Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,463)

Search Parameters:
Keywords = UV/Visible

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Viewed by 6
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 40
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 145
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

20 pages, 2828 KiB  
Article
Innovative Biobased Active Composites of Cellulose Acetate Propionate with Tween 80 and Cinnamic Acid for Blueberry Preservation
by Ewa Olewnik-Kruszkowska, Martina Ferri, Micaela Degli Esposti, Agnieszka Richert and Paola Fabbri
Polymers 2025, 17(15), 2072; https://doi.org/10.3390/polym17152072 - 29 Jul 2025
Viewed by 173
Abstract
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that [...] Read more.
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that materials based on CAP combined with Tween 80 have not been previously reported in the literature. Therefore, not only is the incorporation of cinnamic acid into these systems an innovative approach, but also the use of the CAP-Tween80 matrix itself represents a novel strategy in the context of the proposed applications. The conducted studies made it possible to assess the properties of the obtained materials with and without the addition of cinnamic acid. The obtained results showed that the addition of cinnamic acid significantly influenced the crucial properties relevant to food storage. The introduction of CA into the polymer matrix notably enhanced the UV barrier properties achieving complete (100%) blockage of UVB radiation and approximately a 20% reduction of UVA transmittance. Furthermore, the modified films exhibited pronounced antibacterial activity, with over 99% reduction in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa populations observed for samples containing 2 and 3% CA. This antibacterial effect contributed to the extended freshness of stored blueberries. Moreover, the addition of cinnamic acid did not significantly affect the transparency of the films, which remained high (97–99%), thereby allowing the fruit to remain visible. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

16 pages, 2171 KiB  
Review
Polystyrene Upcycling via Photocatalytic and Non-Photocatalytic Degradation
by Terry Yang and Yalan Xing
Molecules 2025, 30(15), 3165; https://doi.org/10.3390/molecules30153165 - 29 Jul 2025
Viewed by 144
Abstract
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically [...] Read more.
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically discusses alternative green approaches for PS treatment through photocatalytic and non-photocatalytic upcycling methods. Photocatalytic methods utilize light energy (UV, visible, or broad-spectrum irradiation) to initiate radical reactions that cleave the inert carbon backbone of PS. In contrast, non-photocatalytic strategies achieve backbone degradation without direct light activation, often employing catalysts and thermal energy. Both approaches effectively transform PS waste into higher-value compounds, such as benzoic acid and acetophenone, though yields remain moderate for most reported methods. Current limitations, including catalyst performance, low yields, and impurities in real-world PS waste, are highlighted. Future directions toward enhancing the efficiency, selectivity, and scalability of PS upcycling processes are proposed to address the growing plastic waste crisis sustainably. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Graphical abstract

