Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (81,877)

Search Parameters:
Keywords = V-01

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2812 KiB  
Article
Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
by Olga Morozova, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov and Tatyana Fedorova
Int. J. Mol. Sci. 2025, 26(15), 7488; https://doi.org/10.3390/ijms26157488 (registering DOI) - 2 Aug 2025
Abstract
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation [...] Read more.
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation and in a heterogeneous reaction of dioxygen electroreduction. The ThL and CcL laccases belong to high-redox-potential enzymes (E0T1 = 780 mV), while the AfL and SmL laccases are medium-redox-potential enzymes (E0T1 = 620 and 650 mV). We evaluated the efficiency of laccases in mediatorless bioelectrocatalytic dioxygen reduction by the steady-state potential (Ess), onset potential (Eonset), half-wave potential (E1/2), and the slope of the linear segment of the polarization curve. A good correlation was observed between the T1 center potential of the laccases and their electrocatalytic characteristics; however, no correlation with the homogeneous reactions of electron donor substrates’ oxidation was detected. The results obtained are discussed in the light of the known data on the three-dimensional structures of the laccases studied. Full article
(This article belongs to the Special Issue Advanced Research on Enzymes in Biocatalysis)
Show Figures

Graphical abstract

25 pages, 19715 KiB  
Article
Microstructure, Mechanical Properties, and Magnetic Properties of 430 Stainless Steel: Effect of Critical Cold Working Rate and Heat Treatment Atmosphere
by Che-Wei Lu, Fei-Yi Hung and Tsung-Wei Chang
Metals 2025, 15(8), 868; https://doi.org/10.3390/met15080868 (registering DOI) - 2 Aug 2025
Abstract
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, [...] Read more.
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, F-1.5Si-10%, F-1.5Si-40%, F-1.5Si-10% (MA), F-1.5Si-40% (MA), F-1.5Si-10% (H2), and F-1.5Si-40% (H2)). The results indicate that increasing the cold working rate improves the material’s mechanical properties; however, it negatively impacts its magnetic and corrosion resistance properties. Additionally, the magnetic annealing process improves the mechanical properties, while atmospheric magnetic annealing optimizes the overall magnetic performance. In contrast, magnetic annealing in a hydrogen atmosphere does not enhance the magnetic properties as effectively as atmospheric magnetic annealing. Still, it promotes the formation of a protective layer, preserving the mechanical properties and providing better corrosion resistance. Furthermore, regardless of whether magnetic annealing is conducted in an atmospheric or hydrogen environment, materials with 10% cold work rate (F-1.5Si-10% (MA) and F-1.5Si-10% (H2)) exhibit the lowest coercive force (286 and 293 A/m in the 10 Hz test condition), making them ideal for electromagnetic applications. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

19 pages, 4401 KiB  
Article
Influence of Sex and 1,25α Dihydroxyvitamin D3 on SARS-CoV-2 Infection and Viral Entry
by Nicole Vercellino, Alessandro Ferrari, José Camilla Sammartino, Mattia Bellan, Elizabeth Iskandar, Daniele Lilleri and Rosalba Minisini
Pathogens 2025, 14(8), 765; https://doi.org/10.3390/pathogens14080765 (registering DOI) - 2 Aug 2025
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 α dihydroxyvitamin D3 (calcitriol) act upon gene pathways as immunomodulators in several infectious respiratory diseases. In this study, we aimed to evaluate the influence of E2 and calcitriol on the VSV-based pseudovirus SARS-CoV-2 and SARS-CoV-2 infection in vitro. We infected Vero E6 cells with the recombinant VSV-based pseudovirus SARS-CoV-2 and the SARS-CoV-2 viruses according to the pre-treatment and pre–post-treatment models. The Angiotensin-Converting Enzyme 2 (ACE2) and Vitamin D Receptor (VDR) gene expression did not change under different treatments. The VSV-based pseudovirus SARS-CoV-2 infection showed a significant decrease in the focus-forming unit count in the presence of E2 and calcitriol (either alone or in combination) in the pre-treatment model, while in the pre–post-treatment model, the infection was inhibited only in the presence of E2. Th SARS-CoV-2 infection highlighted a decrease in viral titres in the presence of E2 and calcitriol only in the pre–post-treatment model. 17,β-Estradiol and calcitriol can exert an inhibitory effect on SARS-CoV-2 infections, demonstrating their protective role against viral infections. Full article
(This article belongs to the Special Issue Antiviral Strategies Against Human Respiratory Viruses)
Show Figures

