Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Total Site Heat Integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1940 KB  
Article
Protective Effect of Multifloral Honey on Stem Cell Aging in a Dynamic Cell Culture Model
by Fikriye Fulya Kavak, Sara Cruciani, Giuseppe Garroni, Diletta Serra, Rosanna Satta, Ibrahim Pirim, Melek Pehlivan and Margherita Maioli
Antioxidants 2026, 15(1), 115; https://doi.org/10.3390/antiox15010115 - 16 Jan 2026
Viewed by 357
Abstract
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on [...] Read more.
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on stem cell–associated genes and the Wingless-related integration site (Wnt) signaling pathway following ultraviolet (UV)-induced aging. Using a bioreactor, skin stem cells (SSCs) derived from healthy skin biopsies and human skin fibroblasts (HFF1) were pre-treated with 1% honey for 48 h and then exposed to UV. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses were performed on Wnt signaling and anti-aging molecular responses. Honey pre-treatment enhanced the expression of pluripotency markers (Octamer-binding transcription factor 4 (Oct4); SRY-box transcription factor 2 (Sox2)) and reduced senescence-related cell cycle regulators (cyclin-dependent kinase inhibitor 2A (p16); cyclin-dependent kinase inhibitor 1A (p21); tumor protein 53 (p53)) in SSCs. In UV-damaged SSCs, honey also significantly increased Wnt3a expression. In fibroblasts, honey pre-treatment upregulated Heat shock protein 70 (Hsp70) and Hyaluronan synthase 2 (HAS2) expression, while downregulating caspase-8 (CASP8), indicating a protective role against UV-mediated cellular stress. We also analyzed nitric oxide release and the total antioxidant capacity of cells after treatment. Collectively, these findings suggest that honey may safeguard skin stem cells from UV-induced aging by modulating pluripotency and senescence-associated genes and regulating differentiation through alterations in Wnt signaling. Furthermore, Hsp70 upregulation in fibroblasts appears to strengthen cellular stress responses and support homeostatic stability. Full article
(This article belongs to the Special Issue Oxidative Stress in Cell Senescence)
Show Figures

Figure 1

29 pages, 11531 KB  
Article
Influence of Urban Greenery on Microclimate Across Temporal and Spatial Scales
by Isidora Simović, Mirjana Radulović, Jelena Dunjić, Stevan Savić and Ivan Šećerov
Forests 2025, 16(11), 1729; https://doi.org/10.3390/f16111729 - 14 Nov 2025
Viewed by 562
Abstract
This study investigates the influence of urban greenery on microclimate conditions in Novi Sad, a city characterized by a temperate oceanic climate, by integrating high-resolution remote sensing data with in situ measurements from 12 urban climate stations. Sentinel-2 imagery was used to capture [...] Read more.
This study investigates the influence of urban greenery on microclimate conditions in Novi Sad, a city characterized by a temperate oceanic climate, by integrating high-resolution remote sensing data with in situ measurements from 12 urban climate stations. Sentinel-2 imagery was used to capture vegetation patterns, including tree lines and small green patches, while air temperature data were collected across two climatically contrasting years. Vegetation extent and structural characteristics were quantified using NDVI thresholds (0.6–0.8), capturing variability in vegetation activity and canopy density. Results indicate that high-activity vegetation, particularly dense tree canopies, exerts the strongest cooling effects, significantly influencing air temperatures up to 750 m from measurement sites, whereas total green area alone showed no significant effect. Cooling effects were most pronounced during summer and autumn, with temperature reductions of up to 2 °C in areas dominated by mature trees. Diurnal–nocturnal analyses revealed consistent spatial cooling patterns, while seasonal variability highlighted the role of evergreen and deciduous composition. Findings underscore that urban heat mitigation is driven more by vegetation structure and composition than by green area size, emphasizing the importance of preserving high-canopy trees in urban planning. This multidimensional approach provides actionable insights for optimizing urban greenery to enhance microclimate resilience. Full article
(This article belongs to the Special Issue Urban Forests and Greening for Sustainable Cities)
Show Figures

