Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (158)

Search Parameters:
Keywords = Weber’s model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 985 KB  
Article
Balancing Skill Standardisation and Ethical Internalisation: Toward a Skill–Ethics Equilibrium Framework for Ecological Physical Education
by Ke-Xiang Yang, Lu-Ming Tao, Shan Huang, Xiao-Long Zhang and Hyun-Chul Jeong
Sustainability 2026, 18(1), 139; https://doi.org/10.3390/su18010139 - 22 Dec 2025
Viewed by 295
Abstract
In response to UNESCO’s call to integrate sustainability into curriculum design, this study examines the structure of ecological physical education (PE) objectives in China and South Korea and how these patterns reflect different approaches to Education for Sustainable Development (ESD). Using a dual-dimensional [...] Read more.
In response to UNESCO’s call to integrate sustainability into curriculum design, this study examines the structure of ecological physical education (PE) objectives in China and South Korea and how these patterns reflect different approaches to Education for Sustainable Development (ESD). Using a dual-dimensional framework integrating Weber’s instrumental–value rationality distinction and Hauenstein’s Taxonomy of Educational Objectives, this study conducts a qualitative comparative analysis of ecological PE objectives from the 2022 national curricula of China and South Korea. The analysis focuses exhaustively on the ecological modules within these curricula rather than the full set of PE standards. The findings indicate that China’s curriculum exhibits a linear, standardisation-oriented progression, with objectives concentrated in the Acquisition and Performance levels (31.6% each) and no Accomplishment-level objectives, suggesting limited formal pathways for higher-order ecological enactment. In contrast, South Korea’s curriculum shows a value-oriented spiral progression, with objectives spanning Assimilation (23.5%), Adaptation (58.8%), and Accomplishment (11.8%) levels, suggesting alignment with national sustainability policies. The study proposes the Skill–Ethics Equilibrium framework as an integrative model that synthesises the complementary strengths of both systems, offering dual optimisation pathways: one to strengthen ethical enactment in China and another to enhance evaluative clarity in Korea. This framework provides a theoretically grounded heuristic for advancing ESD-aligned ecological PE in diverse educational contexts. Full article
Show Figures

Figure 1

26 pages, 6773 KB  
Article
Numerical Analysis of Impact-Freezing and Spreading Dynamics of Supercooled Saline Droplets on Offshore Wind Turbine Blades Using the VOF–Enthalpy–Porosity Method
by Guanyu Chen, Huan Xia, Xu Bai, Daolei Wu and Baolong Lin
J. Mar. Sci. Eng. 2025, 13(11), 2093; https://doi.org/10.3390/jmse13112093 - 3 Nov 2025
Viewed by 405
Abstract
The impact-freezing phenomenon of supercooled saline droplets on cold surfaces poses a serious threat to the operational stability and structural integrity of offshore wind turbines. Compared to freshwater droplets, numerical models for analyzing the impact-freezing behavior of saline droplets typically involve complex physical [...] Read more.
The impact-freezing phenomenon of supercooled saline droplets on cold surfaces poses a serious threat to the operational stability and structural integrity of offshore wind turbines. Compared to freshwater droplets, numerical models for analyzing the impact-freezing behavior of saline droplets typically involve complex physical mechanisms, resulting in high computational costs. This study employs a simplified two-dimensional axisymmetric numerical model that integrates the Volume of Fluid (VOF) method with the enthalpy–porosity approach, enabling rapid analysis of the saline droplet impact-freezing process under marine environmental conditions. The model is validated by comparing the spreading factor curve of saline droplets with a salinity of 35‰ against existing experimental data. Results show that the salinity corresponding to the peak relative deviation shifts with varying impact parameters, depending on the competition between impact dynamics and solidification. Furthermore, the maximum spreading factor decreases with increasing supercooling degree and contact angle but increases with higher Weber number. These findings provide useful correction parameters for improving existing droplet motion and icing prediction models. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