Graphical abstract

25 pages, 7588 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 (registering DOI) - 2 Aug 2025
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
23 pages, 872 KiB  
Article
Performance Optimization of Grounding System for Multi-Voltage Electrical Installation
by Md Tanjil Sarker, Marran Al Qwaid, Md Sabbir Hossen and Gobbi Ramasamy
Appl. Sci. 2025, 15(15), 8600; https://doi.org/10.3390/app15158600 (registering DOI) - 2 Aug 2025
Abstract
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, [...] Read more.
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, focusing on key performance parameters such as grounding resistance, step and touch voltages, and fault current dissipation efficiency. The study employs computational simulations using the finite element method (FEM) alongside empirical field measurements to evaluate the influence of soil resistivity, electrode materials, and grounding configurations, including rod electrodes, grids, deep-driven rods, and hybrid grounding systems. Results indicate that soil resistivity significantly affects grounding efficiency, with deep-driven rods providing superior performance in high-resistivity conditions, while grounding grids demonstrate enhanced fault current dissipation in substations. The integration of conductive backfill materials, such as bentonite and conductive concrete, further reduces grounding resistance and enhances system reliability. This study provides engineering insights into optimizing grounding systems based on installation voltage levels, cost considerations, and compliance with IEEE Std 80-2013 and IEC 60364-5-54. The findings contribute to the development of more resilient and cost-effective grounding strategies for electrical installations. Full article
12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 (registering DOI) - 2 Aug 2025
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 (registering DOI) - 2 Aug 2025
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
18 pages, 7062 KiB  
Article
Multimodal Feature Inputs Enable Improved Automated Textile Identification
by Magken George Enow Gnoupa, Andy T. Augousti, Olga Duran, Olena Lanets and Solomiia Liaskovska
Textiles 2025, 5(3), 31; https://doi.org/10.3390/textiles5030031 (registering DOI) - 2 Aug 2025
Abstract
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A [...] Read more.
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A late fusion approach was applied using four state-of-the-art convolutional neural networks (CNNs): InceptionV3, ResNet50_V2, DenseNet, and VGG-19. Excellent results were obtained, with the ResNet50_V2 achieving a precision of 0.929, recall of 0.914, and F1 score of 0.913. Notably, the integration of multimodal inputs allowed the models to effectively distinguish challenging fabric types, such as cotton–polyester and satin–silk pairs, which exhibit overlapping texture characteristics. This research not only enhances the accuracy of textile classification but also provides a robust methodology for material analysis, with significant implications for industrial applications in fashion, quality control, and robotics. Full article
24 pages, 6999 KiB  
Article
Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility
by Mustafa Kotmakci, Natalia Toncheva-Moncheva, Sahar Tarkavannezhad, Bilge Debelec Butuner, Ivaylo Dimitrov and Stanislav Rangelov
Pharmaceutics 2025, 17(8), 1012; https://doi.org/10.3390/pharmaceutics17081012 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) [...] Read more.
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) (PNIPAm), hydrophilic poly(ethylene glycol) (PEG) grafts, and a polycationic poly(L-lysine) (PLL) block of varying lengths ((PNIPAm)77-graft-(PEG)9-block-(PLL)z, z = 10–65)—were investigated. Plasmid DNA complexation with the copolymers was achieved through temperature-modulated methods. The resulting polyplexes were characterized by evaluating complex strength, particle size, zeta potential, plasmid DNA loading capacity, resistance to anionic stress, stability in serum, and lysosomal membrane destabilization assay. The copolymers’ potential for plasmid DNA delivery was assessed through cytotoxicity and transfection studies in cancer cell lines. Results. Across all complexation methods, the copolymers effectively condensed plasmid DNA into stable polyplexes. Particle sizes (60–90 nm) ranged with no apparent correlation to copolymer type, complexation method, or N/P ratio, whereas zeta potentials (+10–+20 mV) and resistance to polyanionic stress were dependent on the PLL length and N/P ratio. Cytotoxicity analysis revealed a direct correlation between PLL chain length and cell viability, with all copolymers demonstrating minimal cytotoxicity at concentrations required for efficient transfection. PNL-20 ((PNIPAm)77-graft-(PEG)9-block-(PLL)20) exhibited the highest transfection efficiency among the tested formulations while maintaining low cytotoxicity. Conclusions. The study highlights the promising potential of (PNIPAm)77-graft-(PEG)9-block-(PLL)z copolymers for effective plasmid DNA delivery to cancer cells. It reveals the importance of attaining the right balance between polyplex tightness and plasmid release to achieve improved biocompatibility and transfection efficiency. Full article
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
tRNA Modifications: A Tale of Two Viruses—SARS-CoV-2 and ZIKV
by Patrick Eldin and Laurence Briant
Int. J. Mol. Sci. 2025, 26(15), 7479; https://doi.org/10.3390/ijms26157479 (registering DOI) - 2 Aug 2025
Abstract
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage [...] Read more.
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage can lead to a limited availability of specific tRNA leading to ribosome stalling, posing a significant challenge for efficient protein translation. While some viruses address this challenge through codon optimization, we show here that SARS-CoV-2 (Coronavirus) and the Zika virus (ZIKV; Flavivirus) adopt a different approach, manipulating the host tRNA epitranscriptome. Analysis of codon bias indices confirmed a substantial divergence between viral and host codon usage, revealing a strong preference in viral genes for codons decoded by tRNAs requiring U34 wobble modification. Monitoring tRNA modification dynamics in infected cells showed that both SARS-CoV2 and ZIKV enhance U34 tRNA modifications during infection. Strikingly, impairing U34 tRNAs profoundly impacted viral replication, underscoring the strict reliance of SARS-CoV-2 and ZIKV on manipulating the host tRNA epitranscriptome to support the efficient translation of their genome. Full article
Show Figures

