Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = Wh-Doubling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1079 KiB  
Article
Electricity-Related Emissions Factors in Carbon Footprinting—The Case of Poland
by Anna Lewandowska, Katarzyna Joachimiak-Lechman, Jolanta Baran and Joanna Kulczycka
Energies 2025, 18(15), 4092; https://doi.org/10.3390/en18154092 - 1 Aug 2025
Viewed by 158
Abstract
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess [...] Read more.
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess their strengths and weaknesses in the context of the calculation requirements of carbon footprint analysis in accordance with the GHG Protocol. The article presents the results of carbon footprint calculations for different ranges of emissions in the life cycle of 1 kWh of electricity delivered to a hypothetical organization. Next, a discussion on the quality of the emissions factors has been provided, taking account of data quality indicators. It was concluded that two of the emissions factors that are compared—those based on the national consumption mix and the residual mix for Poland—have been recognized as suitable for use in carbon footprint calculations. Beyond the calculation results, the research highlights the significance of the impact of the selection of emissions factors on the reliability of environmental analysis. The article identifies methodological challenges, including the risk of double counting, limited transparency, methodological inconsistency, and low correlation of data with specific locations and technologies. The insights presented contribute to improving the robustness of carbon footprint calculations. Full article
Show Figures

Figure 1

13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 210
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 415
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 295
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

14 pages, 3101 KiB  
Article
Construction of CuCo2O4@NiFe-LDH Core–Shell Heterostructure for High-Performance Hybrid Supercapacitors
by Yang Chen, Man Li, Chengyu Xue and Fuxiang Wei
Metals 2025, 15(6), 659; https://doi.org/10.3390/met15060659 - 13 Jun 2025
Viewed by 470
Abstract
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their [...] Read more.
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their application in supercapacitors. In this paper, core–shell heterostructures of nickel–iron layered double hydroxide (NiFe-LDH) nanosheets uniformly grown on CuCo2O4 nanoneedles were synthesized by hydrothermal and calcination methods. It is found that the novel core–shell structure of CuCo2O4@NiFe-LDH improves the electrical conductivity of the electrode materials and optimizes the charge transport path. Under the synergistic effect of the two components and the core–shell heterostructure, the CuCo2O4@NiFe-LDH electrode achieves an ultra-high specific capacity of 323.4 mAh g−1 at 1 A g−1. And the capacity retention after 10,000 cycles at 10 A g−1 is 90.66%. In addition, the assembled CuCo2O4@NiFe-LDH//RGO asymmetric supercapacitor device achieved a considerable energy density (68.7 Wh kg−1 at 856.3 W kg−1). It also has 89.36% capacity retention after 10,000 cycles at 10 A g−1. These properties indicate the great potential application of CuCo2O4@NiFe-LDH in the field of high-performance supercapacitors. Full article
Show Figures

Figure 1

32 pages, 76044 KiB  
Article
Study on the Influence and Optimization of Skylight Daylighting Spatial Form on Light and Thermal Performance in Shallow Buried Subway Stations: A Case Study of Shanghai
by Xinyu Liu, Bo Sun, Xiang Ji, Chen Hua, Yidong Chen and Hong Zhang
Buildings 2025, 15(11), 1926; https://doi.org/10.3390/buildings15111926 - 2 Jun 2025
Viewed by 464
Abstract
The rapid development of urban subway network is prompting higher requirements for daylighting in subway stations. The skylight daylighting space of shallow buried subway stations not only improves the quality of light environment but also brings challenges for the optimization of light and [...] Read more.
The rapid development of urban subway network is prompting higher requirements for daylighting in subway stations. The skylight daylighting space of shallow buried subway stations not only improves the quality of light environment but also brings challenges for the optimization of light and thermal performance, especially in areas with hot summers and cold winters. In this paper, key parameters such as illumination, air temperature, and the black sphere temperature of skylight and artificial lighting areas at stations A and B in Shanghai were tested with a field test system. The results show that the light environment in the skylight areas was significantly improved, but the need for regulation and control of the thermal environment increased. Combined with response surface analysis, 10 sample models for two types of daylighting space (partitioned and open atrium styles) were studied and constructed, including 254 simulated working conditions. The results reveal that design parameters such as the number, aspect ratio, depth of light openings, and skylight angle have significant effects on combined energy consumption. The decentralized double slope roof daylighting space has the best performance in partitioned and open atrium-style public areas, and combined energy consumption can be reduced to 385.14 kWh/m2. The optimization strategies proposed in this study can provide a quantitative basis for the skylight design of shallow buried subway stations and an important reference for the design of low-carbon and energy-saving underground spaces. Full article
Show Figures