15 pages, 2750 KB  
Article
Study on the Spreading Dynamics of Droplet Pairs near Walls
by Jing Li, Junhu Yang, Xiaobin Liu and Lei Tian
Fluids 2025, 10(10), 252; https://doi.org/10.3390/fluids10100252 - 26 Sep 2025
Viewed by 527
Abstract
This study develops an incompressible two-phase flow solver based on the open-source OpenFOAM platform, employing the volume-of-fluid (VOF) method to track the gas–liquid interface and utilizing the MULES algorithm to suppress numerical diffusion. This study provides a comprehensive investigation of the spreading dynamics [...] Read more.
This study develops an incompressible two-phase flow solver based on the open-source OpenFOAM platform, employing the volume-of-fluid (VOF) method to track the gas–liquid interface and utilizing the MULES algorithm to suppress numerical diffusion. This study provides a comprehensive investigation of the spreading dynamics of droplet pairs near walls, along with the presentation of a corresponding mathematical model. The numerical model is validated through a two-dimensional axisymmetric computational domain, demonstrating grid independence and confirming its reliability by comparing simulation results with experimental data in predicting drConfirmedoplet collision, spreading, and deformation dynamics. The study particularly investigates the influence of surface wettability on droplet impact dynamics, revealing that increased contact angle enhances droplet retraction height, leading to complete rebound on superhydrophobic surfaces. Finally, a mathematical model is presented to describe the relationship between spreading length, contact angle, and Weber number, and the study proves its accuracy. Analysis under logarithmic coordinates reveals that the contact angle exerts a significant influence on spreading length, while a constant contact angle condition yields a slight monotonic increase in spreading length with the Weber number. These findings provide an effective numerical and mathematical tool for analyzing the spreading dynamics of droplet pairs. Full article
Show Figures

Figure 1

19 pages, 3897 KB  
Article
Enhanced Adsorption of Pb(II) and Cd(II) by Activated Carbon Derived from Peach Stones for Efficient Water Decontamination
by Guilherme Medina Cameu, Leandro Almeida, Ana Paula Oliveira, Andrei Igansi, Débora Pez Jaeschke, Nauro Silveira, Rafael Paes, Daiane Dias, Luiz Antonio de Almeida Pinto and Tito Roberto Sant’Anna Cadaval
Processes 2025, 13(10), 3064; https://doi.org/10.3390/pr13103064 - 25 Sep 2025
Cited by 1 | Viewed by 957
Abstract
This work employed peach stones as the precursor material for producing activated carbon (AC-PS). AC-PS was impregnated with H3PO4 and carbonized using a pyrolysis reactor under a reducing atmosphere. The surface area, average pore size, and total pore volume of [...] Read more.
This work employed peach stones as the precursor material for producing activated carbon (AC-PS). AC-PS was impregnated with H3PO4 and carbonized using a pyrolysis reactor under a reducing atmosphere. The surface area, average pore size, and total pore volume of AC-PS were determined using the BET method. Morphological characteristics of AC-PS were observed through scanning electron microscopy (SEM), the surface composition was identified by energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses were conducted to determine the crystalline structure of carbon. The thermal stability of AC-PS and its interactions with lead and cadmium were analyzed by thermogravimetric analyses (TGA/DTG) and infrared spectra (FTIR), respectively. The Elovich model described the adsorption kinetics of both lead and cadmium, and the Weber and Morris model indicated intraparticle diffusion as the controlling mechanism of the adsorption process. The equilibrium study showed that the Freundlich model was adequate for both ions, with adsorption capacities increasing with temperature, reaching around 150 mg g−1 for lead and 80 mg g−1 for cadmium at 45 °C. Economic analysis indicated costs of $0.25 g−1 and $0.51 g−1 for the removal of lead and cadmium from the contaminated water, respectively. Full article
Show Figures

