing apoptosis. Stemness markers were significantly downregulated following miRNA-21 inhibition: OCT4 (p = 0.013), SOX2 (p = 0.008), and NANOG (p = 0.0001), as well as β-catenin gene (CTNNB1) (p < 0.05), an important member of WNT signaling pathway. Apoptotic activity was enhanced, with a significant downregulation of the antiapoptotic Bcl-2 (p = 0.008) gene. In conclusion, miRNA-21 plays a critical role in the regulation of oral cancer CD44+ cells properties. Targeting and inhibiting miRNA-21 in CD44+ cells could represent a promising novel strategy in OSCC treatment. Full article
Show Figures

Graphical abstract

18 pages, 2266 KiB  
Article
Comparison of In Vitro Hair Growth Promotion and Anti-Hair Loss Potential of Thai Rice By-Product from Oryza sativa L. cv. Buebang 3 CMU and Sanpatong
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Chaiwat Arjin, Sansanee Jamjod, Chanakan Prom-u-Thai, Pensak Jantrawut, Pornchai Rachtanapun, Patipan Hnorkaew, Apinya Satsook, Mathukorn Sainakham, Juan Manuel Castagnini and Korawan Sringarm
Plants 2024, 13(21), 3079; https://doi.org/10.3390/plants13213079 - 1 Nov 2024
Cited by 3 | Viewed by 3100
Abstract
The bioactive compounds in herbal extracts may provide effective hair loss treatments with fewer side effects compared to synthetic medicines. This study evaluated the effects of Buebang 3 CMU and Sanpatong rice bran extracts, macerated with dichloromethane or 95% ethanol, on hair growth [...] Read more.
The bioactive compounds in herbal extracts may provide effective hair loss treatments with fewer side effects compared to synthetic medicines. This study evaluated the effects of Buebang 3 CMU and Sanpatong rice bran extracts, macerated with dichloromethane or 95% ethanol, on hair growth promotion and hair loss prevention. Overall, Buebang 3 CMU extracts contained significantly higher levels of bioactive compounds, including γ-oryzanol, tocopherols, and various polyphenols such as phytic acid, ferulic acid, and chlorogenic acid, compared to Sanpatong extracts. Additionally, ethanolic extracts demonstrated greater bioactive content and antioxidant activities than those extracted with dichloromethane. These compounds enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) by 124.28 ± 1.08% (p < 0.05) and modulated anti-inflammatory pathways by reducing nitrite production to 3.20 ± 0.36 µM (p < 0.05). Key hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), were activated by approximately 1.5-fold to 2.5-fold compared to minoxidil. Also, in both human prostate cancer (DU-145) and HFDPC cells, the ethanolic Buebang 3 CMU extract (Et-BB3-CMU) suppressed SRD5A1, SRD5A2, and SRD5A3 expression—key pathways in hair loss—by 2-fold and 1.5-fold more than minoxidil and finasteride, respectively. These findings suggest that Et-BB3-CMU holds promise for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

23 pages, 1227 KiB  
Article
Synergistic Phytochemical and Pharmacological Actions of Hair RiseTM Microemulsion: A Novel Herbal Formulation for Androgenetic Alopecia and Hair Growth Stimulation
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pensak Jantrawut, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Sarana Rose Sommano, Korawan Sringarm, Chaiwat Arjin, Mathukorn Sainakham and Juan M. Castagnini
Plants 2024, 13(19), 2802; https://doi.org/10.3390/plants13192802 - 6 Oct 2024
Cited by 3 | Viewed by 4325
Abstract
Androgenetic alopecia (AGA) is a genetic condition characterized by an excessive response to androgens, leading to hairline regression in men and hair thinning at the vertex in women, which can negatively impact self-esteem. Conventional synthetic treatments for AGA are often limited by their [...] Read more.
Androgenetic alopecia (AGA) is a genetic condition characterized by an excessive response to androgens, leading to hairline regression in men and hair thinning at the vertex in women, which can negatively impact self-esteem. Conventional synthetic treatments for AGA are often limited by their side effects. In contrast, Thai medicinal plants offer a promising alternative with fewer adverse effects. This study investigates the synergistic phytochemical and pharmacological effects of a novel Hair RiseTM microemulsion, formulated with bioactive extracts from rice bran (Oryza sativa), shallot bulb (Allium ascalonicum), licorice root (Glycyrrhiza glabra), and corn kernels (Zea mays), for the treatment of hair loss. The microemulsion, in concentrations of 50%, 75%, and 100% (v/v), significantly enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) compared to minoxidil. Additionally, it upregulated critical hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), surpassing standard controls such as minoxidil and purmorphamine. The microemulsion also demonstrated potent anti-inflammatory and antioxidant properties by reducing nitric oxide production and oxidative stress, factors that contribute to inflammation and follicular damage in AGA. Furthermore, Hair RiseTM inhibited 5α-reductase (types 1–3), a key enzyme involved in androgen metabolism, in both human prostate cancer cells (DU-145) and HFDPCs. These findings suggest that Hair RiseTM microemulsion presents a promising natural therapy for promoting hair growth and reducing hair loss via multiple synergistic mechanisms, offering a potent, plant-based alternative to synthetic treatments. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