Figure 1

16 pages, 2382 KB  
Article
Impact of Daily and Seasonal Variation on the Phytochemical Profile of Larrea cuneifolia in Northwestern Argentina
by María Celeste Barrera, Mariana Daniela Rosa, Iris Catiana Zampini and María Inés Isla
Plants 2025, 14(21), 3332; https://doi.org/10.3390/plants14213332 - 31 Oct 2025
Viewed by 518
Abstract
Larrea cuneifolia Cav. (common name: jarilla macho) is an endemic Argentinian medicinal shrub that has traditionally been used by the Diaguita-Calchaquí communities in the Monte Desert region in northwestern Argentina. The aim of the present study was to analyze the phytochemical profile and [...] Read more.
Larrea cuneifolia Cav. (common name: jarilla macho) is an endemic Argentinian medicinal shrub that has traditionally been used by the Diaguita-Calchaquí communities in the Monte Desert region in northwestern Argentina. The aim of the present study was to analyze the phytochemical profile and biological activity of the aerial parts of jarilla collected in different places throughout the year, in different seasons and times of day, to determine the optimal harvesting conditions for promoting its medicinal use. The aerial parts were collected three times a day over the course of four seasons in eight L. cuneifolia populations. The total phenolic compounds (TPCs), total flavonoid (TF) content, total lignans (TL), sugars (S) and soluble protein (SP) content were quantified by using spectrophotometric methods and HPLC-DAD. Antioxidant activity was determined by using ABTS scavenging. Significant seasonal, diurnal and spatial variations in the accumulation of TPC (52.61 to 113.52 mg GAE/g), TF (3.71 to 17.92 mg QE/g), TL (283 to 582 μg NDHGAE/g); S (5.73 to 15.17 mg GE/g) and SP (36.75 to 103.10 mg BSAE/g) in aerial parts of L. cuneifolia were revealed. The highest concentrations of TPC and TF were recorded in spring mornings. Maximum accumulation of nordihydroguaiaretic acid (291.8 ± 2.8 μg NDHGAE/mg dry weight) and other lignans were also observed in spring. Heat map analyses pinpoint Ampimpa (Site 1) as a site for jarilla sustainable harvesting, balancing high metabolite content with population abundance, especially in spring, when the highest antioxidant activity (SC50 = 1.560 ± 0.021 μg GAE/mL) coincides with increased phenol levels. These studies highlight the importance of integrating ecological and phytochemical data to define harvesting strategies; collecting during spring mornings optimizes the yield of bioactive compounds, simultaneously minimizing ecological pressure. This study demonstrates how seasonal bioprospecting can inform pharmacological research and local development while safeguarding the endemic plant population. Full article
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Cited by 1 | Viewed by 640
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