Figure 1

21 pages, 2989 KB  
Article
Numerical Investigation of Hydrogen Substitution Ratio Effects on Spray Characteristics, Combustion Behavior, and Emissions in a Dual-Fuel Compression Ignition Engine
by Takwa Hamdi, Fathi Hamdi, Samuel Molima, Victor M. Domínguez, José Rodríguez-Fernández, Juan José Hernández and Mouldi Chrigui
Machines 2025, 13(10), 880; https://doi.org/10.3390/machines13100880 - 23 Sep 2025
Viewed by 1066
Abstract
Hydrogen is a promising alternative fuel for internal combustion engines due to its high specific energy, fast flame speed, and carbon-free combustion. In dual-fuel operation, it offers a practical route to reducing greenhouse gas emissions while remaining compatible with existing engine hardware. This [...] Read more.
Hydrogen is a promising alternative fuel for internal combustion engines due to its high specific energy, fast flame speed, and carbon-free combustion. In dual-fuel operation, it offers a practical route to reducing greenhouse gas emissions while remaining compatible with existing engine hardware. This work evaluates how the hydrogen energy substitution ratio (HSR = 50, 70, and 90%) influences spray dynamics, combustion characteristics, and emissions in a heavy-duty compression ignition engine. Simulations are validated against experiments and use a URANS RNG k–ε framework with a hybrid combustion model: the Eddy Dissipation Concept (EDC) coupled with detailed kinetics (111 species, 768 reactions) for auto-ignition and diffusion burning of diesel, and a G-equation for propagation of a hydrogen-rich premixed flame. The results reveal clear spray–combustion linkages. At HSR 50, the higher Weber number induces stronger breakup, yielding a smaller Sauter mean diameter and higher number-averaged droplet velocity; at HSR 90, the spray is more stable and less atomized, with larger droplets and a shorter vapor penetration length. Increasing the HSR reduces unburned hydrocarbons (UHCs) by more than 50% from HSR 50 to HSR 90 while modestly altering combustion phasing (a later CA50 and a shorter burn duration due to faster hydrogen flame propagation). The validated model provides a practical tool for optimizing dual-fuel settings and HSR–EGR–SOI trade-offs to balance efficiency and emissions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

25 pages, 12760 KB  
Article
Intelligent Face Recognition: Comprehensive Feature Extraction Methods for Holistic Face Analysis and Modalities
by Thoalfeqar G. Jarullah, Ahmad Saeed Mohammad, Musab T. S. Al-Kaltakchi and Jabir Alshehabi Al-Ani
Signals 2025, 6(3), 49; https://doi.org/10.3390/signals6030049 - 19 Sep 2025
Viewed by 2140
Abstract
Face recognition technology utilizes unique facial features to analyze and compare individuals for identification and verification purposes. This technology is crucial for several reasons, such as improving security and authentication, effectively verifying identities, providing personalized user experiences, and automating various operations, including attendance [...] Read more.
Face recognition technology utilizes unique facial features to analyze and compare individuals for identification and verification purposes. This technology is crucial for several reasons, such as improving security and authentication, effectively verifying identities, providing personalized user experiences, and automating various operations, including attendance monitoring, access management, and law enforcement activities. In this paper, comprehensive evaluations are conducted using different face detection and modality segmentation methods, feature extraction methods, and classifiers to improve system performance. As for face detection, four methods are proposed: OpenCV’s Haar Cascade classifier, Dlib’s HOG + SVM frontal face detector, Dlib’s CNN face detector, and Mediapipe’s face detector. Additionally, two types of feature extraction techniques are proposed: hand-crafted features (traditional methods: global local features) and deep learning features. Three global features were extracted, Scale-Invariant Feature Transform (SIFT), Speeded Robust Features (SURF), and Global Image Structure (GIST). Likewise, the following local feature methods are utilized: Local Binary Pattern (LBP), Weber local descriptor (WLD), and Histogram of Oriented Gradients (HOG). On the other hand, the deep learning-based features fall into two categories: convolutional neural networks (CNNs), including VGG16, VGG19, and VGG-Face, and Siamese neural networks (SNNs), which generate face embeddings. For classification, three methods are employed: Support Vector Machine (SVM), a one-class SVM variant, and Multilayer Perceptron (MLP). The system is evaluated on three datasets: in-house, Labelled Faces in the Wild (LFW), and the Pins dataset (sourced from Pinterest) providing comprehensive benchmark comparisons for facial recognition research. The best performance accuracy for the proposed ten-feature extraction methods applied to the in-house database in the context of the facial recognition task achieved 99.8% accuracy by using the VGG16 model combined with the SVM classifier. Full article
Show Figures