Figure 1

16 pages, 5422 KiB  
Article
Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors
by Victor Charles, Kingsford Asare, Md Faruque Hasan and Lifeng Zhang
Molecules 2025, 30(11), 2282; https://doi.org/10.3390/molecules30112282 - 22 May 2025
Viewed by 448
Abstract
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of [...] Read more.
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of carbon nanofibrous electrode material from electrospinning of polyacrylonitrile (PAN). Fluorination of the electrospun carbon nanofibers (ECNF) was studied by comparing two types of hydrofluoric acid (HF) treatment, i.e., direct HF acid treatment on ECNF (Type I) vs. HF acid treatment on the stabilized PAN (Type II) followed by carbonization. The latter was found to be an advantageous way to introduce C-F bonds in the resultant carbon nanofibrous electrode material that contributed to pseudocapacitance. Furthermore, the Type II HF acid treatment demonstrated exciting synergistic effects with ECNF aerogel formation on carbon structure and porosity development and generated a superior fluorinated electrospun carbon nanofibrous aerogel (ECNA-F) electrode material for supercapacitor uses. The resultant ECNA-F electrode material demonstrated excellent electrochemical performance with great cyclic stability due to the large improvements in both pseudocapacitance and electrical double-layer capacitance. ECNA-F achieved a specific capacitance of 372 F/g at a current density of 0.5 A/g with 1 M H2SO4 electrolyte, and the device with ECNA-F and 1 M Na2SO4 electrolyte possessed an energy density of 29.1 Wh/kg at a power density of 275 W/kg. This study provided insight into developing high-performance and stable carbon nanofibrous electrode materials for supercapacitors. Full article
(This article belongs to the Special Issue Development and Design of Novel Electrode Materials)
Show Figures

Figure 1

32 pages, 5449 KiB  
Article
Energy for Water and Food: Assessing the Energy Demand of Jordan’s Main Water Conveyance System Between 2015 and 2050
by Samer Talozi, Ahmad Al-Kebsi and Christian Klassert
Water 2025, 17(10), 1496; https://doi.org/10.3390/w17101496 - 15 May 2025
Viewed by 998
Abstract
Jordan is a relatively small country with limited natural resources, but it faces a burgeoning demand for water, energy, and food to accommodate a growing population, refugee migration, and the challenges of climate change that will persist through the rest of this century. [...] Read more.
Jordan is a relatively small country with limited natural resources, but it faces a burgeoning demand for water, energy, and food to accommodate a growing population, refugee migration, and the challenges of climate change that will persist through the rest of this century. Jordan’s Main Water Conveyance System is the backbone of distributing scarce water resources to meet domestic and agricultural demands. Therefore, understanding how the future energy requirements of this system may change is critical for managing the country’s water, energy, and food resources. This paper applied a water balance model to calculate the energy consumption of Jordan’s Main Water Conveyance System between 2015 and 2050, and the results point to high energy requirements for the future of distributing Jordan’s water. In the base year of 2015, the unmet water demand was 134.55 MCM, and the supplied water volume delivered was 438.75 MCM, while the energy consumption was 1496.7 GWh. The energy intensities for water conveyance and water treatment were 7.11 kWh/m3 and 0.5 kWh/m3, respectively. We examined five scenarios of future water and energy demand within Jordan: a reference scenario, a continuation of current behavior, two scenarios incorporating improved water management strategies, and a pessimistic scenario with no interventions. According to all scenarios, the energy consumption is expected to be doubled by the year 2050, reaching approximately 3172 GWh. It is recommended that Jordan prioritizes solar-powered conveyance and pumping to reduce the projected doubling of energy demand by 2050. Across all scenarios, the demand for nonrenewable energy associated with water conveyance is projected to rise significantly, particularly in the absence of renewable integration or efficiency interventions. Total water demand is expected to increase by up to 35% by 2050, with urban and agricultural sectors being the primary contributors. Full article
Show Figures