17 pages, 2144 KB  
Article
Multidimensional Urbanization Effects on Spontaneous Plant Diversity in a Cold Climate Megacity
by Xingyuan Wang, Congcong Zhao, Mingyu Yu, Yuandong Hu and Zhiwen Gao
Plants 2025, 14(17), 2753; https://doi.org/10.3390/plants14172753 - 3 Sep 2025
Viewed by 971
Abstract
Urbanization profoundly transforms ecosystems, often resulting in habitat loss and biodiversity decline. Urban spontaneous plants, which are established naturally without human intervention, play a critical role in urban ecosystems by providing habitats, mitigating urban heat islands, and acting as indicators of environmental changes. [...] Read more.
Urbanization profoundly transforms ecosystems, often resulting in habitat loss and biodiversity decline. Urban spontaneous plants, which are established naturally without human intervention, play a critical role in urban ecosystems by providing habitats, mitigating urban heat islands, and acting as indicators of environmental changes. Multidimensional urbanization, encompassing vertical and horizontal scale, exerts a significant influence on the biodiversity of green space. While previous studies have extensively examined the effects of horizontal spatial scales (such as land use and population density), the impacts of vertical spatial scales remain understudied. To elucidate the spatial patterns and driving factors of spontaneous plant diversity under multidimensional urbanization, we conducted a comprehensive survey of spontaneous plants across Changchun, a rapidly urbanizing city in northeast China. We established 1147 herbaceous plots within 245 urban green space patches across 38 sites and analyzed the effects of multidimensional urbanization metrics on spontaneous plant diversity. A total of 408 species of spontaneous plants were recorded, with herbs as the dominant life-form (89.2%), 322 are native species (78.9%), and 21.1% non-native species (of which 65.1% are invasive), primarily dispersed by autochory. Significant differences in plant diversity indices were observed across various urban green spaces and habitat types in Changchun, with native plant diversity generally highest in square green spaces and scrub gaps, while non-native plant diversity was most prominent in brownfield sites and showed no significant variation among habitat types. Regression analyses revealed that, in addition to patch characteristic factors (including patch area, perimeter–area ratio, and landscape shape index), the richness of total, native, and autochorous spontaneous plants was primarily influenced by vertical urbanization (as indicated by building volume), with building volume positively associated with species richness. In contrast, the richness of non-native and anemochorous plants was also significantly affected by horizontal urbanization factors, such as the proportion of impervious surface within a 100 m buffer zone and distance from patch to city center. The results reveal distinct spatial patterns of spontaneous plant diversity driven by both urbanization of horizontal spatial scales and vertical spatial scales. Our study provides new insights into the interplay between multidimensional urbanization and biodiversity, offering a theoretical foundation for integrating biodiversity conservation into sustainable urban planning and ecosystem management. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 3774 KB  
Article
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
by Pouriya H. Niknam
Energies 2025, 18(16), 4313; https://doi.org/10.3390/en18164313 - 13 Aug 2025
Cited by 3 | Viewed by 10509
Abstract
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the [...] Read more.
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years, the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources, and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side, process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e., heat pump and gas boiler), as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures, focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs), followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers, which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover, with further availability of renewable energy sources and clean hydrogen, it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh, which is lower than that of full electrification of industrial heating in 2035. Full article
Show Figures

Figure 1

16 pages, 916 KB  
Article
Robust Quantum-Assisted Discrete Design of Industrial Smart Energy Utility Systems with Long-Term Operational Uncertainties: A Case Study of a Food and Cosmetic Industry in Germany
by Rushit Kansara, Loukas Kyriakidis and María Isabel Roldán Serrano
Energies 2025, 18(16), 4258; https://doi.org/10.3390/en18164258 - 11 Aug 2025
Viewed by 639
Abstract
The industrial sector is a major contributor to energy-related CO2 emissions in Europe, making the transition to renewable energy solutions essential. Decarbonization strategies integrate renewable energy sources, power-to-heat technologies, and energy storage systems into existing production sites to enhance sustainability and flexibility. [...] Read more.
The industrial sector is a major contributor to energy-related CO2 emissions in Europe, making the transition to renewable energy solutions essential. Decarbonization strategies integrate renewable energy sources, power-to-heat technologies, and energy storage systems into existing production sites to enhance sustainability and flexibility. However, a key challenge lies in designing energy systems that remain robust under long-term operational uncertainties. Usually the design of each energy system component is discrete, as it is manufactured in a predetermined size. Classical state-of-the-art coupled design and operational optimization methods are based on continuous design variables, which might give sub-optimal solutions. This study overcomes this limitation by employing novel, computationally efficient robust quantum-classical discrete-design methods. Traditional approaches often optimize operations for a single year due to the computational limitations of operational optimization algorithms, leading to designs that lack robustness. By incorporating long-term operational uncertainties, this approach ensures that selected energy-system configurations minimize both CO2 emissions and costs while maintaining resilience to variations in weather conditions and demand fluctuations. Robust discrete designs which consider operational uncertainties show 12% less global warming impact (GWI) with 27% higher total annualized cost (TAC) compared to designs based on operational optimization without uncertainty. A novel quantum-assisted non-dominated sorting genetic algorithm (QANSGA-II) shows accuracy up to 90%, which leads to 27% less computational effort than the NSGA-II algorithm. This novel method can help industries to search larger and more optimal robust discrete-design spaces for making decarbonization decisions. Full article
Show Figures