Figure 1

14 pages, 235 KB  
Article
Investing in Resilience: A Comparative Study of Black Church Survival in Underserved Detroit
by Charles Edward Williams
Religions 2025, 16(9), 1182; https://doi.org/10.3390/rel16091182 - 14 Sep 2025
Viewed by 1603
Abstract
This study examines how theological orientation and institutional culture shape the viability of two historically Black churches in Detroit: Historic King Solomon Baptist Church and Greater King Solomon Baptist Church. Against the backdrop of accelerating church closures in underserved Black communities, the research [...] Read more.
This study examines how theological orientation and institutional culture shape the viability of two historically Black churches in Detroit: Historic King Solomon Baptist Church and Greater King Solomon Baptist Church. Against the backdrop of accelerating church closures in underserved Black communities, the research investigates the factors that contribute to a congregation’s continued relevance and vitality. In doing so, it also provides insight into which churches are best positioned to sustain and scale health and interventions, support community development, and offer enduring spiritual leadership. Using a comparative case study approach grounded in W.E.B. Du Bois’s framework of the Black church as a site of “refuge and protest” and Max Weber’s theory of religious institutionalization, the research combines qualitative interviews with pastors, members, and community residents, alongside sermon content analysis from Easter and Christmas services in 2023 and 2024. Findings reveal stark differences: Historic King Solomon exemplifies an outward-facing, justice-centered model rooted in social memory and public service; Greater King Solomon reflects a more inward-facing, survivalist ethic shaped by individual piety and institutional maintenance. These distinctions impact each church’s resilience, as well as its readiness for public health partnerships and social investment. The study concludes that Black churches that are outwardly facing are likely to survive socioeconomic environmental challenges. Concurrently, both churches portray the Black church as two distinct entities culturally and theologically, which suggests an enhanced selection rubric for identifying congregations best positioned to advance social and health community outcomes. Full article
(This article belongs to the Special Issue Breath of Life: Black Spirituality in Everyday Life)
15 pages, 984 KB  
Article
Epidemiology and Management of Ankle Fractures Prior to, During, and Following the COVID-19 Pandemic in an Italian Tertiary Hospital
by Gianluca Testa, Francesco Leonforte, Marco Sapienza, Martina Ilardo, Stefania Garozzo, Maria Agata Musumeci, Michela Marchetti, Andrea Vescio, Antonio Mistretta and Vito Pavone
Medicina 2025, 61(8), 1439; https://doi.org/10.3390/medicina61081439 - 10 Aug 2025
Viewed by 1565
Abstract
Background and Objectives: Ankle fractures represent one of the most common injuries to the lower limb, particularly impacting women and the elderly. The coronavirus disease 2019 (COVID-19) pandemic greatly disrupted both the incidence of these fractures and their treatment patterns globally. This [...] Read more.