Figure 1

24 pages, 4367 KiB  
Article
Analysis of the Influence of Different Plasticizing Systems in a Single-Screw Extruder on the Extrusion-Cooking Process and on Selected Physical Properties of Snack Pellets Enriched with Selected Oilseed Pomace
by Jakub Soja, Maciej Combrzyński, Tomasz Oniszczuk, Marek Gancarz and Renata Różyło
Processes 2025, 13(4), 1247; https://doi.org/10.3390/pr13041247 - 20 Apr 2025
Viewed by 394
Abstract
By-products generated in the agri-food industry are frequently regarded as waste, despite their significant potential for reutilization as valuable raw materials with both nutritional and functional properties. Nigella and flaxseed pomace, as rich sources of bioactive compounds, have the capacity to enhance the [...] Read more.
By-products generated in the agri-food industry are frequently regarded as waste, despite their significant potential for reutilization as valuable raw materials with both nutritional and functional properties. Nigella and flaxseed pomace, as rich sources of bioactive compounds, have the capacity to enhance the nutritional profile and functional characteristics of extruded products while simultaneously contributing to the reduction in food waste. Uniquely, the present study analyzed the effect of extrusion-cooking process conditions on the efficiency, energy consumption, and selected physical properties of extrudates enriched with nigella and flaxseed pomace. The samples were made using a single-screw extruder-cooker. Two plasticizing (L/D 16 and 20) systems were compared. The highest efficiency, 23.16 kg/h, was reached using 20% nigella pomace with the L/D 16 system. During the whole process, the specific mechanical energy ranged from 0.006 to 0.105 kWh/kg. New information was obtained on the interaction between pomace content and the physical properties of the extrudates. The results showed that the use of 10% nigella pomace maximized the WAI 4.90 and WSI 11.73% for pellets with 30% of nigella seed pomace in the L/D 20 and influenced the change in bulk density, indicating a double innovation: an improvement in extrudate quality and the efficient use of by-products. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

22 pages, 7142 KiB  
Article
Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors
by Yingying Li, Qin Zhou and Yongfu Lian
Nanomaterials 2025, 15(7), 481; https://doi.org/10.3390/nano15070481 - 23 Mar 2025
Viewed by 638
Abstract
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by [...] Read more.
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g−1 at 1 A g−1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g−1 at 1.0 A g−1, an excellent energy density of 45.7 Wh kg−1 with a power density of 700 W kg−1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g−1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors. Full article
Show Figures

Graphical abstract

18 pages, 3782 KiB  
Article
Thermal Performance and Cost Assessment Analysis of a Double-Pass V-Trough Solar Air Heater
by Eduardo Venegas-Reyes, Naghelli Ortega-Avila, Yuridiana Rocio Galindo-Luna, Jonathan Ibarra-Bahena, Erick Cesar López-Vidaña and Ulises Dehesa-Carrasco
Clean Technol. 2025, 7(1), 27; https://doi.org/10.3390/cleantechnol7010027 - 18 Mar 2025
Cited by 1 | Viewed by 1142
Abstract
Solar air heating systems offer an effective alternative for reducing greenhouse gas emissions at a profitable cost. This work details the design, construction, and experimental evaluation of a novel double-pass V-trough solar air heater with semicircular receivers, which was built with low-cost materials [...] Read more.
Solar air heating systems offer an effective alternative for reducing greenhouse gas emissions at a profitable cost. This work details the design, construction, and experimental evaluation of a novel double-pass V-trough solar air heater with semicircular receivers, which was built with low-cost materials readily available in the Mexican market. Thermal performance tests were conducted in accordance with the ANSI-ASHRAE 93-2010 standard. The results indicated a peak collector efficiency of 0.4461 and total heat losses of 8.8793 W/(m2 °C), with an air mass flow rate of 0.0174 kg/s. The instantaneous thermal efficiency varied between 0.2603 and 0.5633 with different air flow rates and an inlet air temperature close to the ambient temperature. The outlet air temperature reached 70 °C, making it suitable for dehydrating fruits or vegetables at competitive operating costs. Additionally, a second-law analysis was carried out, and the exergy efficiency was between 0.0037 and 0.0407. Finally, a Levelized Cost of Energy analysis was performed, and the result was USD 0.079/kWh, which was 31% lower than that of a conventional electric air heater system. Full article
Show Figures