Figure 1

23 pages, 12403 KB  
Article
A Comprehensive Ensemble Model for Marine Atmospheric Boundary-Layer Prediction in Meteorologically Sparse and Complex Regions: A Case Study in the South China Sea
by Yehui Chen, Tao Luo, Gang Sun, Wenyue Zhu, Qing Liu, Ying Liu, Xiaomei Jin and Ningquan Weng
Remote Sens. 2025, 17(12), 2046; https://doi.org/10.3390/rs17122046 - 13 Jun 2025
Cited by 3 | Viewed by 1521
Abstract
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, [...] Read more.
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, accurately determining the MABLH remains challenging. Coherent Doppler wind lidar (CDWL), as a laser-based active remote sensing technology, provides high-resolution wind profiling by transmitting pulsed laser beams and analyzing backscattered signals from atmospheric aerosols. In this study, we developed a stacking optimal ensemble model (SOEM) to estimate MABLH in the vicinity of the site by integrating CDWL measurements from a representative SCS site with ERA5 (fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts) data from December 2019 to May 2021. Based on the categorization of the total cloud cover data into weather conditions such as clear/slightly cloudy, cloudy/transitional, and overcast/rainy, the SOEM demonstrates enhanced performance with an average mean absolute percentage error of 3.7%, significantly lower than the planetary boundary-layer-height products of ERA5. The SOEM outperformed random forest, extreme gradient boosting, and histogram-based gradient boosting models, achieving a robustness coefficient (R2) of 0.95 and the lowest mean absolute error of 32 m under the clear/slightly cloudy condition. The validation conducted in the coastal city of Qingdao further confirmed the superiority of the SOEM in resolving meteorological heterogeneity. The predictions of the SOEM aligned well with CDWL observations during Typhoon Sinlaku (2020), capturing dynamic disturbances in MABLH. Overall, the SOEM provides a precise approach for estimating convective boundary-layer height, supporting marine meteorology, onshore wind power, and coastal protection applications. Full article
Show Figures

Graphical abstract

27 pages, 4039 KB  
Article
Enhancing Energy Sustainability in Remote Mining Operations Through Wind and Pumped-Hydro Storage; Application to Raglan Mine, Canada
by Adrien Tardy, Daniel R. Rousse, Baby-Jean Robert Mungyeko Bisulandu and Adrian Ilinca
Energies 2025, 18(9), 2184; https://doi.org/10.3390/en18092184 - 24 Apr 2025
Cited by 5 | Viewed by 2304
Abstract
The Raglan mining site in northern Quebec relies on diesel for electricity and heat generation, resulting in annual emissions of 105,500 tons of CO2 equivalent. This study investigates the feasibility of decarbonizing the site’s power generation system by integrating a renewable energy [...] Read more.
The Raglan mining site in northern Quebec relies on diesel for electricity and heat generation, resulting in annual emissions of 105,500 tons of CO2 equivalent. This study investigates the feasibility of decarbonizing the site’s power generation system by integrating a renewable energy network of wind turbines and a pumped hydro storage plant (PHSP). It uniquely integrates PHSP modeling with a dynamic analysis of variable wind speeds and extreme climatic conditions, providing a novel perspective on the feasibility of renewable energy systems in remote northern regions. MATLAB R2024b-based simulations assessed the hybrid system’s technical and economic performance. The proposed system, incorporating a wind farm and PHSP, reduces greenhouse gas (GHG) emissions by 50%, avoiding 68,500 tons of CO2 equivalent annually, and lowers diesel consumption significantly. The total investment costs are estimated at 2080 CAD/kW for the wind farm and 3720 CAD/kW for the PHSP, with 17.3 CAD/MWh and 72.5 CAD/kW-year operational costs, respectively. The study demonstrates a renewable energy share of 52.2% in the energy mix, with a payback period of approximately 11 years and substantial long-term cost savings. These findings highlight the potential of hybrid renewable energy systems to decarbonize remote, off-grid industrial operations and provide a scalable framework for similar projects globally. Full article
Show Figures

