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Simple Summary: This study investigated the crosstalk between the Wnt/β-catenin and Notch
signaling pathways and the roles of these pathways in apoptosis, cell cycle progression, proliferation,
and steroid hormone secretion in bovine follicular granulosa cells (GCs). Our results showed that
Wnt/β-catenin and Notch pathway components regulated the development of bovine follicular GCs
by modulating the expression of apoptotic, cell cycle, and steroidogenesis-related genes and proteins.
Moreover, the Notch2 protein interacted with the β-catenin protein.

Abstract: Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of
ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation,
differentiation, apoptosis, and steroid hormone production during follicular development. However,
the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this
crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and
steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in
GCs was assessed by overexpressing CTNNB1, which encodes β-catenin. The results showed that
inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis,
reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in
GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated
apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had
the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-
immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate
the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in
bovine follicular GC development.

Keywords: Notch2; Wnt2/β-catenin; bovine; follicular granulosa cells; interaction

1. Introduction

The ovarian follicle is formed by granulosa cells (GCs) surrounding the oocyte. Follic-
ular development involves the proliferation and differentiation of GCs, and morphological
and functional alterations in these cells determine the follicular developmental stages. Dur-
ing this process, GCs produce nutrients, metabolites, and molecular signals that regulate the
quiescence, activation, and death of oocytes [1,2] and the production of steroid hormones
in the ovary [3]. Hence, GC proliferation and differentiation lead to follicular growth,
which is indispensable for oocyte development and female fertility. Follicular atresia is
associated with DNA fragmentation and GC apoptosis. After ovulation, GCs differentiate
to form the corpus luteum, which secretes progesterone and maintains pregnancy. The
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primary regulators of GC function are cytokines and hormones, including gonadotropins
and insulin-like growth factor, from multiple signaling pathways [4].

Signaling pathways are conserved across species, and Wnt and Notch signaling gov-
erns cell proliferation [5], differentiation [6], and apoptosis [7]. When active, the Wnt/β-
catenin pathway contains extracellular Wnt ligands, frizzled receptors, low-density lipopro-
tein receptors, and β-catenin, which is an effector protein [8]. β-catenin is translocated to
the nucleus, where it combines with transcription factors of the T-cell factor/lymphoid en-
hancer binding factor family to promote the transcription of downstream target genes [9–11].
Notch-mediated juxtacrine signaling occurs when Notch ligands (Jagged1/2 and Delta-
like1/3/4) bind to Notch 1/2/3/4 receptors, leading to the cleavage of Notch intracellular
domains (NICDs) by γ-secretase. NICD is translocated to the nucleus and interacts with
transcription factors RBP-J and Mastermind co-activator to activate transcription [12,13].
Components of these two pathways are expressed in GCs and are involved in follicular
development. Further, the abnormal expression of some of these components impairs
follicular development and reduces female fertility [11,12,14–16], potentially leading to
ovarian cancer [17,18].

There is crosstalk between Wnt/β-catenin, Notch, and other signaling pathways [19].
Loss-of-function assays found a synergistic effect between Wnt1 and Notch in Drosophila
wingless mutants, demonstrating that the Wnt/β-catenin and Notch pathways interact with
each other [20,21]. These pathways affect hair follicle maintenance [22], rhombic pattern
formation [23], and somitogenesis in vertebrates [24]. In addition, these pathways have
compensatory roles in maintaining the homeostasis of rat luteal cells [25] and are implicated
in the proliferation and differentiation of intestinal and embryonic stem cells [26,27].

These two pathways act synergistically or antagonistically, depending on the cellular
environment and connections with other pathways [28]. However, the interactions between
these two pathways in GCs remains unclear. Follicle-stimulating hormone (FSH) regulates
β-catenin protein and Wnt2 mRNA expression in bovine GCs, suggesting the involvement
of Wnt/β-catenin signaling in follicular development and ovarian steroidogenesis in
cattle [3]. The Notch2 receptor and Jagged2 ligand are expressed in bovine GCs and
thecal cells, participating in luteinized GC development [29]. These results imply that
Wnt/β-catenin and Notch signaling are synergistically regulated in bovine follicular GCs.

In this study, we assessed: (1) the inhibitory effect of the Wnt/β-catenin or Notch
signaling pathways on the key factors of another pathway, and whether there is a synergistic
effect between these two pathways on GC proliferation and apoptosis, as well as the
expression and secretion of steroid hormones, and (2) the interactions between Notch2 and
β-catenin pathway proteins.

2. Materials and Methods
2.1. Ethical Approval

All animal procedures were conducted in accordance with the guidelines of the
China Council on Animal Care. This animal study was reviewed and approved by
the Ethics Committee of Shanxi Agricultural University (Approval No. SXAU-EAW-
2021C.WR.0040100150).