13 pages, 2219 KiB  
Article
CRABP1 Enhances the Proliferation of the Dermal Papilla Cells of Hu Sheep through the Wnt/β-catenin Pathway
by Zahid Hussain, Tingyan Hu, Yuan Gou, Mingliang He, Xiaoyang Lv, Shanhe Wang and Wei Sun
Genes 2024, 15(10), 1291; https://doi.org/10.3390/genes15101291 - 30 Sep 2024
Cited by 1 | Viewed by 1570
Abstract
Background: The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair [...] Read more.
Background: The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair follicle, including differentiation, proliferation, and apoptosis in keratinocytes. Previous research on Hu sheep hair follicles revealed the specific expression CRABP1 in dermal papilla cells (DPCs), suggesting that CRABP1 has a potential role in regulating the DPC population. Therefore, the main purpose of this study is to expose the performance of the CRABP1 genes in the development and proliferation of DPCs. Methods: Initially, overexpression and inhibition of CRABP1 in the DPCs were conducted through overexpression vector and siRNA. CCK-8, EDU, and RT-PCR cell cycle assays and immunostaining were performed to evaluate the proliferation and cell cycle of dermal papilla cells (DPCs). Although, the influence of CRABP1 upon β-catenin in dermal papilla cells (DPCs) was found using immunofluorescence labeling. Finally, RT-PCR was conducted to assess the impact of CRABP1 on the expression levels of CTNNB1, TCF4, and LEF1 in DPCs involved in the Wnt/β-catenin signaling pathway. Results: The results showed that CRABP1 overexpression promotes the growth rates of DPCs and significantly enhances the proportion of S-phase cells compared with the control group (p < 0.05). The results were the opposite when CRABP1 was a knockdown. In contrast, there was a significant decline in the mRNA expression levels of CTNNβ1, LEF1 (p < 0.05), and TCF4 (p < 0.01) by CRABP1 knockdown. Conclusions: This study found that CRABP1 influences the expression of important genes within the Wnt/β-catenin signaling pathway and promotes DPC proliferation. This investigation provides a theoretical framework to explain the mechanisms that control hair follicle morphogenesis and development. Full article
(This article belongs to the Special Issue Advances in Cattle, Sheep, and Goats Molecular Genetics and Breeding)
Show Figures

Figure 1

15 pages, 5135 KiB  
Article
4-O-Methylascochlorin Synergistically Enhances 5-Fluorouracil-Induced Apoptosis by Inhibiting the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer Cells
by Min-Young Jo, Yun-Jeong Jeong, Kwon-Ho Song, Yung Hyun Choi, Taeg Kyu Kwon and Young-Chae Chang
Int. J. Mol. Sci. 2024, 25(11), 5746; https://doi.org/10.3390/ijms25115746 - 25 May 2024
Cited by 4 | Viewed by 3749
Abstract
4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl–phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated [...] Read more.
4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl–phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/β-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other β-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4805 KiB  
Article
Notch2 Regulates the Function of Bovine Follicular Granulosa Cells via the Wnt2/β-Catenin Signaling Pathway
by Wenqing Dang, Yongping Ren, Qingqing Chen, Min He, Ermias Kebreab, Dong Wang and Lihua Lyu
Animals 2024, 14(7), 1001; https://doi.org/10.3390/ani14071001 - 25 Mar 2024
Cited by 1 | Viewed by 1859
Abstract
Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in [...] Read more.
Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1, which encodes β-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in bovine follicular GC development. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