Figure 1

17 pages, 4525 KiB  
Article
Design, Modeling, and Validation of a Compact, Energy-Efficient Mixing Screw for Sustainable Polymer Processing
by David O. Kazmer and Stiven Kodra
Polymers 2025, 17(2), 215; https://doi.org/10.3390/polym17020215 - 16 Jan 2025
Cited by 1 | Viewed by 1723
Abstract
This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by [...] Read more.
This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.75 compression ratio. Non-isothermal, non-Newtonian simulations modeled the thermal and flow behavior for high-impact polystyrene (HIPS) and recycled polypropylene (rPP) under various operating conditions. Experimental validation was conducted using a 20 mm pilot-scale extruder with screw speeds ranging from 10 to 40 RPM and barrel temperatures of 220 °C and 240 °C. Results showed a strong linear dependence of mass output on screw speed, with maximum mass throughputs of 0.58 kg/h for HIPS and 0.74 kg/h for rPP at 40 RPM. Specific energy consumption (SEC) was calculated as 0.264 kWh/kg for HIPS and 0.344 kWh/kg for rPP, corresponding to efficiencies of 31.5% and 56.5% relative to theoretical minimum energy requirements. Compared to traditional general-purpose and barrier screws with L/D ratios of 27:1, the mixing screw demonstrated improved energy efficiency and reduced residence time distributions. These findings suggest the potential of the mixing screw for compact extrusion systems, including 3D printing and other sustainable polymer and bioplastics processing applications. Full article
Show Figures

Graphical abstract

22 pages, 2031 KiB  
Article
Implications of Large-Scale PV Integration on Grid Operation, Costs, and Emissions: Challenges and Proposed Solutions
by Ghassan Zubi, Yael Parag and Shlomo Wald
Energies 2025, 18(1), 130; https://doi.org/10.3390/en18010130 - 31 Dec 2024
Cited by 1 | Viewed by 1295
Abstract
This study examines integrating large-scale photovoltaic (PV) systems into the power grid to achieve a 30% PV share, addressing operational and economic challenges such as backup generation, storage, and grid stability. Applying an electricity dispatch model to the test case of Israel, it [...] Read more.
This study examines integrating large-scale photovoltaic (PV) systems into the power grid to achieve a 30% PV share, addressing operational and economic challenges such as backup generation, storage, and grid stability. Applying an electricity dispatch model to the test case of Israel, it highlights significant impacts on fuel consumption, cost, and carbon emissions. Key findings include an 8% drop in the capacity factor of natural gas combined cycle (NGCC) plants, leading to increased starts, stops, and higher fuel consumption. Annual power generation will grow from 81 to 104 TWh, with PV generation increasing from 8.1 to 31.1 TWh. Open cycle gas turbine (OCGT) output will grow from 2.4 to 10.2 TWh, increasing OCGT’s market share from 3% to 10%. NGCC operations’ intermittency will double annual starts from 3721 to 7793, causing a 1.1% efficiency drop and a 2% rise in natural gas consumption. 3.45 GWh of Li-ion battery capacity will be needed. The LCoE is expected to increase from 6.6 to 7.0 c$/kWh without a carbon tax and from 8.7 to 8.8 c$/kWh with a $40/t carbon tax. Annual emissions will rise from 41.8 to 46.5 Mt. This study provides insights for sunny Mediterranean countries with similar renewable energy goals. Full article
(This article belongs to the Special Issue Decarbonization and Sustainability in Industrial and Tertiary Sectors)
Show Figures