2.2. Isolation and Culture of GCs

Thirty-five ovaries from healthy cows were collected from an abattoir in Wenshui
(Shanxi, China) and preserved in Dulbecco’s phosphate-buffered saline (DPBS) supple-
mented with 1% (v/v) penicillin–streptomycin liquid (100 IU/mL–0.1 mg/mL, Gibco,
Shanghai, China). Then, the ovaries were washed thrice with DPBS, and the tissues at-
tached to the ovaries were removed. The follicles (5–8 mm) were dissected from the ovary,
and GCs were isolated, as described previously [30]. The GCs were seeded in 96-well or
6-well plates containing DMEM-F12 medium (Hyclone, Shanghai, China), 10% fetal bovine
serum (Cellmax, Beijing, China) and 1% penicillin–streptomycin liquid, and were incubated
in a humidified incubator with 5% CO2 at 37 ◦C.
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2.3. Treatment of GCs

The effect of IWR-1 on GC proliferation, cell cycle progression, and apoptosis was
evaluated. The GCs were seeded in 96-well plates (5.0 × 103 cells/well) for cell proliferation
or 6-well plates (1.0 × 105 cells/well) for the other assays until 60% confluence was reached.
The supernatant was removed, and the cells were cultured in DMEM-F12 complete medium
containing IWR-1 (MCE, Shanghai, China) (0, 1, 2.5, 5, 10, or 20 µM). Cell viability was
measured using the Cell Counting kit-8 (CCK-8). Cell cycle progression and apoptosis
in GCs treated with 5 µM IWR-1 were analyzed using flow cytometry. Gene and protein
expression were quantified using real-time quantitative polymerase chain reaction (RT-
qPCR) and Western blotting techniques. The effect of IWR-1 on Wnt and Notch expression,
steroidogenesis gene expression, and steroid hormone production was also evaluated. The
cells were centrifuged at 3000 rpm for 15 min at 4 ◦C, and the concentrations of progesterone
(P4) and 17β-estradiol (E2) were measured in the supernatant.

The effect of treatment with a lentiviral vector expressing an siRNA targeting Notch2
was evaluated. Notch2 siRNA was synthesized by GengPharma (Shanghai, China) using
the following primers: sense, 5′-GATCCGCTATGAGCCTTGTGTAAATGTTCAAGAGA-
CATTTACACAAGGCTCATAGCTTTTTT-3′ and antisense, 5′-AATTCAAAAAAGCTATG-
AGCCTTGTGTAAATGTCTCTTGAACATTTACACAAGGCTCATAGCG-3′. A negative
control (NC) was synthesized using the following primers: sense, 5′-GATCCGTTCTCCGA-
ACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAACTTTTTTG-3′ and anti-
sense, 5′-AATTCAAAAAAGTTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACG-
TTCGGA GAACG-3. Lentiviral packaging and centrifugation were performed as described
previously [29]. The GCs were cultured in 6-well plates until 60% confluence was reached
and were transfected in medium containing a final concentration of 10 µg/mL of poly-
brene. Transfection efficiency was assessed at 48 h post-transfection by measuring green
fluorescence intensity. The GCs transfected with siRNA targeting Notch2 were selected
with 3µg/mL puromycin and were harvested for RNA and protein extraction. P4 and E2
concentrations were measured in cell supernatants.

The interactions between β-catenin and Notch2 pathway proteins were analyzed. To
overexpress CTNNB1, the coding sequence was amplified using PCR and cloned into the
XbaI and BamHI sites of the pHBLV-CMV-MCS-EF1-ZsGreen-T2A-puro lentiviral vector
(Hanbio, Shanghai, China). Overexpression vector packaging and transduction were
performed as described above. The GCs were cultured for 48 h and harvested for protein
extraction. The interactions between β-catenin and NICD2 proteins were analyzed using co-
immunoprecipitation assays. Apoptosis protein expression and steroid hormone secretion
were also examined.

2.4. CCK-8 Assays

The GCs were treated with different concentrations of IWR-1 for 48 h, as described
above. Cell viability was measured using the CCK-8 kit (Dojindo, Shanghai, China) accord-
ing to the manufacturer’s instructions. Briefly, 100 µL of medium containing 10% CCK-8
reagent was added to each well and incubated for 4 h. Absorbance was measured at 450 nm
using a microplate reader. The cell proliferation rate was calculated using the formula [OD
(treated) − OD (blank)]/[OD (control) − OD (blank)] × 100%.

