Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (317)

Search Parameters:
Keywords = Underwater Unmanned Vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 148
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 - 1 Aug 2025
Viewed by 306
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 402
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

23 pages, 15163 KiB  
Article
3D Dubins Curve-Based Path Planning for UUV in Unknown Environments Using an Improved RRT* Algorithm
by Feng Pan, Peng Cui, Bo Cui, Weisheng Yan and Shouxu Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1354; https://doi.org/10.3390/jmse13071354 - 16 Jul 2025
Viewed by 252
Abstract
The autonomous navigation of an Unmanned Underwater Vehicle (UUV) in unknown 3D underwater environments remains a challenging task due to the presence of complex terrain, uncertain obstacles, and strict kinematic constraints. This paper proposes a novel smooth path planning framework that integrates improved [...] Read more.
The autonomous navigation of an Unmanned Underwater Vehicle (UUV) in unknown 3D underwater environments remains a challenging task due to the presence of complex terrain, uncertain obstacles, and strict kinematic constraints. This paper proposes a novel smooth path planning framework that integrates improved Rapidly-exploring Random Tree* (RRT*) with 3D Dubins curves to efficiently generate feasible and collision-free trajectories for nonholonomic UUVs. A fast curve-length estimation approach based on a backpropagation neural network is introduced to reduce computational burden during path evaluation. Furthermore, the improved RRT* algorithm incorporates pseudorandom sampling, terminal node backtracking, and goal-biased exploration strategies to enhance convergence and path quality. Extensive simulation results in unknown underwater scenarios with static and moving obstacles demonstrate that the proposed method significantly outperforms state-of-the-art planning algorithms in terms of smoothness, path length, and computational efficiency. Full article
(This article belongs to the Special Issue Intelligent Measurement and Control System of Marine Robots)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 297
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 277
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

27 pages, 12374 KiB  
Article
A Novel Neural Network-Based Adaptive Formation Control for Cooperative Transportation of an Underwater Payload Using a Fleet of UUVs
by Wen Pang, Daqi Zhu, Mingzhi Chen, Wentao Xu and Bin Wang
Drones 2025, 9(7), 465; https://doi.org/10.3390/drones9070465 - 30 Jun 2025
Viewed by 449
Abstract
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a [...] Read more.
This article studies the cooperative underwater payload transportation problem for multiple unmanned underwater vehicles (UUVs) operating in a constrained workspace with both static and dynamic obstacles. A novel cooperative formation control algorithm has been presented in this paper for the transportation of a large payload in underwater scenarios. More precisely, by using the advantages of multi-UUV formation cooperation, based on rigidity graph theory and backstepping technology, the distance between each UUV, as well as the UUV and the transport payload, is controlled to form a three-dimensional rigid structure so that the load remains balanced and stable, to coordinate the transport of objects within the feasible area of the workspace. Moreover, a neural network (NN) is utilized to maintain system stability despite unknown nonlinearities and disturbances in the system dynamics. In addition, based on the interfered fluid flow algorithm, a collision-free motion trajectory was planned for formation systems. The control scheme also performs real-time formation reconfiguration according to the size and position of obstacles in space, thereby enhancing the flexibility of cooperative handling. The uniform ultimate boundedness of the formation distance errors is comprehensively demonstrated by utilizing the Lyapunov stability theory. Finally, the simulation results show that the UUVs can quickly form and maintain the desired formation, transport the payload along the planned trajectory to shuttle in multi-obstacle environments, verify the feasibility of the method proposed in this paper, and achieve the purpose of the collaborative transportation of large underwater payload by multiple UUVs and their targeted delivery. Full article
Show Figures

Figure 1

20 pages, 741 KiB  
Article
Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning
by Pengyan Dong, Jiahong Liu, Hang Tao, Yang Zhao, Zhijie Feng and Hanjiang Luo
Sensors 2025, 25(13), 4025; https://doi.org/10.3390/s25134025 - 27 Jun 2025
Viewed by 331
Abstract
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, [...] Read more.
Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV’s high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs’ flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

27 pages, 3462 KiB  
Article
Visual-Based Position Estimation for Underwater Vehicles Using Tightly Coupled Hybrid Constrained Approach
by Tiedong Zhang, Shuoshuo Ding, Xun Yan, Yanze Lu, Dapeng Jiang, Xinjie Qiu and Yu Lu
J. Mar. Sci. Eng. 2025, 13(7), 1216; https://doi.org/10.3390/jmse13071216 - 24 Jun 2025
Viewed by 319
Abstract
A tightly coupled hybrid monocular visual SLAM system for unmanned underwater vehicles (UUVs) is introduced in this paper. Specifically, we propose a robust three-step hybrid tracking strategy. The feature-based method initially provides a rough pose estimate, then the direct method refines it, and [...] Read more.
A tightly coupled hybrid monocular visual SLAM system for unmanned underwater vehicles (UUVs) is introduced in this paper. Specifically, we propose a robust three-step hybrid tracking strategy. The feature-based method initially provides a rough pose estimate, then the direct method refines it, and finally, the refined results are used to reproject map points to improve the number of features tracked and stability. Furthermore, a tightly coupled visual hybrid optimization method is presented to address the inaccuracy of the back-end pose optimization. The selection of features for stable tracking is achieved through the integration of two distinct residuals: geometric reprojection error and photometric error. The efficacy of the proposed system is demonstrated through quantitative and qualitative analyses in both artificial and natural underwater environments, demonstrating excellent stable tracking and accurate localization results. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 1412 KiB  
Review
Cryptography-Based Secure Underwater Acoustic Communication for UUVs: A Review
by Qian Zhou, Qing Ye, Chengzhe Lai and Guangyue Kou
Electronics 2025, 14(12), 2415; https://doi.org/10.3390/electronics14122415 - 13 Jun 2025
Viewed by 805
Abstract
Unmanned Underwater Vehicles (UUVs) play an irreplaceable role in marine exploration, environmental monitoring, and national defense. The UUV depends on underwater acoustic communication (UAC) technology to enable reliable data transmission and support efficient collaboration. As the complexity of UUV missions has increased, secure [...] Read more.
Unmanned Underwater Vehicles (UUVs) play an irreplaceable role in marine exploration, environmental monitoring, and national defense. The UUV depends on underwater acoustic communication (UAC) technology to enable reliable data transmission and support efficient collaboration. As the complexity of UUV missions has increased, secure UAC has become a critical element in ensuring successful mission execution. However, underwater channels are inherently characterized by high error rates, limited bandwidth, and signal interference. These problems severely limit the efficacy of traditional security methods and expose UUVs to the risk of data theft and signaling attacks. Cryptography-based security methods are important means to protect data, effectively balancing security requirements and resource constraints. They provide technical support for UUVs to build secure communication. This paper systematically reviews key advances in cryptography-based secure UAC technologies, focusing on three main areas: (1) efficient authentication protocols, (2) lightweight cryptographic algorithms, and (3) fast cryptographic synchronization algorithms. By comparing the performance boundaries and application scenarios of various technologies, we discuss the current challenges and critical issues in underwater secure communication. Finally, we explore future research directions, aiming to provide theoretical references and technical insights for the further development of secure UAC technologies for UUVs. Full article
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Task Allocation and Path Planning Method for Unmanned Underwater Vehicles
by Feng Liu, Wei Xu, Zhiwen Feng, Changdong Yu, Xiao Liang, Qun Su and Jian Gao
Drones 2025, 9(6), 411; https://doi.org/10.3390/drones9060411 - 6 Jun 2025
Viewed by 503
Abstract
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs [...] Read more.
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs in complicated marine environments. However, existing methods still have significant room for improvement in handling obstacles, multi-task coordination, and other complex problems. In order to overcome these issues, we put forward a task allocation and path planning method for UUVs. First, we introduce a task allocation mechanism based on an Improved Grey Wolf Algorithm (IGWA). This mechanism comprehensively considers factors such as target value, distance, and UUV capability constraints to achieve efficient and reasonable task allocation among UUVs. To enhance the search efficiency and accuracy of task allocation, a Circle chaotic mapping strategy is incorporated into the traditional GWA to improve population diversity. Additionally, a differential evolution mechanism is integrated to enhance local search capabilities, effectively mitigating premature convergence issues. Second, an improved RRT* algorithm termed GR-RRT* is employed for UUV path planning. By designing a guidance strategy, the sampling probability near target points follows a two-dimensional Gaussian distribution, ensuring obstacle avoidance safety while reducing redundant sampling and improving planning efficiency. Experimental results demonstrate that the proposed task allocation mechanism and improved path planning algorithm exhibit significant advantages in task completion rate and path optimization efficiency. Full article
(This article belongs to the Special Issue Advances in Intelligent Coordination Control for Autonomous UUVs)
Show Figures

Figure 1

13 pages, 2180 KiB  
Article
Wide Field-of-View Air-to-Water Rolling Shutter-Based Optical Camera Communication (OCC) Using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM)
by Yung-Jie Chen, Yu-Han Lin, Guo-Liang Shih, Chi-Wai Chow and Chien-Hung Yeh
Appl. Sci. 2025, 15(11), 5971; https://doi.org/10.3390/app15115971 - 26 May 2025
Viewed by 418
Abstract
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless [...] Read more.
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless transmission is crucial for sending control information or instructions from unmanned aerial vehicles (UAVs) or ground stations above the sea surface to autonomous underwater vehicles (AUVs). On the other hand, water-to-air wireless transmission is also required to transmit real-time information from AUVs or underwater sensor nodes to UAVs above the water surface. Previously, we successfully demonstrated a water-to-air optical camera-based OWC system, which is also known as optical camera communication (OCC). However, the reverse transmission (i.e., air-to-water) using OCC has not been analyzed. It is worth noting that in the water-to-air OCC system, since the camera is located in the air, the image of the light source is magnified due to diffraction. Hence, the pixel-per-symbol (PPS) decoding of the OCC pattern is easier. In the proposed air-to-water OCC system reported here, since the camera is located in the water, the image of the light source in the air will be diminished in size due to diffraction. Hence, the PPS decoding of the OCC pattern becomes more difficult. In this work, we propose and experimentally demonstrate a wide field-of-view (FOV) air-to-water OCC system using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM). Due to water turbulence and air turbulence affecting the AUV and UAV, a precise line-of-sight (LOS) between the AUV and the UAV is difficult to achieve. OCC can provide wide FOV without the need for precise optical alignment. Results revealed that the proposed air-to-water OCC system can support a transmission rate of 7.2 kbit/s through a still water surface, and 6.6 kbit/s through a wavy water surface; this satisfies the hard-decision forward error correction (HD-FEC) bit-error-rate (BER). Full article
(This article belongs to the Special Issue Screen-Based Visible Light Communication)
Show Figures

Figure 1

20 pages, 2827 KiB  
Article
Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems
by Boyang Wang and Zhenjie Wang
J. Mar. Sci. Eng. 2025, 13(5), 990; https://doi.org/10.3390/jmse13050990 - 20 May 2025
Viewed by 385
Abstract
The integration of strap-down inertial navigation systems (SINSs) and ultra-short baseline (USBL) systems has become a mainstream navigation approach for unmanned underwater vehicles (UUVs). In shallow-sea environments, USBL measurements are frequently affected by complex non-Gaussian disturbances. Under such challenging conditions, traditional Kalman filters [...] Read more.
The integration of strap-down inertial navigation systems (SINSs) and ultra-short baseline (USBL) systems has become a mainstream navigation approach for unmanned underwater vehicles (UUVs). In shallow-sea environments, USBL measurements are frequently affected by complex non-Gaussian disturbances. Under such challenging conditions, traditional Kalman filters often exhibit limited performance in maintaining navigation accuracy. A novel adaptive Kalman filter is proposed to address this issue. The proposed method demonstrates significant robustness to complex non-Gaussian noise through the construction of an advanced regression model, the development of an adaptive free-parameter optimization scheme, and the implementation of a recursive filtering architecture incorporating entropy-based error correction. Comprehensive validation via numerical simulations and field experiments in offshore SINS/USBL integrated navigation scenarios demonstrates the superior robustness of the proposed method in complex underwater non-Gaussian noise environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2321 KiB  
Article
CKAN-YOLOv8: A Lightweight Multi-Task Network for Underwater Target Detection and Segmentation in Side-Scan Sonar
by Yao Xiao, Hualong Yang, Dongchen Dai, Hongjian Wang, Ziqi Shan and Hao Wu
J. Mar. Sci. Eng. 2025, 13(5), 936; https://doi.org/10.3390/jmse13050936 - 10 May 2025
Viewed by 738
Abstract
Underwater target detection and segmentation in Side-Scan Sonar (SSS) imagery is challenged by low signal-to-noise ratios, geometric distortions, and Unmanned Underwater Vehicles (UUVs)’ computational constraints. This paper proposes CKAN-YOLOv8, a lightweight multi-task network integrating Kolmogorov–Arnold Networks Convolution (KANConv) into YOLOv8. The core innovation [...] Read more.
Underwater target detection and segmentation in Side-Scan Sonar (SSS) imagery is challenged by low signal-to-noise ratios, geometric distortions, and Unmanned Underwater Vehicles (UUVs)’ computational constraints. This paper proposes CKAN-YOLOv8, a lightweight multi-task network integrating Kolmogorov–Arnold Networks Convolution (KANConv) into YOLOv8. The core innovation replaces conventional convolutions with KANConv blocks using learnable B-spline activations, dynamically adapting to noise and multi-scale targets while ensuring parameter efficiency. The KANConv-based Path Aggregation Network (KANConv-PANet) mitigates geometric distortions through spline-optimized multi-scale fusion. A dual-task head combines CIoU loss-driven detection and a boundary-sensitive segmentation module with Dice loss. Evaluated on a dataset (50 raw images augmented to 2000), CKAN-YOLOv8 achieves state-of-the-art performance as follows: 0.869 AP@0.5 and 0.72 IoU, alongside real-time inference at 66 FPS. Ablation studies confirm the contributions of KANConv modules to noise robustness and multi-scale adaptability. The framework demonstrates exceptional robustness to noise, scalability across target sizes. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

6 pages, 166 KiB  
Editorial
Autonomous Marine Vehicle Operations—2nd Edition
by Xiao Liang, Rubo Zhang and Xingru Qu
J. Mar. Sci. Eng. 2025, 13(5), 920; https://doi.org/10.3390/jmse13050920 - 7 May 2025
Viewed by 378
Abstract
In recent years, the field of autonomous marine vehicles has undergone remarkable advancements, with unmanned surface vehicles (USVs) and unmanned underwater vehicles (UUVs) demonstrating transformative potential for oceanographic exploration and marine applications [...] Full article
(This article belongs to the Special Issue Autonomous Marine Vehicle Operations—2nd Edition)
Back to TopTop