Figure 1

17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

14 pages, 841 KiB  
Article
Enhanced Deep Learning for Robust Stress Classification in Sows from Facial Images
by Syed U. Yunas, Ajmal Shahbaz, Emma M. Baxter, Mark F. Hansen, Melvyn L. Smith and Lyndon N. Smith
Agriculture 2025, 15(15), 1675; https://doi.org/10.3390/agriculture15151675 (registering DOI) - 2 Aug 2025
Abstract
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, [...] Read more.
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, MobileNet_V3, RegNet, and Vision Transformer (ViT). These models are used for stress detection from facial images, leveraging an expanded dataset. A facial image dataset of sows was collected at Scotland’s Rural College (SRUC) and the images were categorized into primiparous Low-Stressed (LS) and High-Stress (HS) groups based on expert behavioural assessments and cortisol level analysis. The selected deep learning models were then trained on this enriched dataset and their performance was evaluated using cross-validation on unseen data. The Vision Transformer (ViT) model outperformed the others across the dataset of annotated facial images, achieving an average accuracy of 0.75, an F1 score of 0.78 for high-stress detection, and consistent batch-level performance (up to 0.88 F1 score). These findings highlight the efficacy of transformer-based models for automated stress detection in sows, supporting early intervention strategies to enhance welfare, optimize productivity, and mitigate AMR risks in livestock production. Full article
Show Figures

Figure 1

21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 (registering DOI) - 2 Aug 2025
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

16 pages, 2285 KiB  
Article
Pegiviruses and Coronavirus: Biomolecular Prevalence and Phylogenetic Analysis of Strains Detected in Italian Horse Populations
by Ida Ricci, Francesca Rosone, Giulia Pacchiarotti, Giuseppe Manna, Antonella Cersini, Andrea Carvelli, Davide La Rocca, Elisa Cammalleri, Roberta Giordani, Silvia Tofani, Raffaella Conti, Pasquale Rombolà, Roberto Nardini, Carlo Alberto Minniti, Reno Caforio, Boris Linardi and Maria Teresa Scicluna
Viruses 2025, 17(8), 1076; https://doi.org/10.3390/v17081076 (registering DOI) - 2 Aug 2025
Abstract
Equestrian sports play a significant economic role in the horse industry. In recent years, numerous equine viruses have emerged, among which are equine Pegiviruses and the re-emerging Equine coronavirus (ECoV). These viruses are distributed globally and primarily cause subclinical infections with unknown morbidity, [...] Read more.
Equestrian sports play a significant economic role in the horse industry. In recent years, numerous equine viruses have emerged, among which are equine Pegiviruses and the re-emerging Equine coronavirus (ECoV). These viruses are distributed globally and primarily cause subclinical infections with unknown morbidity, even if ECoV can occasionally induce febrile and diarrheic episodes. To broaden the data on the Italian equine population, a study was conducted to assess their prevalence in two distinct horse populations belonging to the Carabinieri Corps (CC) and the Italian Army (IA) of the Italian Armed Forces (IAF). Samples consisted of blood serum and rectal swabs of 436 horses collected within the national surveillance program for equine infectious anemia and gastrointestinal parasite monitoring and analyzed for Pegivirus (caballi and equi) and ECoV by Real-Time RT PCR. The prevalence detected were 6.56% and 3.53%, respectively, for Pegivirus caballi and equi for the IA, while for the CC, they were 10.13% and 0.84%. Only one sample tested positive for ECoV belonging to a horse of the CC. Phylogenetic analyses were carried out on the PCR-positive samples that were sequenced using Sanger protocols. Understanding the epidemiology of these viruses is essential for evaluating the implementation of effective prevention strategies. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 1647 KiB  
Article
BRAF Mutation Analysis: A Retrospective Evaluation of 8365 Diagnostic Samples with a Special View on Canine Breeds (2018–2024)
by Marielle Appenzeller, Alexandra Kehl, Katrin Törner, Katharina Charlotte Jensen, Robert Klopfleisch and Heike Aupperle-Lellbach
Vet. Sci. 2025, 12(8), 729; https://doi.org/10.3390/vetsci12080729 (registering DOI) - 2 Aug 2025
Abstract
The BRAF V595E mutation analysis in canine urothelial carcinomas (UCs) has found its way into routine diagnostics, but no data analysis has been published until now. The present study aimed to estimate the distribution of age, sex, and breed in 8365 canine diagnostic [...] Read more.
The BRAF V595E mutation analysis in canine urothelial carcinomas (UCs) has found its way into routine diagnostics, but no data analysis has been published until now. The present study aimed to estimate the distribution of age, sex, and breed in 8365 canine diagnostic samples submitted for BRAF mutation analysis during 2018–2024. The specimens included 8215 urine samples, 17 cytological, and 133 histopathological specimens, and were submitted in cases of suspected UC, to rule out UC, or for screening purposes. All samples were tested for the BRAF V595E mutation using droplet digital PCR (ddPCR). The data were statistically analysed and logistic regression models (Odds Ratio (OR)) were calculated. Compared to samples from mixed-breed dogs, the specimens from Scottish Terriers (OR: 4.21), Shetland Sheepdogs (OR: 2.65), Beagles (OR: 2.33), Fox Terriers (OR: 1.92), Staffordshire Bull Terriers (OR: 1.86), Magyar Vizslas (OR: 1.77), Chihuahuas (OR: 1.70), and West Highland White Terriers (OR: 1.43) had a significantly increased probability of the presence of BRAF mutation indicating UC. The youngest BRAF-positive dogs of these predisposed breeds (n = 4) were 5 years old. In conclusion, screening tests in predisposed breeds may be recommended from the age of 5 years. Full article
(This article belongs to the Special Issue Focus on Tumours in Pet Animals: 2nd Edition)
Show Figures

Figure 1

Back to TopTop