2.5. Cell Cycle and Apoptosis Assays

The GCs were cultured in 6-well plates in medium containing 0 or 5 µM IWR-1 for 48 h
and were digested with 0.25% trypsin (Gibco, Shanghai, China). Cell cycle and apoptosis
assays were performed using the Cell Cycle Assay Kit (Yeasen Biotechnology, Shanghai,
China) and the AnnexinV-FITC/PI apoptosis Assay kit (Zeta Life, Shanghai, China), as
described previously [31]. Cell cycle distribution and apoptosis were analyzed using a flow
cytometer (NovoCyte, ACEA Biosciences, San Diego, CA, USA) and data were analyzed
using NovoExpress version 1.5.0.
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2.6. Western Blotting

The GCs were lysed in RIPA buffer (Beyotime, Shanghai, China) containing 1% (v/v)
PMSF (Boster, Wuhan, China) for 30 min on ice. The lysates were centrifuged at 13,000 rpm
for 10 min at 4 ◦C. Protein concentrations were quantified using a BCA protein assay kit
(Boster, Wuhan, China). The proteins (10 µg) were separated using 8% or 10% SDS-PAGE
and transferred to polyvinylidene difluoride membranes (Boster, Wuhan, China). The
membranes were blocked with 5% non-fat dry milk in Tris-buffered saline (TBS) for 1 h at
room temperature. Then, the membranes were incubated with rabbit polyclonal primary
antibodies against NICD2 (1:1000, Cell Signaling Technology, Boston, MA, USA), β-catenin
(1:1000, Cell Signaling Technology, Boston, MA, USA), Bax (1:500, Bioss, Beijing, China),
and caspase-3 (1:500, Bioss, Beijing, China) overnight at 4 ◦C. After washing with TBS, the
membranes were incubated with IRDye® 800CW goat anti-rabbit IgG secondary antibody
(1:18,000, LI-COR Biosciences, Shanghai, China) for 1 h at room temperature. The blots were
imaged using an Odyssey laser imaging system (LI-COR Biosciences, Lincoln, NE, USA)
and quantified using ImageJ software version 1.8.0. The protein levels were normalized to
β-actin (1:10,000, BioWorld, Nanjing, China).

2.7. RT-qPCR

Total RNA was extracted from the GCs using RNAiso Plus (Takara, Dalian, China) and
was reverse transcribed using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara,
Dalian, China). RT-qPCR was performed in a 20-µL reaction volume containing TB Green®

Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, Dalian, China) using the CFX96 system
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The amplification conditions consisted
of an initial denaturation step at 95 ◦C for 60 s, followed by 40 cycles at 95 ◦C for 30 s,
95 ◦C for 5 s, and Tm for 30 s. The transcription level of each target gene was normalized
to RPLP0 using the 2−∆∆Ct method. The primers used in PCR amplification are listed in
Table 1.

Table 1. Primers used in RT-qPCR.

Gene GenBank
Accession Number Primer Sequence Product

Size (bp)

Wnt2 NM_001013001.1 F:5′-GAACCGCCAAGGATAACAAG-3′ 88
R:5′-ACAAACGCTCTGGCAAACTT-3′

CTNNB1 NM_001076141.1 F:5′-AGATGATGGTGTGCCAAGTG-3′ 109
R:5′-AGATGACGAAGGGCACAGAT-3′

LEF1 NM_001192856.1 F:5′-GCGAATGTCGTAGCTGAGTG-3′ 121
R:5′-CCTTCCGCGCTAATTCATAA-3′

AXIN2 NM_001192299 F:5′-AGCGGATACAGGTCCTTCAG-3′ 111
R:5′-GTCACTGGATATCTCGCTGTC -3′

Notch2 NM_002686114.6 F:5′-AGACGGCCTAACACCAAGAG-3′ 80
R:5′-CTGTTCCCCTTGGCATCCTT-3′

Hey2 NM_001192055.1 F:5′-TCTGAGTTGAGACGACTGGTG-3′ 143
R:5′-GCGTGTGCATCAAAGTAGCC-3′

Jag1 NM_001191178.1 F:5′-GGTCAATGGCGAGTCCTTCA-3′ 76
R:5′-GTCGTTGGTGTTCTGTGTGC-3′

Caspase-3 NM_001077840.1 F:5′-AGCCATGGTGAAGAAGGAATC-3′ 89
R:5′-CTGCAATAGTCCCCTCTGAAG-3′

Bax NM_173894.1 F:5′-GACATTGGACTTCCTTCGAGA-3′ 126
R:5′-AGCACTCCAGCCACAAAGAT-3′

BCL-2 NM_001166486.1 F:5′-GTGGATGACCGAGTACCTGAAC-3′ 124
R:5′-AGACAGCCAGGAGAAATCAAAC-3′

CDK4 NM_001037594.2 F:5′-CCTTCATGCCAACTGCATCG-3′ 148
R:5′-CCAGAGTGTAACAACCACAGGT-3′

CCND1 NM_001046273.2 F:5′-GCACGACTTCATCGAGCACT-3′ 115
R:5′-GAACTTCACGTCTGTGGCA-3′
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Table 1. Cont.