19 pages, 19277 KiB  
Article
Liuwei Dihuang Pills Enhance Osteogenic Differentiation in MC3T3-E1 Cells through the Activation of the Wnt/β-Catenin Signaling Pathway
by Jinlong Zhao, Guihong Liang, Junzheng Yang, Hetao Huang, Yaoxing Dou, Zhuoxu Gu, Jun Liu, Lingfeng Zeng and Weiyi Yang
Pharmaceuticals 2024, 17(1), 99; https://doi.org/10.3390/ph17010099 - 11 Jan 2024
Viewed by 3238
Abstract
Objective: The therapeutic efficacy and molecular mechanisms of traditional Chinese medicines (TCMs), such as Liuwei Dihuang pills (LWDH pills), in treating osteoporosis (OP) remain an area of active research and interest in modern medicine. This study investigated the mechanistic underpinnings of LWDH pills [...] Read more.
Objective: The therapeutic efficacy and molecular mechanisms of traditional Chinese medicines (TCMs), such as Liuwei Dihuang pills (LWDH pills), in treating osteoporosis (OP) remain an area of active research and interest in modern medicine. This study investigated the mechanistic underpinnings of LWDH pills in the treatment of OP based on network pharmacology, bioinformatics, and in vitro experiments. Methods: The active ingredients and targets of LWDH pills were retrieved through the TCMSP database. OP-related targets were identified using the CTD, GeneCards, and DisGeNET databases. The STRING platform was employed to construct a protein–protein interaction (PPI) network, and core targets for LWDH pills in treating OP were identified. The GO functional and KEGG pathway enrichment analyses for potential targets were performed using the R package “clusterProfiler”. A “drug–target” network diagram was created using Cytoscape 3.7.1 software. The viability of MC3T3-E1 cells was evaluated using the CCK-8 method after treatment with various concentrations (1.25%, 2.5%, 5%, and 10%) of LWDH pill-medicated serum for 24, 48, and 72 h. Following a 48 h treatment of MC3T3-E1 cells with LWDH pill-medicated serum, the protein levels of collagen Ⅰ, RUNX2, Wnt3, and β-catenin were quantified using the Western blot analysis, and the activity of alkaline phosphatase (ALP) was measured. Results: A total of 197 putative targets for LWDH pills for OP treatment were pinpointed, from which 20 core targets were singled out, including TP53, JUN, TNF, CTNNB1 (β-catenin), and GSK3B. The putative targets were predominantly involved in signaling pathways such as the Wnt signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. The intervention with LWDH pill-medicated serum for 24, 48, and 72 h did not result in any notable alterations in the cell viability of MC3T3-E1 cells relative to the control group (all p > 0.05). Significant upregulation in protein levels of collagen Ⅰ, RUNX2, Wnt3, and β-catenin in MC3T3-E1 cells was observed in response to the treatment with 2.5%, 5%, and 10% of LWDH pill-medicated serum in comparison to that with the 10% rabbit serum group (all p < 0.05). Furthermore, the intervention with LWDH pill-medicated serum resulted in the formation of red calcified nodules in MC3T3-E1 cells, as indicated by ARS staining. Conclusions: LWDH pills may upregulate the Wnt/β-catenin signaling pathway to elevate the expression of osteogenic differentiation proteins, including collagen Ⅰ and RUNX2, and to increase the ALP activity in MC3T3-E1 cells for the treatment of OP. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 1860 KiB  
Article
Aspirin and Cancer Survival: An Analysis of Molecular Mechanisms
by Manoj Pandey, Monika Rajput, Pooja Singh, Mridula Shukla, Bin Zhu and Jill Koshiol
Cancers 2024, 16(1), 223; https://doi.org/10.3390/cancers16010223 - 3 Jan 2024
Cited by 1 | Viewed by 3116
Abstract
The benefit of aspirin on cancer survival is debated. Data from randomized clinical trials and cohort studies are discordant, although a meta-analysis shows a clear survival advantage when aspirin is added to the standard of care. However, the mechanism by which aspirin improves [...] Read more.
The benefit of aspirin on cancer survival is debated. Data from randomized clinical trials and cohort studies are discordant, although a meta-analysis shows a clear survival advantage when aspirin is added to the standard of care. However, the mechanism by which aspirin improves cancer survival is not clear. A PubMed search was carried out to identify articles reporting genes and pathways that are associated with aspirin and cancer survival. Gene ontology and pathway enrichment analysis was carried out using web-based tools. Gene–gene and protein–protein interactions were evaluated. Crosstalk between pathways was identified and plotted. Forty-one genes were identified and classified into primary genes (PTGS2 and PTGES2), genes regulating cellular proliferation, interleukin and cytokine genes, and DNA repair genes. The network analysis showed a rich gene–gene and protein–protein interaction between these genes and proteins. Pathway enrichment showed the interleukin and cellular transduction pathways as the main pathways involved in aspirin-related survival, in addition to DNA repair, autophagy, extracellular matrix, and apoptosis pathways. Crosstalk of PTGS2 with EGFR, JAK/AKT, TP53, interleukin/TNFα/NFκB, GSK3B/BRCA/PARP, CXCR/MUC1, and WNT/CTNNB pathways was identified. The results of the present study demonstrate that aspirin improves cancer survival by the interplay of 41 genes through a complex mechanism. PTGS2 is the primary target of aspirin and impacts cancer survival through six primary pathways: the interleukin pathway, extracellular matrix pathway, signal transduction pathway, apoptosis pathway, autophagy pathway, and DNA repair pathway. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