Graphical abstract

22 pages, 1959 KiB  
Article
Integration of Plant Pomace into Extruded Products: Analysis of Process Conditions, Post-Production Waste Properties and Biogas Potential
by Jakub Soja, Tomasz Oniszczuk, Iryna Vaskina, Maciej Combrzyński and Agnieszka Wójtowicz
Energies 2024, 17(24), 6476; https://doi.org/10.3390/en17246476 - 23 Dec 2024
Cited by 2 | Viewed by 940
Abstract
Waste streams from cereal-based food production processes, rich in organic matter and carbohydrates, have untapped potential for biogas production. This study uniquely investigated the extrusion-cooking process conditions, physical properties and biogas efficiency of snack pellets enriched with plant pomace (apple, chokeberry, pumpkin, flaxseed [...] Read more.
Waste streams from cereal-based food production processes, rich in organic matter and carbohydrates, have untapped potential for biogas production. This study uniquely investigated the extrusion-cooking process conditions, physical properties and biogas efficiency of snack pellets enriched with plant pomace (apple, chokeberry, pumpkin, flaxseed and nigella seeds) at different levels (10, 20 and 30%), produced using a single-screw extruder-cooker. The highest efficiency obtained in the extrusion-cooking process (18.20 kg/h) was observed for pellets with the addition of 30% flaxseed pomace. The SME value during the entire process was in the range of 0.015–0.072 kWh/kg. New insights into the interaction between the inclusion of pomace, the physical properties of the extrudate and the anaerobic fermentation efficiency were obtained. The results show that 30% chokeberry extrudate maximized methane production (51.39% gas), demonstrating a double innovation: improving snack pellet quality and converting food waste into renewable energy. Full article
Show Figures

Figure 1

12 pages, 7596 KiB  
Article
Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells
by Xiaoxiang Sun, Jinglin Song, Weijun Tan, Jing Chen, Mingxin Chen, Fen Li, Chang Li and Zhuoliang Yu
Coatings 2024, 14(12), 1583; https://doi.org/10.3390/coatings14121583 - 18 Dec 2024
Viewed by 841
Abstract
The double-ridge superimposed structures (DRSSs), formed by the superposition of a nano-ridged textured ZnO layer and a ternary organic active layer (PTB7:PC70BM:PC60BM) with self-assembled nano-ridged (SANR) structures, have been preliminarily examined experimentally for its positive effects in light-trapping for [...] Read more.
The double-ridge superimposed structures (DRSSs), formed by the superposition of a nano-ridged textured ZnO layer and a ternary organic active layer (PTB7:PC70BM:PC60BM) with self-assembled nano-ridged (SANR) structures, have been preliminarily examined experimentally for its positive effects in light-trapping for organic solar cells (OSCs). To obtain DRSSs with higher-performance light-trapping effects and enhance the light absorption of OSCs, the present work carried out prior theoretical simulations of the light-trapping characteristics of the DRSS using the finite-difference time-domain (FDTD) algorithm. The results show that the DRSS exhibits a significant light-trapping effect, with an active layer absorption peak around 530 nm due to the light-trapping effect. This helps the active layer capture more high-energy photons, significantly enhancing the photon utilization of the DRSS. Interestingly, the intensity of the light-trapping absorption peak is solely dependent on the height or width of the active layer ridges in the DRSS, while the position of the peak is jointly determined by both the ZnO and active layer ridges. By controlling the aspect ratio (W/H) of the dual ridges, the light-trapping absorption peak position can be fine-tuned, enabling precise light-trapping management for specific wavelength bands. It is certain that the outcomes of this work will provide theoretical foundations and practical guidance for the fabrication of light-trapping OSCs. Full article
Show Figures

Figure 1

Back to TopTop