Gene GenBank
Accession Number Primer Sequence Product

Size (bp)

CCND2 NM_001076372.1 F:5′-CACCGATGTGGATTGCCTCA-3′ 117
R:5′-TCCAGCTCATCCTCCGACTT-3′

P21 NM_001098958.2 F:5′-CGGTGGAACTTCGACTTTGT-3′ 183
R: 5′-CAAGTGGTCCTCCTGAGACG-3′

CYP11A1 NM_176644.2 F: 5′-CACCGATATTATCAGAAACCC-3′ 249
R: 5′-ATTGGTGATGGACTCAAAGG-3′

CYP19A1 NM_174305.1 F: 5′-CACCCATCTTTGCCAGGTAGTC-3′ 78
R:5′ACCCACAGGAGGTAAGCCTATAAA-3′

HSD3β NM_174343.3 F: 5′-TGCCACAATCTGACCGCATC-3′ 167
R:5′- CTCCACCAACAGGCAGATGA-3′

STAR NM_174189.3 F:5′-CAGAAGGGTGTCATCAGAGCG-3′ 169
R:5′-CAAAATCCACCTGGGTCTGC-3′

RPLP0 NM_001012682.1 F:5′-CAACCCTGAAGTGCTTGACAT-3′ 227
R:5′-AGGCAGATGGATCAGCCA-3′

2.8. Measurement of E2 and P4 Concentrations by ELISA

The concentrations of E2 and P4 in the GC supernatants were assayed using ELISA
kits (Blue Gene, Shanghai, China), following the manufacturer’s instructions. The lowest
detectable concentration of E2 and P4 was 1.0 pg/mL and 0.1 ng/m. The samples were
diluted as necessary. Steroid hormone concentrations were normalized to 100,000 cells and
were calculated using a standard curve.

2.9. Co-Immunoprecipitation (co-IP) Assays

The GCs were transduced with a CTNNB1 overexpressing lentivirus and stably
transfected cells were selected using 3 µg/mL puromycin. Total protein was extracted
as described above and was quantified using a BCA protein assay kit (Thermo Fisher
Scientific, Waltham, MA, USA). Co-immunoprecipitation was performed using a co-
immunoprecipitation kit (Thermo Fisher Scientific, Waltham, MA, USA) with rabbit
polyclonal antibodies against β-catenin (1:50, Cell Signaling Technology, Boston, MA,
USA), Notch2 (1:200, Cell Signaling Technology, Boston, MA, USA), and IgG (1:50,
Abclonal, Wuhan, China). β-catenin and Notch2 protein expression was measured using
Western blotting.

2.10. Statistical Analysis

GC proliferation was analyzed using one-way analysis of variance followed by Tukey’s
multiple comparison tests, and pairwise comparisons were performed using t-tests in SPSS
version 24.0 (IBM, New York, NY, USA). Cell proliferation assays were performed in
sextuplicate and were repeated independently three times. A p-value of less than 0.05 was
considered statistically significant.

3. Results
3.1. Effects of IWR-1 on GC Function and Wnt/β-Catenin and Notch Pathways

IWR-1 decreased GC proliferation based on absorbance at 450 nm, and the decrease
was more pronounced starting at 2.5 µM (Figure 1A). The Western blots showed that 5 µM
IWR-1 strongly decreased β-catenin expression in a dose-independent manner (Figure 1B,
Figure S1). Therefore, this concentration was used in subsequent experiments. More-
over, 5 µM IWR-1 arrested the cell cycle and downregulated the cell cycle genes in GCs.
Specifically, IWR-1 increased the proportion of GCs in the G1 phase and decreased the
percentage of GCs in the G2 phase, indicating that IWR-1 induced G1 cell cycle arrest
(Figure 1C). The RT-qPCR analysis showed that IWR-1 downregulated CDK4 and CCND2
and upregulated p21 (Figure 1D), which was consistent with the flow cytometry results.
IWR-1 promoted apoptosis by increasing the percentage of early apoptotic cells by 8.25%
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(Figure 1E, quadrant 2-2). Further, IWR-1 increased the mRNA and protein expression of
Bax and Caspase-3 and decreased the protein expression of Bcl-2 and the Bcl-2/Bax ratio
(Figure 1F, Figure S2).
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Figure 1. Effect of IWR-1 on the proliferation, cell cycle progression, and apoptosis of bovine follicular
granulosa cells (GCs). (A) Effect of IWR-1 on cell proliferation; (B) effect of IWR-1 on β-catenin
protein expression; (C) effect of IWR-1 on the percentage of cells at the G1, S, and G2 phases; (D) effect
of IWR-1 on the expression of cell cycle genes (CDK4, CCND2, and P21) in GCs; (E) flow cytometric
analysis of the effect of IWR-1 on the percentage of apoptotic cells (quadrants 2-2 and 2-4); (F) effect of
IWR-1 on the expression of cell apoptosis genes (Bax, Bcl-2, and Caspase-3) and apoptosis proteins (Bax
and Capase-3); * p < 0.05, ** p < 0.01. Different lowercase and uppercase letters indicate significant
differences at p < 0.05 or p < 0.01, respectively.