Background and Objectives: Ankle fractures represent one of the most common injuries to the lower limb, particularly impacting women and the elderly. The coronavirus disease 2019 (COVID-19) pandemic greatly disrupted both the incidence of these fractures and their treatment patterns globally. This retrospective epidemiological study analyzed 1010 cases of ankle fractures treated at the Orthopedics Department of Policlinico University Hospital in Catania from 2018 to 2023. The study aimed to evaluate trends in incidence, patient demographics, fracture types, treatment modalities, and hospital stay across the pre-COVID-19, COVID-19, and post-COVID-19 periods. Materials and Methods: A retrospective observational study was conducted including all patients diagnosed with ankle fractures from 1 January 2018 to 31 December 2023. Data were collected from hospital medical records using ICD-9-CM codes and radiographic classification systems (Danis–Weber, Lauge-Hansen, and AO/OTA). Variables analyzed included demographics, fracture type and side, treatment modality, and hospitalization details. Statistical analyses were performed using t-tests, chi-square tests, and linear regression, with significance set at p < 0.05. Results: In 2020, there was a 31.7% decrease in fracture incidence. Although overall fracture rates rebounded after COVID-19, they did not reach pre-pandemic levels. During the pandemic, trimalleolar fractures increased significantly, occurring more frequently in older women, likely due to bone fragility. The rate of surgical treatments rose during and after the pandemic, with a distinct shift from ORIF to external fixation. Hospital stays were longer, especially for patients with cardiovascular risk factors. Conclusions: The pandemic significantly altered the epidemiology, treatment strategies, and outcomes of ankle fractures. These findings highlight the necessity for adaptable care models and preventive strategies, particularly for vulnerable populations such as older women. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 921 KB  
Article
Adsorption–Desorption Behaviour of Imidacloprid, Thiamethoxam, and Clothianidin in Different Agricultural Soils
by Gabriela Briceño, Graciela Palma, Heidi Schalchli, Paola Durán, Cesar Llafquén, Andrés Huenchupán, Carlos Rodríguez-Rodríguez and María Cristina Diez
Agriculture 2025, 15(13), 1380; https://doi.org/10.3390/agriculture15131380 - 27 Jun 2025
Viewed by 1873
Abstract
This study evaluated the adsorption and desorption of imidacloprid (IMI), thiamethoxam (THM) and clothianidin (CLO) in an andisol (Freire soil) and an inceptisol (Chufquén soil) from southern Chile with different organic matter and clay contents. The soils had a slightly acidic pH and [...] Read more.
This study evaluated the adsorption and desorption of imidacloprid (IMI), thiamethoxam (THM) and clothianidin (CLO) in an andisol (Freire soil) and an inceptisol (Chufquén soil) from southern Chile with different organic matter and clay contents. The soils had a slightly acidic pH and clay and clay-loam textures. The tests were carried out at 20 °C with CaCl2 0.01 M as the electrolyte. Kinetic experiments were performed and isotherms were fitted to the pseudo-second-order, Elovich, Weber–Morris, Freundlich and Langmuir models. The kinetics were best described by the pseudo-second-order model (R2 > 0.99), indicating chemisorption; the rate was the highest for THM, although IMI and CLO achieved the highest retention capacities. The Chufquén samples, with lower organic matter but 52% clay, exhibited the highest Kf and qm of up to 12.4 and 270 mg kg−1, respectively, while the Kd (2.3–6.9 L kg−1) and Koc (24–167 L kg−1) coefficients revealed a moderate leaching risk. THM was the most mobile compound due to its high solubility. Desorption was partially irreversible (H = 0.48–1.48), indicating persistence in soil. FTIR analysis confirmed the interaction with O-Al-O/O-O-Si-O groups without alterations in the mineral structure. In the soils examined in this study, the clay fraction and variable-charge minerals, rather than organic matter, were more closely associated with the adsorption behaviour of these NNIs. Full article
Show Figures