Figure 1

32 pages, 22462 KB  
Article
Spatiotemporal Dynamics of Marine Heatwaves and Ocean Acidification Affecting Coral Environments in the Philippines
by Rose Angeli Tabanao Macagga and Po-Chun Hsu
Remote Sens. 2025, 17(6), 1048; https://doi.org/10.3390/rs17061048 - 17 Mar 2025
Cited by 1 | Viewed by 4353
Abstract
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and [...] Read more.
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and OA have progressively eroded coral ecosystems from 1985 to 2022. This study analyzed 12 critical coral habitats adjacent to the Philippines. The monthly average sea surface temperature (SST) in the study area ranged from 26.6 °C to 29.3 °C. The coast of Lingayen Gulf was identified as the most vulnerable coral reef site in the Philippines, followed by Davao Oriental and Polillo Island. The coast of Lingayen Gulf recorded the highest total MHW days in 2022, amounting to 293 days. The coast of Lingayen Gulf also reached the highest DHW values in July and August 2022, with 8.94 °C weeks, while Davao Oriental experienced the most extended average duration of MHWs in 2020, lasting 90.5 days per event. Large-scale climate features such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) significantly influenced the study area’s SST anomalies and MHW events. High-risk coral bleaching periods, such as 1988–1989, 1998–1999, 2007–2008, and 2009–2010, were characterized by transitions from El Niño and positive PDO phases, to La Niña and negative PDO phases. However, since 2015, global warming has led to high cumulative heat stress without specific climate background patterns. We propose a Coral Marine Environmental Vulnerability Index (CoralVI) to integrate the spatiotemporal dynamics of warming and acidification and their impacts on coral habitats. The data show a rapid increase in the marine environmental vulnerability of coral habitats in the Philippines in recent years, extending to almost the entire coastline, posing significant threats to coral survival. Full article
Show Figures

Figure 1

21 pages, 13304 KB  
Article
Air Pollution in the Port City of Lithuania: Characteristics of the Distribution of Nitrogen Dioxide and Solid Particles When Assessing the Demographic Distribution of the Population
by Aistė Andriulė, Erika Vasiliauskienė, Paulius Rapalis and Inga Dailidienė
Sustainability 2024, 16(19), 8413; https://doi.org/10.3390/su16198413 - 27 Sep 2024
Cited by 3 | Viewed by 2338
Abstract
This research addresses a gap in localized air quality assessments by measuring pollution levels in Klaipeda, a Baltic port city, using passive solid particle collectors and nitrogen dioxide (NO2) diffusion tubes. Passive sampling techniques were employed due to their cost-effectiveness and [...] Read more.
This research addresses a gap in localized air quality assessments by measuring pollution levels in Klaipeda, a Baltic port city, using passive solid particle collectors and nitrogen dioxide (NO2) diffusion tubes. Passive sampling techniques were employed due to their cost-effectiveness and ease of deployment, allowing for practical monitoring over short-term periods. By targeting diverse functional zones, this study aims to provide a comprehensive analysis of air pollution patterns and seasonal variations in the region. Air pollution, primarily from NO2 and particulate matter (PM), poses significant risks to public health, especially in densely populated urban areas. Air quality was assessed by measuring total suspended particulates (TSP) and NO2 concentrations across 19 strategically chosen sites, covering key functional zones, such as industrial areas, green spaces, residential neighborhoods, transport hubs, and the port. Results show elevated pollution levels near major roads and the port area, likely driven by heavy traffic, industrial emissions, and port activities. These patterns correlate with areas of higher population density, highlighting the intersection of air quality challenges with human health risks in urbanized zones. Seasonal data reveal a notable peak in NO2 concentrations during winter, likely due to increased heating demand and reduced atmospheric dispersion. These findings suggest that air quality management strategies should be adaptive to seasonal fluctuations, particularly by addressing emissions from heating sources in colder months. The study underscores the necessity of integrating sustainable urban planning with targeted air quality interventions. Expanding green spaces, enhancing traffic regulation, and establishing protective zones near industrial areas are critical strategies for mitigating pollution. These insights are essential for guiding both urban development and public health policies in Klaipeda and other coastal cities facing similar environmental challenges. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