19 pages, 3813 KiB  
Article
An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591
by Cleudiane Pereira de Andrade, Caroline Dutra Lacerda, Raíssa Assímen Valente, Liss Stone de Holanda Rocha, Anne Terezinha Fernandes de Souza, Dorothy Ívila de Melo Pereira, Larissa Kirsch Barbosa, Cleiton Fantin, Sergio Duvoisin Junior and Patrícia Melchionna Albuquerque
Antibiotics 2025, 14(8), 756; https://doi.org/10.3390/antibiotics14080756 - 27 Jul 2025
Viewed by 250
Abstract
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds [...] Read more.
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds by two Amazonian fungal strains using the OSMAC (One Strain–Many Compounds) approach. Methods: Two fungal strains, Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591, were cultivated under five distinct culture media to modulate secondary metabolite production. Ethyl acetate extracts were prepared and evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as pathogenic yeasts. Chemical characterization was performed using thin-layer chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV-Vis) spectroscopy, and Ultra-High-Performance Liquid Chromatography with Diode Array Detection (uHPLC-DAD). Results: The extracts exhibited significant antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging from 78 to 5000 µg/mL. Chemical analyses revealed the presence of phenolic compounds, particularly caffeic and chlorogenic acids. Variations in the culture media substantially affected both the metabolite profiles and antimicrobial efficacy of the extracts. Conclusions: The OSMAC strategy effectively enhanced the metabolic diversity of the Amazonian fungal strains, leading to the production of bioactive metabolites with antimicrobial potential. These findings support the importance of optimizing culture conditions to unlock the biosynthetic capacity of Amazonian fungi as promising sources of antimicrobial agents. Full article
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
by Ana Andrea Méndez-Medrano, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López and Hynd Remita
Materials 2025, 18(15), 3513; https://doi.org/10.3390/ma18153513 - 26 Jul 2025
Viewed by 351
Abstract
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 [...] Read more.
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 with a p-type semiconductor, such as nickel oxide (NiO), forming a p-n heterojunction, decreases the recombination of charge carriers and increases photocatalytic activity. In this work, the surface of TiO2 modified with NiO nanoparticles (NPs) induced by radiolysis for photocatalytic hydrogen production was studied. The photocatalytic activity of NiO/TiO2 was evaluated using methanol as a hole scavenger under UV–visible light. All modified samples presented superior photocatalytic activity compared to bare TiO2. The dynamics of the charge carriers, a key electronic phenomenon in photocatalysis, was investigated by time-resolved microwave conductivity (TRMC). The results highlight the crucial role of Ni-based NPs modification in enhancing the separation of the charge carrier and activity under UV–visible irradiation. Furthermore, the results revealed that under visible irradiation, NiO-NPs inject electrons into the conduction band of titanium dioxide. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 1937 KiB  
Article
Anti-Bacterial and Anti-Fungal Properties of a Set of Transition Metal Complexes Bearing a Pyridine Moiety and [B(C6F5)4]2 as a Counter Anion
by Ahmed K. Hijazi, Mohammad El-Khateeb, Ziyad A. Taha, Mohammed I. Alomari, Noor M. Khwaileh, Abbas I. Alakhras, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2025, 30(15), 3121; https://doi.org/10.3390/molecules30153121 - 25 Jul 2025
Viewed by 198
Abstract
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in [...] Read more.
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in various chemical and biological contexts. Methods: A set of metal(II) complexes of the general formula [MPy6][B(C6F5)4]2 where (Py = pyridine, M = Mn (1), Fe (2), Co (3), Ni (4), Cu (5), Zn (6)) have been synthesized by direct reaction of metal halides and pyridine in the presence of Ag[B(C6F5)4]. The complexes were characterized using different techniques to assure their purity, such as elemental analysis (EA), electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) spectroscopy, 11B-NMR, 1H-NMR, and FT-IR spectroscopy. The antimicrobial and antifungal properties against different types of bacteria and fungi were studied for all prepared complexes. Results: The synthesized complexes exhibited broad-spectrum antimicrobial activity, demonstrating variable efficacy compared to the reference antibiotic, oxytetracycline (positive control). Notably, complex 6 displayed exceptional antibacterial activity against Streptococcus pyogenes, with a minimum inhibitory concentration (MIC) of 4 µg/mL, outperforming the control (MIC = 8 µg/mL). Complexes 1, 2, and 4 showed promising activity against Shigella flexneri, Klebsiella pneumoniae, and Streptococcus pyogenes, each with MIC values of 8 µg/mL. Conversely, the lowest activity (MIC = 512 µg/mL) was observed for complexes 3, 5, and 6 against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae, respectively. Regarding antifungal properties, complexes 5 and 6 demonstrated the highest activity against Candida albicans, with MIC values of 8 µg/mL, equivalent to that of the positive control, fluconazole. Density functional theory (DFT) calculations confirmed an overall octahedral coordination geometry for all complexes, with tetragonal distortions identified in complexes 3, 4, and 5. Full article
Show Figures