IWR-1 modulated the Wnt/β-catenin and Notch pathways in GCs. IWR-1 decreased
the mRNA and protein expression of Notch2 (Figure 2, Figure S3) and decreased the
protein expression of β-catenin (Figure 1B), but not the mRNA expression of its gene,
CTNNB1 (Figure 2B). In the Wnt pathway, IWR-1 downregulated Wnt2 (a ligand gene)
and LEF1 (a target gene). In contrast, IWR-1 upregulated Axin2 (Figure 2B). In the Notch
pathway, IWR-1 downregulated Hey2 (a target gene) and upregulated Jag1 (a Notch ligand)
(Figure 2B).

The effect of IWR-1 on the expression of steroidogenesis genes and hormone secretion
by GCs was assessed by measuring the mRNA expression of steroidogenesis genes and
E2 and P4 concentrations. IWR-1 decreased the concentration of P4, but not E2, in cell
supernatants (Figure 3A,B) by downregulating CYP11A1 and 3β-HSD and upregulating
STAR (Figure 3C). The intra-assay coefficient of variation (CV) for E2 and P4 was 4.09%
and 8.70%, respectively, in the supernatant of GCs not treated with IWR-1, and 8.81% and
7.94%, respectively, in the supernatant of GCs transduced with 5 µM IWR-1.
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3.2. Effects of Notch2 Silencing on GC Function and Wnt/β-Catenin and Notch Pathways

The GCs were transduced for 48 h with a lentivirus carrying Notch2 siRNA or NC
siRNA and were imaged using fluorescence microscopy. The Notch2 siRNA and NC groups
exhibited strong green fluorescence, indicating successful plasmid integration into the GCs
(Figure 4).
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Figure 4. Bright-field and fluorescence images of bovine follicular granulosa cells (GCs). GCs were
transfected with negative control siRNA (A,B) or Notch2 siRNA (C,D) (×40).

Notch2 silencing increased the apoptosis rate in GCs. Specifically, Notch2 silencing
increased the protein (Figure 5A,B, Figure S4) and mRNA (Figure 5C) expression of Bax
and Caspase-3 and decreased the expression of the anti-apoptotic gene Bcl-2 (Figure 5C).
Furthermore, Notch2 silencing arrested the cell cycle by downregulating CCND1, CCND2,
and CDK4 and upregulating p21 (Figure 5D).
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Figure 5. Effect of Notch2 silencing on the expression of apoptosis and cell cycle genes in bovine
follicular granulosa cells (GCs). (A,B) Expression of apoptosis proteins (Bax and Caspase-3); (C,D)
expression of apoptosis genes (Bax, Bcl-2, and Caspase-3) and cell cycle genes (CCND1, CCND2, CDK4,
and P21). ** p < 0.01.

The Western blots showed that Notch2 siRNA significantly decreased NICD2 and
β-catenin protein expression (Figure 6A, Figure S5). The RT-qPCR analysis showed that
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Notch2 siRNA downregulated Wnt2, CTNNB1, LEF1 (a Wnt target gene), Notch2, and Hey2
(a Notch target gene) (Figure 6B).
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Figure 6. Effect of Notch2 silencing on the expression of Wnt and Notch pathway genes and proteins
in bovine follicular granulosa cells (GCs). (A) Effect of Notch2 silencing on NICD2 and β-catenin
protein expression; (B) effect of Notch2 silencing on the expression of Wnt genes (CTNNB1, LEF1, and
Wnt2) and Notch genes (Notch2 and Hey2). * p < 0.05, ** p < 0.01.