24 pages, 5783 KB  
Article
Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
by Angeliki Kitsopoulou, Dimitris Pallantzas, Evangelos Bellos and Christos Tzivanidis
Designs 2024, 8(4), 68; https://doi.org/10.3390/designs8040068 - 4 Jul 2024
Cited by 9 | Viewed by 3779
Abstract
The present study investigates the incorporation of renewable rooftop photovoltaic systems in fully electrified residential buildings and estimates the zero-energy demand building potential in relation to the climatic data of Greece. Specifically, the aim of the analysis is to calculate the maximum possible [...] Read more.
The present study investigates the incorporation of renewable rooftop photovoltaic systems in fully electrified residential buildings and estimates the zero-energy demand building potential in relation to the climatic data of Greece. Specifically, the aim of the analysis is to calculate the maximum possible number of stories and therefore the total building height for a complete transformation to zero-net-energy building. The energy analysis, which is conducted using the DesignBuilder software, focuses on single-floor up to seven-story buildings. The importance of the present work lies in the acknowledgment of the diversity of the Greek residential sector, the adherence to national energy policies, and the European goal of fully electrified buildings. The examined case studies are equipped with electrically driven air-to-air heat pumps serving the space heating and cooling demands and with an air-to-water heat pump covering the domestic hot water requirements. The investigated locations are the four main cities of Greece, Athens, Thessaloniki, Chania, and Kastoria, which represent the country’s four climatic categories. The conducted analysis allows for the mapping of the zero-energy building potential for the climatic data of Greece, demonstrating the possibility of striking a positive building energy balance through the integration of on-site renewable energy sources and the production of necessary electrical energy. The novelty of the present work lies in the identification of a key factor, namely, the building height, which determines the feasibility of transforming multifamily buildings into zero-energy buildings. According to the analysis results, the critical number of stories is calculated at six for Chania, five for Athens, four for Thessaloniki, and two for Kastoria. Regarding a three-story residential building, the incorporation of a renewable photovoltaic system can result in an annual surplus electricity production of 13,741 kWh (Chania), 10,424 kWh (Athens), and 6931 kWh (Thessaloniki), and a corresponding coverage of 100% (Chania), 69.0% (Athens), 38.9% (Thessaloniki) and 0% (Kastoria). Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

37 pages, 8444 KB  
Article
From District to City Scale: The Potential of Water-Sensitive Urban Design (WSUD)
by Joachim Schulze, Simon Gehrmann, Avikal Somvanshi and Annette Rudolph-Cleff
Water 2024, 16(4), 582; https://doi.org/10.3390/w16040582 - 16 Feb 2024
Cited by 5 | Viewed by 5101
Abstract
The summer of 2022 was one of the hottest and driest summers that Germany experienced in the 21st century. Water levels in rivers sank dramatically with many dams and reservoirs running dry; as a result, fields could not be irrigated sufficiently, and even [...] Read more.
The summer of 2022 was one of the hottest and driest summers that Germany experienced in the 21st century. Water levels in rivers sank dramatically with many dams and reservoirs running dry; as a result, fields could not be irrigated sufficiently, and even power generation and supply were affected. The impact of abnormally high temperatures for extended periods (heatwaves) is not restricted to nature and the economy but is also a considerable public health burden. Experts worldwide agree that these extreme weather events are being driven by climate change and will increase in intensity and frequency in the future. The adverse impact of these extreme weather events multiplies among dense urban environments, e.g., through heat islands. This calls for cities to take action to heat-proof and water-secure their urban developments. Water-Sensitive Urban Design (WSUD) is one such approach to mitigate the aforementioned challenges by leveraging the urban water ecosystem with special attention to the subject of water reclamation, retention, treatment and distribution. This paper introduces and builds upon a prototype of WSUD that centers around an artificial lake as an integrated water resource management system (IWRMS) fed by treated grey water and storm water obtained from two housing blocks flanking the water reservoir. Based on the specifications of this prototype, indicators of site suitability are derived and applied to identify potential locations for replicable projects in the city of Darmstadt. The results confirm the impact WSUD can have: a total of 22 sites with 2527 apartments are found suitable for prototype implementation in Darmstadt. Savings in town water consumption from these 22 sites would add up to 147 million liters. Further benefits include the provision of 24 million liters of irrigation water, storm water retention, adiabatic cooling during heatwave, increased biodiversity and the improvement in livability of the sites and the city. Full article
Show Figures