Figure 1

22 pages, 4984 KiB  
Article
Plasmonic Effect of Au Nanoparticles Deposited onto TiO2-Impact on the Photocatalytic Conversion of Acetaldehyde
by Maciej Trzeciak, Jacek Przepiórski, Agnieszka Kałamaga and Beata Tryba
Molecules 2025, 30(15), 3118; https://doi.org/10.3390/molecules30153118 - 25 Jul 2025
Viewed by 186
Abstract
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in [...] Read more.
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in a high temperature reaction chamber and ch aracterised by UV-Vis/DR, XPS, XRD, SEM, and photoluminescence measurements. The process was carried out using an air/acetaldehyde gas flow under UV or UV-Vis LED irradiation. The mechanism of acetaldehyde decomposition and conversion was elaborated by in situ FTIR measurements of the photocatalyst surface during the reaction. Simultaneously, concentration of acetaldehyde in the outlet gas was monitored using gas chromatography. All the Au/TiO2 samples showed absorption in the visible region, with a maximum around 550 nm. The plasmonic effect of Au nanoparticles was observed under UV-Vis light irradiation, especially at elevated temperatures such as 100 °C, for Au/TiO2 prepared by the magnetron sputtering method. This resulted in a significant increase in the conversion of acetaldehyde at the beginning, followed by gradual decrease over time. The collected FTIR spectra indicated that, under UV-Vis light, acetaldehyde was strongly adsorbed onto Au/TiO2 surface and formed crotonaldehyde or aldol. Under UV, acetaldehyde was mainly adsorbed in the form of acetate species. The plasmonic effect of Au nanoparticles increased the adsorption of acetaldehyde molecules onto TiO2 surface, while reducing their decomposition rate. The increased temperature of the process enhanced the decomposition of the acetaldehyde. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 223
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 781
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

17 pages, 1794 KiB  
Article
Detection of Cumulative Bruising in Prunes Using Vis–NIR Spectroscopy and Machine Learning: A Nonlinear Spectral Response Approach
by Lisi Lai, Hui Zhang, Jiahui Gu and Long Wen
Appl. Sci. 2025, 15(15), 8190; https://doi.org/10.3390/app15158190 - 23 Jul 2025
Viewed by 160
Abstract
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. [...] Read more.
Early and accurate detection of mechanical damage in prunes is crucial for preserving postharvest quality and enabling automated sorting. This study proposes a practical and reproducible method for identifying cumulative bruising in prunes using visible–near-infrared (Vis–NIR) reflectance spectroscopy coupled with machine learning techniques. A self-developed impact simulation device was designed to induce progressive damage under controlled energy levels, simulating realistic postharvest handling conditions. Spectral data were collected from the equatorial region of each fruit and processed using a hybrid modeling framework comprising continuous wavelet transform (CWT) for spectral enhancement, uninformative variable elimination (UVE) for optimal wavelength selection, and support vector machine (SVM) for classification. The proposed CWT-UVE-SVM model achieved an overall classification accuracy of 93.22%, successfully distinguishing intact, mildly bruised, and cumulatively damaged samples. Notably, the results revealed nonlinear reflectance variations in the near-infrared region associated with repeated low-energy impacts, highlighting the capacity of spectral response patterns to capture progressive physiological changes. This research not only advances nondestructive detection methods for prune grading but also provides a scalable modeling strategy for cumulative mechanical damage assessment in soft horticultural products. Full article
Show Figures

Figure 1

20 pages, 7386 KiB  
Article
Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light
by Jesús Herrera-Ramos, Socorro Oros-Ruíz, Angela G. Romero-Villegas, J. Edgar Carrera-Crespo, Raúl Pérez-Hernández, Jaime S. Valente and Francisco Tzompantzi
Catalysts 2025, 15(8), 699; https://doi.org/10.3390/catal15080699 - 22 Jul 2025
Viewed by 386
Abstract
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis [...] Read more.
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis spectroscopy showed that the bandgap of the CdS/TiO2 heterostructured nanocomposites decreases compared to the raw TiO2 support, making them very appropriate for photocatalytic applications in the visible region. The photocatalysts were tested for hydrogen production in methanol–water solutions under visible light conditions. It was observed that the TiC20 photocatalyst prepared by the impregnation method improved the photocatalytic activity compared with photodeposition technique (TiC20FD), achieving a maximum hydrogen production of 570.5 µmol H2 gcat1 h−1, while the latter attained 383.4 µmol H2 gcat1 h−1. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

28 pages, 5525 KiB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 339
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

Back to TopTop