Figure 1

16 pages, 3258 KB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 791
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

18 pages, 8584 KB  
Article
Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species
by María José García-Castillo, Yahaira de Jesús Tamayo-Ordóñez, María Concepción Tamayo-Ordóñez, Felipe Barredo-Pool, Luis Carlos Rodríguez-Zapata, Benjamin Abraham Ayíl-Gutiérrez, María Teresa Pulido-Salas and Lorenzo Felipe Sánchez-Teyer
Agronomy 2025, 15(6), 1435; https://doi.org/10.3390/agronomy15061435 - 12 Jun 2025
Viewed by 1480
Abstract
The process of obtaining Agave L. fibers dates back to pre-Hispanic times, and although humans have obtained different products from this crop, to date, the impact of humans (artificial selection, domestication and intensive cultivation) on these species is unknown. In this study, the [...] Read more.
The process of obtaining Agave L. fibers dates back to pre-Hispanic times, and although humans have obtained different products from this crop, to date, the impact of humans (artificial selection, domestication and intensive cultivation) on these species is unknown. In this study, the expression of the CesA gene was evaluated in three species, namely, Agave L, A. sisalana Perrine and A. fourcroydes Lem. (Sac ki), both of which are used for fiber production, and Agave tequilana Weber. The results revealed that, compared with A. fourcroydes and A. tequilana, A. sisalana had a greater leaf area, a significantly greater cellulose content and a greater number of cellulose fibrils. In terms of cell organization, the number and size of sclerenchyma fibers were similar between A. sisalana and A. fourcroydes. However, the relative expression of the CesA gene was five times greater in A. fourcroydes than in A. sisalana and A. tequilana, in contrast with the number of copies in those genomes. In addition, the tertiary structure of the CESA protein in fiber-producing species was modeled, placing agaves in a group along with Populus, Linum, Corchorus and Boehmeria. The haplotype network analysis revealed that A. tequilana is closely grouped with species of the order Poales, unlike the rest of the fiber-producing agaves, which formed a unique cluster. These findings suggest that artificial selection by humans, for various purposes, has contributed to the specialization of genes associated with traits such as fiber production. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 9899 KB  
Article
Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method
by Dina Kon, Shu Jisen, Alphonse Kakanda and Dave Mbako
Appl. Sci. 2025, 15(12), 6595; https://doi.org/10.3390/app15126595 - 11 Jun 2025
Viewed by 2030
Abstract
Tunnel deformation induced by excavation in brittle and quasi-brittle rock masses involves complex interactions among stress redistribution, plastic deformation, and fracture evolution. Existing numerical approaches often struggle to capture these coupled mechanisms, particularly under varying material properties such as Poisson’s ratio. This study [...] Read more.
Tunnel deformation induced by excavation in brittle and quasi-brittle rock masses involves complex interactions among stress redistribution, plastic deformation, and fracture evolution. Existing numerical approaches often struggle to capture these coupled mechanisms, particularly under varying material properties such as Poisson’s ratio. This study aims to analyze tunnel deformation using an elastoplastic Discretized Virtual Internal Bond (DVIB) method embedded in a modified Stillinger–Weber (SW) potential. In this framework, plastic deformation is introduced through the two-body component, whereas the three-body angular potential governs Poisson’s ratio. A fracture-energy-based regularization strategy was implemented to reduce the mesh sensitivity and ensure energy consistency during bond failure. The model was evaluated through numerical simulations, including pre-cracked plates, center-split circular Brazilian discs, and tunnel models, under various in situ stress conditions and Poisson ratios. The findings indicate that higher Poisson’s ratios lead to increased deformation, with tunnel wall displacements rising from 0.45 mm at ν=0.17 to 1.32 mm at ν=0.35. The deformation patterns and failure zones are consistent with theoretical expectations, confirming the applicability of the model to tunnel stability analysis in brittle geomaterials. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