Figure 1

22 pages, 3324 KB  
Article
Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment
by Julia Hansson, Sofia Klugman, Tomas Lönnqvist, Nilay Elginoz, Julia Granacher, Pavinee Hasselberg, Fredrik Hedman, Nora Efraimsson, Sofie Johnsson, Sofia Poulikidou, Sahar Safarian and Kåre Tjus
Energies 2024, 17(1), 99; https://doi.org/10.3390/en17010099 - 23 Dec 2023
Cited by 7 | Viewed by 2504
Abstract
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill [...] Read more.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost. Full article
(This article belongs to the Special Issue Conversion of Biomass to Fuel and Commodity Chemicals)
Show Figures

Figure 1

18 pages, 1617 KB  
Article
Exploring Exergy Performance in Tetrahydrofuran/Water and Acetone/Chloroform Separations
by Jonathan Wavomba Mtogo, Gladys Wanyaga Mugo, Petar Sabev Varbanov, Agnes Szanyi and Péter Mizsey
Processes 2024, 12(1), 14; https://doi.org/10.3390/pr12010014 - 20 Dec 2023
Cited by 4 | Viewed by 2610
Abstract
Distillation is significantly influenced by energy costs, prompting a need to explore effective strategies for reducing energy consumption. Among these, heat integration is a key approach, but evaluating its efficiency is paramount. Therefore, this study presents exergy as an energy quality indicator, analyzing [...] Read more.
Distillation is significantly influenced by energy costs, prompting a need to explore effective strategies for reducing energy consumption. Among these, heat integration is a key approach, but evaluating its efficiency is paramount. Therefore, this study presents exergy as an energy quality indicator, analyzing irreversibility and efficiencies in tetrahydrofuran/water and acetone/chloroform distillations. Both systems have equimolar feed streams, yielding products with 99.99 mol% purity. The simulations are performed using Aspen Plus™, enabling evaluation at the column level, as a standalone process, or from a lean perspective that considers integration opportunities with other plants. The results show that, despite anticipated energy savings from heat integration, economic viability depends on pressure sensitivity. The results demonstrate that heat-integrated extractive distillation for acetone/chloroform raises utility energy consumption. Exergy calculations comparing standalone and total site integration reveal the variation in distillation efficiency with operation mode. Global exergy efficiency in both extractive and pressure-swing distillation depends on the fate of condenser duty. In heat-integrated extractive distillation, global exergy efficiency drops from 8.7% to 5.7% for tetrahydrofuran/water and 11.5% to 8.3% for acetone/chloroform. Similarly, heat-integrated pressure-swing distillation sees global exergy efficiency decrease from 34.2% to 23.7% for tetrahydrofuran/water and 9.5% to 3.6% for acetone/chloroform, underscoring the nuanced impact of heat integration, urging careful process design consideration. Full article
(This article belongs to the Special Issue Sustainable Chemical Engineering Processes and Intensification)
Show Figures

Figure 1

Back to TopTop