The ELISAs showed that Notch2 siRNA decreased the P4 concentrations in GCs
(Figure 7B,C). The RT-qPCR analysis showed that Notch2 siRNA downregulated STAR,
CYP11A1, and 3β-HSD, which was consistent with the steroid hormone concentration
results (Figure 7A). The intra-assay CV for E2 and P4 was 8.29% and 8.08%, respectively, in
the supernatant of GCs transduced with lenti-NC, and 7.59% and 4.24%, respectively, in
the supernatant of GCs transduced with lenti-Notch2.
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Figure 7. Effect of Notch2 silencing on steroid hormone concentrations in the supernatant of bovine
follicular granulosa cells (GCs) and the expression of steroidogenesis genes in GCs. (A) Expres-
sion of genes involved in steroid hormone synthesis (STAR, CYP11A1, 3β-HSD, and CYP19A1);
(B,C) 17β-estrogen (E2) and progesterone (P4) concentrations in the supernatant. ** p < 0.01.
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3.3. Interaction between β-Catenin and Notch2 in GCs

The GCs were transduced for 48 h with a lentivirus overexpressing CTNNB1 (lenti-OE-
CTNNB1) or NC (lenti-OE-NC). The lenti-OE-CTNNB1 and lenti-OE-NC groups exhibited
strong green fluorescence, indicating successful plasmid integration into the GCs (Figure 8).
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Figure 8. Bright-field and fluorescence images of bovine follicular granulosa cells (GCs) transduced
with a negative control lentivirus (A,B) or a lentivirus overexpressing CTNNB1 (C,D) (100×).

CTNNB1 overexpression decreased the expression of the apoptotic protein Caspase-3
and Bax in the GCs (Figure 9, Figures S6 and S7), increased E2 concentration, and decreased
P4 concentration (Figure 10). The intra-assay CV for E2 and P4 was 8.69% and 3.60%,
respectively, in the supernatant of GCs transduced with lenti-OE-NC, and 7.76% and 2.81%,
respectively, in the supernatant of GCs transduced with lenti-OE-CTNNB1.
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Figure 10. Effect of CTNNB1 overexpression on steroid hormone concentrations in the supernatant of
bovine follicular granulosa cells (GCs). (A,B) Concentrations of 17β-estrogen (E2) and progesterone
(P4) in the cell supernatant. ** p < 0.01.

CTNNB1 overexpression increased the protein expression of β-catenin and NICD2
(Figure 11A,B, Figure S8). To determine the interaction between β-catenin and NICD2 pro-
teins in GCs, β-catenin was used as bait to obtain immunoprecipitated protein complexes
to which these proteins could bind. The complexes were identified using Western blotting.
β-catenin and NICD2 were expressed in the cells transduced with lenti-OE-CTNNB1 or
lenti-OE-NC, but not in the cells in which IgG antibody was used as a control, suggesting
that β-catenin and NICD2 interact with each other (Figure 11C, Figure S9).
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4. Discussion

Wnt and Notch pathway components are expressed in the postnatal ovary and affect
follicular development by regulating the proliferation of GCs [11,32–34].

IWR-1 inhibits the Wnt/β-catenin pathway by stabilizing the Axin destruction com-
plex, resulting in the degradation of β-catenin [35]. We found that 5 µM IWR-1 reduced
GC proliferation, which is consistent with the finding that 5 µM IWR-1 decreased HCT116
colorectal cancer cell proliferation in vitro [36]. However, 0.5, 1, and 10 µM IWR-1 did
not significantly decrease the number of bovine GCs [30,37]. A possible explanation for
this discrepancy is that previous studies cultured GCs in serum-free medium, whereas we
cultured GCs in medium containing 10% fetal bovine serum. It was shown that IWR-1
decreased the proliferation of human SO-RB50 cells, induced G1 arrest by decreasing the
mRNA and protein expression of CCND1, and increased the rate of apoptosis [38]. As
IWR-1 concentration increased, the percentage of GCs in the G1 phase increased, CDK4 and
CCND2 expression decreased, and p21 expression increased, indicating that the Wnt/β-
catenin pathway inhibited GC proliferation by regulating the cell cycle. Apoptosis, as a
failsafe measure during the cell cycle, ensures the fidelity and quality of cell proliferation.
Flow cytometry results revealed that 5 µM IWR-1 increased the apoptosis rate of GCs by
increasing the mRNA and protein expression of Bax and Caspase-3 and by decreasing the
mRNA expression of Bcl-2. These results suggest that IWR-1 induced mitochondrial apop-
tosis in GCs by inhibiting Wnt/β-catenin signaling. Conversely, CTNNB1 overexpression
inhibited apoptosis by decreasing Caspase-3 and Bax protein expression, suggesting that
apoptosis in GCs is activated by the canonical Wnt pathway.