20 pages, 8715 KB  
Article
Experimental Study of Liquid Jet Atomization and Penetration in Subsonic Crossflows
by Minmin Wu, Shiqun Dai, Rui Ye, Mingxiong Ou, Guanqun Wang, Chao Hu, Xurui Fan and Weidong Jia
Agriculture 2025, 15(10), 1037; https://doi.org/10.3390/agriculture15101037 - 11 May 2025
Viewed by 1575
Abstract
This study experimentally investigates the breakup mechanisms and atomization characteristics of liquid jets in subsonic crossflows and develops a penetration depth model that incorporates the incidence angle. Experimental data show that the model fits well, with a minimum R2 value of 0.924 [...] Read more.
This study experimentally investigates the breakup mechanisms and atomization characteristics of liquid jets in subsonic crossflows and develops a penetration depth model that incorporates the incidence angle. Experimental data show that the model fits well, with a minimum R2 value of 0.924 and an average of 0.969. High-speed imaging techniques were used to systematically analyze the effects of liquid- and gas-phase Weber numbers and incidence angles on the penetration and atomization of liquid jets. The experimental results indicate the following: (1) As the liquid Weber number (Wel) increases, the penetration depth increases, while the gas Weber number (Wea) is inversely related to penetration depth. (2) A decrease in the incidence angle (ranging from 45° to 90°) significantly reduces penetration performance. (3) As Wea increases, the volume median diameter (VMD) of droplets decreases by 61.70% to 83.09%, while smaller incidence angles cause a 42.96% increase in the VMD. The VMD shows a non-linear trend with respect to Wel, reflecting the complex interaction between inertial forces and surface tension. These findings provide a theoretical basis for understanding the atomization behavior of transverse jets and the key parameters affecting penetration and droplet formation. The results are of practical significance for the structural optimization and performance enhancement of air-assisted atomizing nozzles used in precision agricultural spraying systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 3815 KB  
Article
Numerical Investigation of Spray Cooling Dynamics: Effects of Ambient Pressure, Weber Number, and Spray Distance on Droplet Heat Transfer Efficiency
by Abbas Golmohammadi, Farshid Darvishi, Eunsoo Choi and Alireza Ostadrahimi
Energies 2025, 18(9), 2288; https://doi.org/10.3390/en18092288 - 30 Apr 2025
Cited by 1 | Viewed by 1221
Abstract
This research aims to study the spray flow of a droplet on an aluminum surface. Fluid spraying is a significant topic in various strategic industries worldwide. In this study, the commercial software FLUENT 22.3.0 is used to simulate the spray of a droplet [...] Read more.
This research aims to study the spray flow of a droplet on an aluminum surface. Fluid spraying is a significant topic in various strategic industries worldwide. In this study, the commercial software FLUENT 22.3.0 is used to simulate the spray of a droplet with turbulent flow on a surface. We use Gambit for mesh generation to ensure accurate and efficient discretization of the computational domain. Initially, we validate our finite volume method (FVM) by comparing the simulation results with existing experimental data to ensure accuracy. After verifying the numerical methods and boundary conditions, we extend the analysis to explore new scenarios involving different environmental pressures, nozzle-to-surface distances, and heated surface temperatures. The effects of pressure variation on the efficiency of droplet heat transfer are examined within sub-atmospheric and super-atmospheric pressure ranges at different Weber numbers, all below the critical Weber number of the droplet. Additionally, by modifying the model geometry and boundary conditions, the influence of the spray-to-surface distance was examined. The findings show that both pressure changes and the spacing between the spray origin and the surface have a substantial effect on the droplet’s heat transfer performance. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

15 pages, 1752 KB  
Article
Adsorption Performance of Fe2O3-Modified Dolomite Composite (DFC) for Congo Red Removal
by Pengfei Yang, Lizhi Pan, Junfeng Lan, Youming Ye, Ran Ao, Xuezhen Xie, Yanmeng Chen and Xingxian Lan
Water 2025, 17(8), 1198; https://doi.org/10.3390/w17081198 - 16 Apr 2025
Viewed by 862
Abstract
Printing and dyeing wastewater is known for its high color intensity, complex composition, and low biodegradability, making its treatment a significant challenge in environmental protection. Dolomite is a natural mineral with abundant reserves and can be effectively used as an adsorbent carrier. In [...] Read more.
Printing and dyeing wastewater is known for its high color intensity, complex composition, and low biodegradability, making its treatment a significant challenge in environmental protection. Dolomite is a natural mineral with abundant reserves and can be effectively used as an adsorbent carrier. In this study, the dolomite loaded by Fe2O3 composites (DFC) was synthesized and systematically characterized using XRD, SEM, TEM, BET, XPS, and IR to evaluate its structural and surface properties. The adsorption performance of DFC on Congo Red (CR) was then investigated. The maximum adsorption amount of CR by DFC was 3790.06 mg⋅g−1, and the removal rate was still stable at 97% after five cycles of adsorption test, which demonstrated that DFC exhibited exceptional adsorption efficacy and regeneration capability. The loaded Fe3+ was beneficial to improve the adsorption effect on the DFC. In addition, to evaluate the type of adsorption, kinetic calculations were performed, which indicated that the Weber–Morris diffusion modeling study showed the adsorption behavior was influenced by the interplay of many diffusion mechanisms. The study offers an innovative method for the efficient utilization of dolomite in creating renewable adsorbent materials for dye wastewater remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop