Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems
Abstract
:1. Introduction
2. Related Work
2.1. Minimum Error Entropy Criterion
2.2. Maximum Correntropy Criterion
2.3. Minimum Error Entropy Criterion with Fiducial Points
2.4. Traditional Kalman Filter
- Time updating:
- 2.
- Measurement updating:
3. Methodology
3.1. Augmented Regression Model
Algorithm 1: MEEF-KF |
Step 1: Initialize the state a priori estimate and the corresponding state prediction error covariance matrix ; select two kernel bandwidths and , choose a proper weight factor and a specified small positive value ; Step 2: Utilize Equations (14) and (15) to calculate and , use Cholesky decomposition to get and ; calculate the and ; Step 3: Let and , where is the estimated state at the fixed-point iteration : |
with: |
Step 4: if then go to Step 5. else , and return to Step 3. Step 5: Update and compute the posterior error covariance matrix by: |
and return to Step 2. |
3.2. Free-Parameter Optimization Scheme
Algorithm 2: AMEEF-KF |
Step 1: Initialize the state a priori estimate and the corresponding state prediction error covariance matrix ; choose a specified small positive value ; set a nominal weight factor ; Step 2: Utilize Equations (14) and (15) to get and , use Cholesky decomposition to get and ; calculate the and ; Step 3: Construct the error discrimination statistic by Equation (44), calculate the variable kernel bandwidth by Equations (45) and (46), and determine the weight factor by Equation (47); Step 4: Let and , where represents the estimated state at the fixed-point iteration : |
with: |
Step 5: if then go to Step 6. else , and return to Step 4. Step 6: Update to and compute the posterior error covariance matrix by: |
and return to Step 2. |
4. Experiments and Analysis
4.1. Simulation Test
- Gaussian Noise
- 2.
- Bimodal Gaussian Mixture Noises with Outliers
4.2. Experimental Verification
- (1)
- An IMU providing 6-DOF motion perception with a sampling rate of 200 Hz;
- (2)
- A USBL acoustic positioning system (Kongsberg Maritime Inc., Kongsberg, Norway) comprising a surface transceiver and a submerged transponder;
- (3)
- A SPAN-ISA-100C GNSS/INS integrated system (NovAtel Inc., Calgary, AB, Canada) delivering RTK-level positioning accuracy.
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jalal, F.; Nasir, F. Underwater navigation, localization and path planning for autonomous vehicles: A review. In Proceedings of the International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Sun, D.; Xu, T.; Xue, S.; Han, Y.; Zeng, A. Seafloor geodetic network establishment and key technologies. Sci. China Earth Sci. 2020, 63, 1188–1198. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2013, 39, 131–149. [Google Scholar] [CrossRef]
- Wang, L.; Pang, S. AUV navigation based on inertial navigation and acoustic positioning systems. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018. [Google Scholar] [CrossRef]
- Morgado, M.; Oliveira, P.; Silvestre, C.; Vasconcelos, J.F. Embedded vehicle dynamics aiding for USBL/INS underwater navigation system. IEEE Trans. Control Syst. Technol. 2013, 22, 322–330. [Google Scholar] [CrossRef]
- Zames, G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Autom. Control 2003, 26, 301–320. [Google Scholar] [CrossRef]
- Cappé, O.; Godsill, S.J.; Moulines, E. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 2007, 95, 899–924. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P. Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 2002, 50, 425–437. [Google Scholar] [CrossRef]
- Psiaki, M.L.; Schoenberg, J.R.; Miller, I.T. Gaussian sum reapproximation for use in a nonlinear filter. J. Guid. Control Dyn. 2015, 38, 292–303. [Google Scholar] [CrossRef]
- Alspach, D.; Sorenson, H. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control 1972, 17, 439–448. [Google Scholar] [CrossRef]
- Chang, L.; Li, K.; Hu, B. Huber’s M-estimation-based process uncertainty robust filter for integrated INS/GPS. IEEE Sens. J. 2015, 15, 3367–3374. [Google Scholar] [CrossRef]
- Karlgaard, C.D. Nonlinear regression Huber–Kalman filtering and fixed-interval smoothing. J. Guid. Control Dyn. 2015, 38, 322–330. [Google Scholar] [CrossRef]
- El-Hawary, F.; Jing, Y. Robust regression-based EKF for tracking underwater targets. IEEE J. Ocean. Eng. 1995, 20, 31–41. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Zhang, L.; Guo, L. A student’s T-based measurement uncertainty filter for SINS/USBL tightly integration navigation system. IEEE Trans. Veh. Technol. 2021, 70, 8627–8638. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J. A new outlier-robust student’s t based Gaussian approximate filter for cooperative localization. IEEE/ASME Trans. Mechatron. 2017, 22, 2380–2386. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar] [CrossRef]
- Wang, G.; Chen, B.; Yang, X.; Peng, B.; Feng, Z. Numerically stable minimum error entropy Kalman filter. Signal Process. 2021, 181, 107914. [Google Scholar] [CrossRef]
- Chen, B.; Dang, L.; Gu, Y.; Zheng, N.; Príncipe, J.C. Minimum error entropy Kalman filter. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 51, 5819–5829. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef]
- Izanloo, R.; Fakoorian, S.A.; Yazdi, H.S.; Simon, D. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. In Proceedings of the 2016 Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, Z.; Zheng, N.; Príncipe, J.C. Kernel minimum error entropy algorithm. Neurocomputing 2013, 121, 160–169. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Gu, Y.; Cao, J.; Chen, B. Fixed-point minimum error entropy with fiducial points. IEEE Trans. Signal Process. 2020, 68, 3824–3833. [Google Scholar] [CrossRef]
- Cheng, L.; Ren, M.F.; Xie, G. Multipath estimation based on centered error entropy criterion for non-Gaussian noise. IEEE Access 2016, 4, 9978–9986. [Google Scholar] [CrossRef]
- Heravi, A.R.; Hodtani, G.A. A new robust fixed-point algorithm and its convergence analysis. J. Fixed Point Theory Appl. 2017, 19, 3191–3215. [Google Scholar] [CrossRef]
- Principe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives, 1st ed.; Springer: New York, NY, USA, 2010; pp. 47–102. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Y.; Hu, J.; Principe, J.C. System Parameter Identification: Information Criteria and Algorithms, 1st ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 2013; pp. 12–26. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: A localized similarity measure. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar] [CrossRef]
- Singh, A.; Principe, J.C. Using correntropy as a cost function in linear adaptive filters. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009. [Google Scholar] [CrossRef]
- Chen, B.; Príncipe, J.C. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 2012, 19, 491–494. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Error entropy, correntropy and M-estimation. In Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, Maynooth, Ireland, 6–8 September 2006. [Google Scholar] [CrossRef]
- Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Liu, W.; Principe, J.C.; Haykin, S. Kernel Adaptive Filtering: A Comprehensive Introduction, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; p. 182. [Google Scholar] [CrossRef]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 58–64. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z. Adaptive robust Kalman filter based on MCC and its application in underwater integrated navigation. In Proceedings of the China Satellite Navigation Conference (CSNC 2022), Beijing, China, 26–28 April 2023. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, Y.; Wang, Z.; Xue, S. Extended joint adjustment of the transducer and seafloor transponder for GNSS-Acoustic seafloor geodetic network positioning with inter-station ranging information. IEEE Sens. J. 2024, 24, 19982–19994. [Google Scholar] [CrossRef]
Sensors | Parameter | Value |
---|---|---|
IMU | Random noise in gyro | 0.01°/h1/2 |
Constant drift of gyro | 0.05°/h | |
Random noise in accelerometer | 100 μg/h1/2 | |
Constant bias of accelerometer | 0.1 mg | |
USBL | Constant drift of USBL | 0.5% × Slant range |
Random noise of USBL | 3 m | |
Initial error | Initial position error | 9 m |
Initial velocity error | 0.1 m/s | |
Initial horizontal attitude error | 30′′ |
KF | MCCKF | MEEKF | MEEF-KF | AMEEF-KF | ||||
---|---|---|---|---|---|---|---|---|
- | σ | σ | λ | σ1 | σ2 | λ0 | σ0 | σmin |
- | 30 | 30 | 0.9 | 30 | 30 | 0.9 | 30 | 15 |
Filtering Algorithm | East ARMSE (m) | North ARMSE (m) |
---|---|---|
KF | 3.7453 | 3.5440 |
MCCKF | 3.7456 | 3.5448 |
MEEKF | 11.2364 | 11.7799 |
MEEF-KF | 3.7454 | 3.5441 |
AMEEF-KF | 3.7454 | 3.5441 |
Filtering Algorithm | East ARMSE (m) | North ARMSE (m) |
---|---|---|
KF | 20.6289 | 21.4342 |
MCCKF | 11.6084 | 11.0833 |
MEEKF | 11.2552 | 10.7322 |
MEEF-KF | 10.6727 | 10.1434 |
AMEEF-KF | 8.2994 | 7.7308 |
Sensors | Parameter | Value |
---|---|---|
IMU | Random noise in gyro | 0.01°/h1/2 |
Constant drift of gyro | 0.05°/h | |
Random noise in accelerometer | 100 μg/h1/2 | |
Constant bias of accelerometer | 0.1 mg | |
Sampling frequency of IMU | 200 Hz | |
USBL (Kongsberg μPAP) | Constant drift of USBL | 0.5% × Slant range |
Random noise of USBL | 3 m | |
Sampling frequency of USBL | 1 Hz | |
Initial error | Initial position error | 9 m |
Initial velocity error | 0.1 m/s | |
Initial horizontal attitude error | 30″ | |
Initial heading error | 30′ |
Filter Schemes | East RMSE (m) | North RMSE (m) | Up RMSE (m) |
---|---|---|---|
KF | 13.3726 | 13.7601 | 10.4809 |
MCCKF | 11.8538 | 12.8465 | 10.2193 |
MEEKF | 1.6855 × 104 | 1.3108 × 104 | 5.9684 × 104 |
MEEF-KF | 11.0102 | 11.8840 | 9.9075 |
AMEEF-KF | 8.9214 | 10.4060 | 9.5613 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, Z. Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems. J. Mar. Sci. Eng. 2025, 13, 990. https://doi.org/10.3390/jmse13050990
Wang B, Wang Z. Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems. Journal of Marine Science and Engineering. 2025; 13(5):990. https://doi.org/10.3390/jmse13050990
Chicago/Turabian StyleWang, Boyang, and Zhenjie Wang. 2025. "Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems" Journal of Marine Science and Engineering 13, no. 5: 990. https://doi.org/10.3390/jmse13050990
APA StyleWang, B., & Wang, Z. (2025). Adaptive Kalman Filter Under Minimum Error Entropy with Fiducial Points for Strap-Down Inertial Navigation System/Ultra-Short Baseline Integrated Navigation Systems. Journal of Marine Science and Engineering, 13(5), 990. https://doi.org/10.3390/jmse13050990