The Wnt/β-catenin pathway regulates ovarian follicle maturation and steroid hor-
mone production [39]. For instance, the intravitreal injection of IWR-1 into dominant
and subordinate follicles in vivo altered steroid hormone production and decreased the
estrogen-to-progesterone ratio in ovarian follicles [40]. In contrast, the Wnt/β-catenin
pathway stimulated E2 synthesis in GCs in medium and large buffalo follicles, whereas
IWR-1 decreased E2 levels in GCs from medium follicles [37]. In addition, IWR-1 decreased
the FSH-induced production of E2 in bovine GCs in vitro [40]. We found that the in vitro
treatment of GCs with 5 µM IWR-1 decreased the concentration of P4, but not E2, and
downregulated 3β-HSD and CYP11A1, which are involved in P4 synthesis. A possible
explanation is that FSH induction is required for E2 secretion by GCs, as FSH regulates
the activity of aromatase (encoded by CYP19A1), which converts androgens to estrogen.
CTNNB1 overexpression increased E2 levels and decreased P4 concentrations, which is
consistent with the finding that CTNNB1 is upregulated in bovine large antral follicular GCs
with higher E2 concentrations than in follicles with lower E2 concentrations [3]. Moreover,
CTNNB1 deletion in mouse primary GCs inhibited CYP19A1 expression and E2 production,
demonstrating that CYP19A1 is a target of CTNNB1 in GCs [41].
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We found that 5 µM IWR-1 upregulated Axin2 and decreased β-catenin protein expres-
sion and wnt2 and LEF1 gene expression. This result suggests that 5 µM IWR-1 inhibits the
Wnt/β-catenin pathway in GCs. Studies have shown that the Wnt2 protein is implicated
in follicular development and GC proliferation. The RNAi-mediated knockdown of Wnt2
inhibits GC proliferation [42], whereas Wnt2 overexpression reverses this effect [43]. Wnt2
regulates mouse GC proliferation through β-catenin [44], and FSH controls the expression
of both proteins in bovine GCs [3]. In addition, consistent with our results, IWR-1 prevented
FSH-induced GC proliferation, reduced E2 secretion, increased Axin2 protein levels, and
decreased β-catenin expression [30], demonstrating that Axins inhibit this pathway, and
inhibiting this pathway upregulated Axin genes.

The Notch pathway is implicated in follicle histogenesis and GC proliferation and sur-
vival, and the treatment of isolated ovaries with the inhibitors DAPT and L-685,458 reduces
GC proliferation [45], demonstrating that GC proliferation depends on Notch signaling [42].
Notch2 is expressed in GCs and oocytes during follicular development, suggesting that
Notch2, as the primary Notch receptor, is involved in oocyte–GC communication and the
recognition of GCs. Notch2 increases GC proliferation in follicles cultured in vitro. Con-
versely, Notch2 knockdown increases the number of atretic ovarian follicles, whereas the
simultaneous knockdown of Jag1 and Notch2 decreases GC proliferation [12]. Notch2 con-
trols GC proliferation by regulating c-Myc expression [12]. Notch2 silencing downregulated
the cell cycle genes CCND1, CCND2, and CDK4 and upregulated p21, which is consistent
with previous findings in bovine luteinized GCs [29]. Furthermore, the Notch2-mediated
inhibition of the Notch pathway caused apoptosis in GCs by upregulating Bax, Caspase-3,
and p21 and downregulating Bcl-2, similar to the way that the Wnt signaling pathway
regulates GC apoptosis. Therefore, Notch signaling promotes follicular GC development
by controlling cell proliferation, cell cycle progression, and apoptosis.

Notch signaling also affects steroid hormone production [46,47]. Notch2 expression in
primary mouse GCs cultured in vitro peaked at day 5 of culture, whereas GCs increased
the secretion of E2 and P4 by upregulating STAR, CYP19A1, and CYP11A1 [46]. DAPT
treatment decreased the number of GCs and E2 secretion in sheep [48]. Our results sug-
gest that the Notch pathway, mediated by Notch2, increases P4 secretion by upregulating
STAR, 3β-HSD, and CYP11A1. However, there were no detectable changes in E2 concentra-
tions and the relative expression of CYP19A1, which regulates E2 synthesis. It has been
shown that the rate of proliferation of primary mouse GCs decreased with culture time,
leading to the appearance of differentiated preovulatory GCs by inhibiting intercellular
contacts [46]. Therefore, we speculate that the Notch2-mediated suppression of Notch
signaling induces the differentiation of GCs into luteinized GCs, consequently decreasing
P4 concentration, which is consistent with the changes in GC morphology in the later stages
of culture. DAPT decreased P4 concentrations in murine luteinized cells by downregulating
CYP11A1. NICD3 overexpression increased P4 secretion in human chorionic gonadotropin-
induced GCs by upregulating CYP11A1 and STAR [45], whereas P4 production decreased
in gonadotropin-responsive mouse GCs transfected with NICD1 or NICD2 [49]. The down-
regulation of STAR, 3β-HSD, and CYP11A1, which regulate P4 synthesis, is consistent with
the above results.

We found that Notch2 silencing downregulated Notch2 protein and its target gene Hey2,
indicating that the Notch pathway was successfully inhibited. The hey2 gene is a member of
the basic helix-loop-helix family, which is a transcriptional repressor and a target of Notch
signaling. DAPT downregulated Hey2 in fetal and neonatal mouse ovaries [50]. In addition,
the shRNA-mediated knockdown of Notch2 in bovine luteinized GCs decreased the mRNA
and protein expression of Notch2 and the relative expression of Hes1 and Hey2 [29].

There is crosstalk between the Notch and Wnt/β-catenin pathways in several cell
types during animal development [19]. This interaction may be synergistic or antagonistic,
depending on the environmental stimuli [51]. Moreover, the mechanisms of interaction
between proteins from these pathways are classified into three categories: the co-regulation
of transcriptional targets, the influence of the transcriptional targets of a pathway on those
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of another pathway, and direct interaction between pathways [52]. The latter mechanism
has been studied the most. We found that IWR-1 decreased the expression of Notch2
protein and the target gene Hey2 and upregulated Jag1. However, the reason for this
phenomenon is unclear. CTNNB1 overexpression increased β-catenin and NICD2 protein
expression. In turn, Notch2 silencing downregulated Wnt2, CTNNB1, and LEF1. The
consistent expression of key genes across pathways suggests a synergistic effect between
these pathways in bovine GCs cultured in vitro. β-catenin inhibition by Notch promotes
β-catenin degradation in lysosomes upon Notch dephosphorylation without the need for
γ-secretase release from NICDs or the expression of target genes [53]. NICDs inhibit β-
catenin activity by preventing β-catenin from binding to its target site, ultimately inhibiting
the Wnt/β-catenin pathway [54]. Furthermore, Jag1 knockdown enhances the proliferation
of mouse preovulatory GCs, and represses GC differentiation by decreasing the expression
of enzymes and factors involved in steroid synthesis and secretion [46], which is consistent
with our results.

To investigate the molecular interactions between the two pathways in vitro, the
Wnt/β-catenin pathway was activated by overexpressing CTNNB1, and the interaction
between β-catenin and Notch2 was assessed using co-immunoprecipitation. The results
showed that NICD2 was present in the protein complexes obtained using a β-catenin
antibody as bait, suggesting an interaction between these two proteins. However, these
interactions in GCs are unclear. The protein complex composed of RBP-J, NICD, and β-
catenin induces the generation of arterial endothelial cells by vascular progenitor cells [55].
β-catenin proteins with reduced transcriptional activity promote ovarian cancer cell prolif-
eration by upregulating Jagged1 in the Notch signaling pathway [28]. Notch interacted with
β-catenin and inhibited its activity by targeting the complex to the proteasome. Nonethe-
less, the interactions between catenin and NICD, and their roles in GCs, warrant further
investigation. Furthermore, GSK3β, a member of the destruction complex, mediates the
interaction between Wnt and Notch signaling and directly modulates Notch signaling to
promote carcinogenesis in the colon and neural progenitor cells [56]. GSK3β also activates
NICD2 phosphorylation and downregulates its target genes [52,57]. Hes1 expression is
regulated by β-catenin [58]. Research is underway to elucidate the interactions between
these two pathways.

5. Conclusions

This study demonstrated that inhibiting the Wnt/β-catenin or Notch signaling path-
ways in bovine follicular GCs in vitro regulates follicular GC function by modulating cell
cycle progression and apoptosis, and by reducing P4 secretion. Moreover, these two path-
ways may act synergistically through β-catenin and Notch2 protein interactions. These
results elucidate the roles of these pathways in bovine follicular GC development.
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blotting gray value statistics of NICD2 protein expression in GCs treated with IWR-1. Figure S4:
Western blotting gray value statistics of Bax and Caspase-3 protein expression in GCs following
Notch2 silencing. Figure S5: Western blotting gray value statistics of β-catenin and NICD2 protein
expression in GCs following Notch2 silencing. Figure S6: Western blotting gray value statistics of
Caspase-3 protein expression in GCs following CTNNB1 overexpression. Figure S7: Western blotting
gray value statistics of Bax protein expression in GCs following CTNNB1 overexpression. Figure S8:
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