12 pages, 3625 KiB  
Article
Hair Follicle Development of Rex Rabbits Is Regulated Seasonally by Wnt10b/β-Catenin, TGFβ-BMP, IGF1, and EGF Signaling Pathways
by Gongyan Liu, Ce Liu, Yin Zhang, Haitao Sun, Liping Yang, Liya Bai and Shuxia Gao
Animals 2023, 13(23), 3742; https://doi.org/10.3390/ani13233742 - 4 Dec 2023
Cited by 2 | Viewed by 2141
Abstract
This experiment was conducted to study the effects of different skinning seasons on the fur quality and hair follicle development of Rex rabbits. A total of 80,150-day-old Rex rabbits were slaughtered on 15 July 2022 (summer), 15 October 2022 (autumn), 15 January 2023 [...] Read more.
This experiment was conducted to study the effects of different skinning seasons on the fur quality and hair follicle development of Rex rabbits. A total of 80,150-day-old Rex rabbits were slaughtered on 15 July 2022 (summer), 15 October 2022 (autumn), 15 January 2023 (winter), and 15 April 2023 (spring) in Shandong Province (10 males and 10 females in each season). The results show that the skin weight, skin area, skin thickness, and hair follicle density of the Rex rabbits (at 150 days of age) were lower in summer than in winter (p < 0.05). Moreover, the coat length was shorter in summer than in spring, autumn, and winter (p < 0.05). The shoulder fat weight, perirenal fat weight, and perigastric fat weight of the Rex rabbits in winter were higher than those in summer (p < 0.05). Furthermore, the leptin levels in serum were higher in winter than in summer in the Rex rabbits (p < 0.05). In terms of serum biochemistry, the glucose levels were higher in autumn and winter than in spring and summer (p < 0.05). The cholesterol, high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in summer had higher values than in winter in the Rex rabbits (p < 0.05). In winter, the expression of the Wnt10b, catenin beta 1 (CTNNB1), glycogen synthase kinase 3 beta (GSK3β), insulin like growth factor I (IGF-I), Type I insulin-like growth factor receptor (IGF-IR), and epidermal growth factor (EGF) genes was higher (p < 0.05), and the expression of the dickkopf-1 (DDK1), transforming growth factor beta 1 (TGFβ-1), bone morphogenetic protein 2 (BMP2), and bone morphogenetic protein 4 (BMP4) genes was lower than in summer (p < 0.05). In summer, the heat shock 70 kDa protein (HSP70) expression and CTNNB1 protein phosphorylation levels in skin tissue were higher than in spring, autumn, and winter (p < 0.05). In winter, Wnt10b protein expression was higher (p < 0.05), and GSK-3β protein phosphorylation levels were lower than in spring, autumn, and winter (p < 0.05). These results show that the skinning season can affect the production performance and hair follicle development of Rex rabbits. Compared with other seasons, the quality of skin from rabbits slaughtered in winter is better. Seasons may regulate hair follicle development via the Wnt10b/β-catenin, TGFβ-BMP, IGF1, and EGF signaling pathways in Rex rabbits. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

20 pages, 4272 KiB  
Review
Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome
by Vincent Le, Gabrielle Abdelmessih, Wendy A. Dailey, Cecille Pinnock, Victoria Jobczyk, Revati Rashingkar, Kimberly A. Drenser and Kenneth P. Mitton
Cells 2023, 12(21), 2579; https://doi.org/10.3390/cells12212579 - 5 Nov 2023
Cited by 13 | Viewed by 3942
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early [...] Read more.
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Genetic Eye Diseases)
Show Figures

Graphical abstract

15 pages, 2457 KiB  
Article
Expression of Prostaglandin Genes and β-Catenin in Whole Blood as Potential Markers of Muscle Degeneration
by Anna Wajda, Diana Bogucka, Barbara Stypińska, Marcin Jerzy Radkowski, Tomasz Targowski, Ewa Dudek, Tomasz Kmiołek, Ewa Modzelewska and Agnieszka Paradowska-Gorycka
Int. J. Mol. Sci. 2023, 24(16), 12885; https://doi.org/10.3390/ijms241612885 - 17 Aug 2023
Viewed by 2034
Abstract
Prostaglandin signaling pathways are closely related to inflammation, but also muscle regeneration and processes associated with frailty and sarcopenia, whereas β-catenin (CTNNB1 gene) as a part of Wnt signaling is also involved in the differentiation of muscle cells and fibrosis. The present [...] Read more.
Prostaglandin signaling pathways are closely related to inflammation, but also muscle regeneration and processes associated with frailty and sarcopenia, whereas β-catenin (CTNNB1 gene) as a part of Wnt signaling is also involved in the differentiation of muscle cells and fibrosis. The present study analyzed the association between selected prostaglandin pathway genes and clinical parameters in patients with sarcopenia and frailty syndrome. The present study was conducted on patients with sarcopenia, frailty syndrome, and control older patients (N = 25). Additionally, two healthy controls at the age of 25–30 years (N = 51) and above 50 years old (N = 42) were included. The expression of the PTRGER4, PTGES2 (COX2), PTGS2, and CTNNB1 genes in whole blood was checked by the qPCR method. The serum cytokine levels (IL-10, TNFα, IFN-y, IL-1α, IL-1β) in patients and controls were checked by the Q-Plex Human Cytokine Panel. The results showed a significant effect of age on PTGER4 gene expression (p = 0.01). A negative trend between the appendicular skeletal muscle mass parameter (ASSM) and the expression of PTGER4 has been noted (r = −0.224, p = 0.484). PTGES2 and PTGS2 expressions negatively correlated with creatine phosphokinase (r = −0.71, p = 0.009; r = −0.58, p = 0.047) and positively with the functional mobility test timed up and go scale (TUG) (r = 0.61, p = 0.04; r = 0.63, p = 0.032). In the older control group, a negative association between iron levels and the expression of PTGS2 (r = −0.47, p = 0.017) was observed. A similar tendency was noted in patients with sarcopenia (r = −0.112, p = 0.729). A negative trend between appendicular skeletal muscle mass (ASMM) and PTGER4 seems to confirm the impairment of muscle regeneration associated with sarcopenia. The expression of the studied genes revealed a trend in associations with the clinical picture of muscular dystrophy and weakening patients. Perhaps PTGS2 and PTGES2 is in opposition to the role of the PTGER4 receptor in muscle physiology. Nevertheless, further, including functional studies is needed. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

24 pages, 3955 KiB  
Article
β-Catenin Elicits Drp1-Mediated Mitochondrial Fission Activating the Pro-Apoptotic Caspase-1/IL-1β Signalosome in Aeromonas hydrophila-Infected Zebrafish Macrophages
by Shagun Sharma, Manmohan Kumar, Jai Kumar and Shibnath Mazumder
Cells 2023, 12(11), 1509; https://doi.org/10.3390/cells12111509 - 30 May 2023
Cited by 4 | Viewed by 2361
Abstract
Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a [...] Read more.
Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a, fzd5, lrp6, and β-catenin (ctnnb1) expression, coinciding with the decreased expression of gsk3b and axin. Additionally, increased nuclear β-catenin protein accumulation was observed in infected ZKM, thereby suggesting the activation of canonical Wnt signaling in A. hydrophila infection. Our studies with the β-catenin specific inhibitor JW67 demonstrated β-catenin to be pro-apoptotic, which initiates the apoptosis of A. hydrophila-infected ZKM. β-catenin induces NADPH oxidase (NOX)-mediated ROS production, which orchestrates sustained mitochondrial ROS (mtROS) generation in the infected ZKM. Elevated mtROS favors the dissipation of the mitochondrial membrane potential (ΔΨm) and downstream Drp1-mediated mitochondrial fission, leading to cytochrome c release. We also report that β-catenin-induced mitochondrial fission is an upstream regulator of the caspase-1/IL-1β signalosome, which triggers the caspase-3 mediated apoptosis of the ZKM as well as A. hydrophila clearance. This is the first study suggesting a host-centric role of canonical Wnt signaling pathway in A. hydrophila pathogenesis wherein β-catenin plays a primal role in activating the mitochondrial fission machinery, which actively promotes ZKM apoptosis and helps in containing the bacteria. Full article
(This article belongs to the Special Issue Focus on Machinery of Cell Death)
Show Figures

Figure 1

16 pages, 6774 KiB  
Article
Regulatory Effects of FGF9 on Dermal Papilla Cell Proliferation in Small-Tailed Han Sheep
by Qi Jia, Shuangshuang Zhang, Dan Wang, Jianqiang Liu, Xinhui Luo, Yu Liu, Xin Li, Fuliang Sun, Guangjun Xia and Lichun Zhang
Genes 2023, 14(5), 1106; https://doi.org/10.3390/genes14051106 - 18 May 2023
Cited by 4 | Viewed by 2161
Abstract
Fibroblast growth factor 9 (FGF9) is crucial for the growth and development of hair follicles (HFs); however, its role in sheep wool growth is unknown. Here, we clarified the role of FGF9 in HF growth in the small-tailed Han sheep by [...] Read more.
Fibroblast growth factor 9 (FGF9) is crucial for the growth and development of hair follicles (HFs); however, its role in sheep wool growth is unknown. Here, we clarified the role of FGF9 in HF growth in the small-tailed Han sheep by quantifying FGF9 expression in skin tissue sections collected at different periods. Moreover, we evaluated the effects of FGF9 protein supplementation on hair shaft growth in vitro and FGF9 knockdown on cultured dermal papilla cells (DPCs). The relationship between FGF9 and the Wnt/β-catenin signaling pathway was examined, and the underlying mechanisms of FGF9-mediated DPC proliferation were investigated. The results show that FGF9 expression varies throughout the HF cycle and participates in wool growth. The proliferation rate and cell cycle of FGF9-treated DPCs substantially increase compared to that of the control group, and the mRNA and protein expression of CTNNB1, a Wnt/β-catenin signaling pathway marker gene, is considerably lower than that in the control group. The opposite occurs in FGF9-knockdown DPCs. Moreover, other signaling pathways are enriched in the FGF9-treated group. In conclusion, FGF9 accelerates the proliferation and cell cycle of DPCs and may regulate HF growth and development through the Wnt/β-catenin signaling pathway. Full article
(This article belongs to the Special Issue Advances in Sheep Genetic Breeding)
Show Figures

Graphical abstract

Back to TopTop